
.'-..vs:.cw-. .& =v:. =w A
GENERAL PHYSICS

THIRD SERIES, VOLUME 24, NUMBER 4 OCTOBER 1981

PHYSICAL REVIEW A VOLUME 24, NUMBER 4 OCTOBER 1981

Time-dependent extension of the Hohenberg-Kohn-Levy

energy-density functional

L. J. Bartolotti
Department of Chemistry, University of North Carolina, Chape! Hill, North Carolina 27514

(Received 27 February 1981)

An energy-minimization principle based on the hydrodynamic formulation of quantum

mechanics is used to develop a time-dependent energy-density functional. The external

potential considered has a periodic dependence on time and the validity of the functional

is restricted to those frequencies which are not so large as to cause a transition to an ex-

cited state. The present time-dependent energy-density functional reduces to the time-

independent Hohenberg-Kohn-Levy functional in the static limit.

I. INTRODUCTION

Density-functional theory for a time-independent
external potential has proven to be a viable alterna-
tive to wave-function theory by Hohenberg and
Kohn, ' and Levy. However, before density-
functional theory can be completely accepted as a
substitute for wave-function theory, an energy-
density functional with a time-dependent external
potential must be developed. Functionals of a
time-dependent density have been given in the
literature. ' However, these functionals are not
based on an energy-wave-function-minimization
principle. For a review of these functionals as well
as time-independent density functionals, see the re-
cent article by Rajagopal.

Restricting the external potential to be a real
scalar potential with a periodic dependence on
time, we develop an energy-wave-function-
rninimization principle based on the
hydrodynamic-wave-function functional. With
this minimization principle we then construct a

time-dependent energy-density functional. Our
development parallels Levy's recent reformulation

of the Hohenberg-Kohn' theory, in which he
solved the v-representability problem and defined
formally, the universal functional of the density for
the sum of the kinetic and electron-electron repul-
sion energies. Unlike time-independent wave-

function theory, the hydrodynamic-energy wave-

function functional is a functional of both the am-

plitude and the phase of the total time-dependent
wave function. Our theory provides only a method
of going from a functional of the time-dependent
amplitude to a functional of the time-dependent

density; the functional dependence on the phase
remains unchanged.

II. MINIMIZATION PRINCIPLE

Our derivation of an energy-minimization princi-
ple is based on the hydrodynamic variational prin-
ciple
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is defined as
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the equation of continuity, Eq. (9), can be written
in the more familiar form

W'0+ V.
-

at

and V(r,t) is an adiabatically switched on time-
dependent real scalar potential. (Our notations for
the N-particle differential operators are
Vf=g, ]V fandVf Vg=g, ]V f Vg,
where f and g are arbitrary N-particle functions.
All equations are in atomic units. ) The bracket
notation implies an integration over the space and
spin coordinates, but not over the time coordinate.
The hydrodynamic variational principle is derived
from the Frenkel variational principle ' by factor-
ing the complex time-dependent wave function in
terms of its modulus and argument, i.e.,

]p( r,t) =g(r, t)e's' "' .

Equations (8) and (9) represent the hydrodynamic
formulation of quantum mechanics. See, for in-

stance, the recent paper by Hirschfelder and the
references cited in this article.

Unfortunately we do not have a functional whose
variation is zero. The second term in Eq. (1}
prevents J[fP] from having this property. There-
fore, we restrict the external potential to have a
periodic dependence on time. Taking a time aver-

age of J[fP] over one period of time t]].t gives the
functional

Although the spin coordinates are not explicitly
shown, they are contained in the amplitude P(r, t)
The electronic energy of the system of interest is
defined as and the variational principle

(12)

g'[ql», q]]=(q]~ ——,V'+ V„+V
~

0 )

=&pl ~+V„+Vly&=tf[OS],

(6)

and is related to the hydrodynamic functional by

J[%,»]=II'[O',4]—i(0' at

=I'[I]41+(I]
Z,

I])=J[I]8].

Taking independent variations with respect to P
and S, the stationary condition, Eq. (1), yields the
following set of coupled nonlinear differential equa-
tions:

(T+ V„+V)f= P=EP—
and

8J[44]~=o (13)

The subscript t on the functional and on the ket
implies that a time-averaged integration has also
been performed. The Euler-Lagrange equations as-
sociated with Eq. (13}are also given by Eqs. (8)
and (9).

The solution %(r,t) of the time-dependent
Schrodinger equations with a periodic time-
dependent potential is a quasiperiodic function of
the time. ' This means that the amplitude P(r, t)
is periodic in t, but the phase S(r,t) is not a
periodic function of t. Actually, the phase is a sum
of two terms

S( r, t ) =So(t)+S~(r,t),
the first term being nonperiodic while the second
term is periodic in t. The time derivative of So(t)
is obtained as an eigenvalue of Eq. (8), while

S](r,t) is obtained from Eq. (9). The electronic
energy is actually a functional of 1(] and S] and
variations with respect to the phase refer to Si.
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The electronic energy g'[PP], is made station-
ary with respect to variations of 1{ subject to the
following constraints:

(15)

and

(18) to Eq. (8). Integrating the second term in
Q[PP], by parts over t, we find that Q[t{P], is
equivalent to J[gP],.

Making 8'[PP], stationary with respect to vari-
ations of S subject to the constraint

(19)= —V' j.at (16)

This is equivalent to making the following func-
tional stationary with respect to variations in f:

fl[gk]i=@'[44]~ (—~f'
5, )t —i}i&PI P&t

is equivalent to making the following functional
stationary with respect to variations of S:

ft[q W], = {f'[PS], as
(20)

(T+V„+V)P=—

a~( a~( 4=El.
. af at. =

The relationship between the Lagrange multi-
pliers and the phase is obtained by comparing Eq.

(18)

where A,f' and g$ are the Lagrange multipliers in-
troduced to ensure that the solution satisfies Eqs.
(15) and {16). The Lagrange multiplier k ({r,t) is a
periodic function of t. The first constraint ensures
that the solutions are normalized while the second
constraint preserves the charge-current conserva-
tion and ensures that the normalization is a con-
stant of motion.

The stationary condition 50[/+], =0 gives the
following Euler-Lagrange equation:

where gp is the Lagrange multiplier which ensures
Eq. (19) is satisfied by the solution. Making
fl[t{'+l~ stationary gives the following Euler-
Lagrange equation:

—V (pQVS)+BIO ——0 .
at

(21)

Comparing this equation to Eq. (9), we find that
rlo= —l. Again Eq. (20) is equivalent ot J[t{P],.

The analysis given above shows that making
@[PE],stationary with respect to variations of P
and S subject to the constraints of Eqs. (15), (16),
and (19) is equivalent to the variational principle
5J[PP],=0. This was expected since the Frenkel
variational principle ensures that its solutions satis-
fy the proper normalization constraints.

To prove that we have an energy-minimization
principle, it is sufficient to show that the second
variation of J[PP],

2 5 J[it&]~= &5&
I
&+Vee+ V &

I
54—&i+ i &0 I

()'5S ~5S
I P&i+2(Q

I
5S

I 5$&, +2(1{
I
VS V5S

I 5@&,

(22)

is positive. Clearly for the ground state, the first
two terms are positive, but it is not obvious that
the sum of all four terms is always positive. Actu-
ally, 52J[fg]t is positive for the ground state of
the system of interest only when the applied fre-
quency is not so large as to cause a transition into
an excited state. For a discussion of this limita-
tion, see Appendix A and Ref. 8. Thus, any set of
trial functions which satisfy the proper boundary
conditions and normalization constraint will yield
an energy greater than or equal to the ground-state
value as long as the applied frequency does not

VS=0 (23)

and

Af(r, t) =0 . (24)

Therefore, the variational principle 5J[PP],=0

cause transitions into the excited states.
Before leaving this section, we will comment

briefly on the static limit of J[1{P]„the limit in
which the time dependence of V(r, t) is turned off.
Taking the static limit we find that
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(the time-dependent minimization principle)
reduces properly to the Rayleigh-Ritz variational
principle. Equation (8) becomes the time-

independent Schrodinger equation and Eq. (9)
states the obvious; the amplitude is independent of
time.

III. TIME-DEPENDENT ENERGY-DENSITY
FUNCTIONAL

Our derivation of an energy-density functional
with a periodic time-dependent potential is based
on the proof given by Levy for the time-dependent
problem. Restricting the external potential V( r, t )

to be a sum of single-particle potentials v(r;, t), we
define the sum of the kinetic and electron-electron
repulsion energies as a functional of the electron
density p and the phase by

F[p4] =
& O'-.

I
T+ v-

I
4'-. & . (25)

F[peS],+fp d &g'[P, S,e], .

(26)

Theorem II.

F[pgskgs ]t +fpge~ — [((gskgs ]t

(27)

The subscript gs stands for the ground-state solu-
tion. To simplify notation, we have defined d o as
d r idt/ht.

Woof of theorem I. The definition of F[peS ]t al-
lows us to construct

Given p and S, Eq. (25) implies that we search all
Qe which give the fixed p subject to the constraints
of Eqs. (15) and (16), and then select that pt'=1(tt';„
which makes the expectation value of T+ V„a
minimum. This minimum expectation value de-

fines F[pg]t. If S is not known and we want the
S which is consistent with p, we use a trial S to
determine 1(te;„. Next we search all S which satisfy
the constraint of Eq. (19}and choose that S which
makes the expectation value a minimum. This S is
used to obtain a new f~;„. The procedure is re-

peated until a self-consistent solution is found. Al-

ternatively, we can use the equation of continuity
to generate a self-consistent solution for S. As in
the time-independent problem, p(r „t) need not be
y( r &,t ) representable.

Analogous to the time-independent theory, we

prove the following two theorems.
Theorem I:

& gt';„
I
T+ V„+V

I
Pe;„),& g'[g„P„], .

(29)

Addition of Eqs. (28) and (29) proves theorem I.
Proof of theorem II Sinc. e the minimization

principle states

we have the following inequality:

(30)

& age I
T+ Vee I.l(ge &t & & 1(met„

I
T+ Ve I

ymgn &t .

(3l)

However, the definition of g '„requires

&Wg. IT+v Ifg.» &0 "IT+v-I0") .

(32)

Equations (31) and (32} can only be simultaneously
satisfied if and only if the equality holds

p w n p
& Pgs I

T+ Vee I (('gs &t = & dmin I
T+ Vee I dmin &t .

(33)

Since the right-hand side defines F[pg,eSg, )„we
have

F[pg,eSg, ]t +fpg, v d o=@'[Pg,Pg,']t, (34)

which completes the proof of theorem II.
We could have based theorems I and II on the

weaker minimization principle g'[tP, Sg, ]t &

[g1„(AS]g. tAlthough this minimization principle
holds regardless of the magnitude of the applied
frequency, it requires that the exact ground-state
solution for the phase be known. It is for this
reason that we chose to base the theorems on the
stronger minimization principle discussed in the
last section. For a discussion of the weak minimi-
zation principle for J[Q,S]„seeRef. 6.

We can now proceed to minimize this time-
dependent energy-density functional with respect to
the density, subject to the constraints which ensure
the conservation of the number of particles as we
did for 8'[PP]t. However, before doing so, we

F[peS] +fpv«=&0'.
I
T+ V„+V

I
0';.&

(28)

and the minimization principle proven in the last
section states
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and

Bp
at

(35}

pdo. =N, (36)

is equivalent to the variational principle

shall reduce the overall dimensionality of the prob-

lem. Since the phase still has a 3N-dimensional

spatial dependence, and we would like the func-

tional dependence of the energy to be with respect

to single-particle functions, we make the assump-

tion that the phase is a sum of single-particle func-

tions s(r;,t). It has been shown that this is not a

bad assumption, at least for the first-order correc-

tions to g and S due to the perturbation of a time-

varying electric field. "
The minimization of g'[pp], with respect to p,

subject to the constraints

d@[p&]i f 5&lp~ li 5N[p]
BN g 5p 5p

do

f 5N 5N do=1. (42)

Evaluating Eq. (41) for a particular number of par-
ticles (N =Z), we have

a@'[pp],

BN Q,S=Z

5N
=pp+ p& do

5p
(43)

The following relationship between the electronic

energy and the local chemical potential is obtained
from Eq. (39}and the definition of g'[pp], :

&[pp)r =fpp«Q[p&]i

(41)
where the inverse of 5N/5p, assuming that it ex-

ists, is defined by

50[p],=0,
where the functional Q[p], is defined as

fl[P]i = &[pa ],—f&l
"d t7 rlo f—p«

(37)
where Q[pp], is defined as

5F[p~]
Q[pw]& =fp

'
do F[pp], . —

5p
(45)

Equation (38} leads to the following Euler-

Lagrange equation

5&[p~ li 5F[p~]
5p 5p

a~~

at+ at

(38)

(39)

fp 'd~=— (46)

gives the equation of continuity

Equations (44) and (45) are identical in form to
those obtained from time-independent density-

functional theory. '

Minimization of g'[pp], with respect to s subject

to the constraint

J

where AP and rlto are the Lagrange multipliers in-

troduced to ensure that the two constraints are sa-

tisfied by the value of p which makes @[pe], a
minimum. Also, Ai(ri, t) is a periodic function of
t. The first constraint ensures that the number of
particles is a constant of the motion and the second

constraint fixes the number of particles. The quan-

tity p(r &,t) consists of two terms

Qp ~ Qp

at
=

at+ ~i'(p~is) = + ~i' j i=o . (47)

Equations (39) and (47) provide a set of coupled

equations whose solutions determine the electronic

energy of the system.
We close this section by investigating the static

limit of the present density-functional theory. In
the static limit we have

p(r i,t )

=go+pi�(

r i, t ), V]s =0 (48)

where the second term has a periodic dependence
on t. Since p(r &,t) is related to the conservation of
the number of particles, we call it the local chemi-

cal potential of the system. Further support for
calling p a chemical potential can be found in this
following analysis. Assuming that g'[pp], is a
continuous function of N, we have

and

pi(r), t) =0 . (49)

Therefore, the correct time-independent
Hohenberg-Kohn-Levy' density functional and its
Euler-Lagrange equation are recovered.
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IV. CONCLUSION

The advantage of the present theory over the
previously defined theories of Ying and Peuckert
is that our time-dependent energy4ensity function-
al is based on a wave-function-energy-minimization
principle. To allow us to briefly compare the
present functional to those of Ying and Peuckert,
we will assume that these latter functionals contain
a periodic time-dependent potential.

The stationary principle considered by Ying was
constructed by analogy to classical hydrodynamics.
Although his energy-density functional is
equivalent to our functional when we make the as-
sumption that the phase is a sum of single-particle
functions, his Euler-Lagrange equation is not identi-
cal to ours. It appears that his stationary principle
does not contain the proper minimization con-
straints for the density. Peuckert, on the other
hand, uses a wave-function functional which is
identical to our J[%~,%'] to construct his density
functional. However, it apfiears that his density
functional does not explicitly contain the functional
dependence of the phase of the total time-
dependent wave function. After this paper was
submitted for publication, we learned of some re-
cent related research of Deb and Ghosh. '

Our theory is restricted to external potentials
which have a periodic dependence on time, and
there are unanswered questions concerning the
phase. Actual implementation of this theory will
require not only finding useful approximations to
F[pg]„but also the determination of p for each r
and t. We are continuing our investigation of these
several difficult problems. We hope to employ the
theory in the description of time-dependent proper-
ties of atoms and molecules, and in areas of solid-
state physics and the dynamics of liquids.

field ere obtained by making the following func-
tional stationary':

J2"lPi &i"l = &Pi I
Ho —&o I ki &+2& Pi I

"i+Si"
I

l('o&

+
2 &/pl VSi VSi

I Pp& . (Al)2'
The first-order corrections are |(i and Si"; l(o is the
zero-order solution, Hp is the unperturbed Hamil-
tonian, Ep is the zero-order' energy, h i is the dipole
moment operator, and co is the frequency of in-
cident radiation. A time-average integration has
been performed and l(i and Si" are now functions
of co.

The second variation of Jq [g",Pi" ] is given by

p
5 J2 [0141 ]= &501 I Ho —&0

I 5/1 &

+, &Vp5Si" IHp-~p l»i"ep&

+2&5/i I5Si"
I t(p& . (A2)

The second term on the right-hand side of Eq. (A2)
is obtained using the identity

2'
', &y, l

vs," vs," ly, &

2
&l('pSi"

I
Ho —&o

I
Si"Po& (A3)

When Ep is the ground-state energy of the unper-
turbed system and co is real, the first two terms in
5 J2[t(i Pi"] are positive. However, it is not obvi-
ous that the sum of the three terms in Eq. (A2) is
positive. Since fi and Si" are independently
varied, we can take the variation in P", to be
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where p is an arbitrary real constant. Using Eq.
(A4), the second variation of Jz"[Pi p i"] becomes

25'J2" lt('i Pi" l

=(&+8 )(Spi& Hp Hp+, pp 5$",) . —2

( l+P')

APPENDIX A

The first-order corrections to f and S for an
atom under the influence of a time-varying electric

This equation is positive when

(l+P')
CO K — Cgp]

2

(A5)

(A6)
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where cooi is the resonance frequency. This ine-

quality is definitely satisfied for all p&0, therefore

we need only consider those P&0. The values of ro

for which Eq. (A6) is satisfied for all P &0 are
those co &coo&. Thus we see that for the trial solu-

tions Pi and Si, the bound

J2"[gi Si ] &J~"[y", ,Si"] (A7)

will be strictly valid only for those frequencies less

than the first transition frequency. For the
second-order corrections to P and S, we find that co

must be less than one-half of the transition fre-

quency if a similar bound is to hold. For each suc-
cessive order of perturbation, the interval for which

we have a bound to the ground state of the system
is reduced. This result is identical to that found

using alternative but equivalent functionals.
Bounds to J[gP] have been discussed in the litera-

ture; however, these bounds are much weaker than
the ones considered in this appendix since the pre-
vious bounds required a knowledge of either g or
S.
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