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%e investigate the photon statistics of light whose intensity fluctuations are due to shot noise,

such as occurs in certain kinds of luminescence involving multiplied-Poisson processes. The de-

grees of freedom and degeneracy parameters are obtained and contrasted with those for thermal

light. The excess count variance for shot-noise light exhibits particle-like fluctuations and is

maximized for large counting times. Radioluminescence photons produced in glass obey the

Neyman type-A counting distribution predicted by the theory.

The photon statistics generated by light have
evoked continuing interest in the physics community
since 1956. In that year, Hanbury-Brown and Twiss

carried out an important set of experiments in which

they observed correlation in the fluctuations of two

photoelectric currents induced by thermal light' and

by starlight. ' Purce113 recognized that this correlation
would also be manifested in the number of photon
counts registered in a fixed time interval T, using a

single detector. By means of a simple argument, he
demonstrated that the variance of this counting dis-

tribution, var(n), would exceed the mean count (n)
because of the tendency of the photons to "clump, "
though he was careful to point out that this excess
variance would be small for natural light. The full

photon-counting distribution p(n) for thermal light

was calculated by Mandel~' in 1959. He sho~ed that
it could be approximately represented as a negative
binomial distribution6 and emphasized that the
number of degrees of freedom (modes) of the light

within the resolution time of the counting detector,
M, and the degeneracy parameter of the light 5 were

both crucial determinants of the statistical behavior
of n. It has by now been well established that the
registration of photons for such sources of light is

describable in terms of the doubly stochastic Poisson
point process (DSPP).' s

The development of a quantum-electrodynamic
theory of coherence and photon counting by
Glauber' " in 1963 provided a framework for
describing both classical and intrinsically quantum-
mechanical states of the radiation field. Quantum-
mechanical light for which the count variance lies
belo~ the count mean can in principle be created, "'
but again a significant deviation from Poisson count-

ing statistics is difficult to produce. '

In the following we consider the photon statistics

for sources of light whose stochastic intensity is of a
shot-noise type, such as occurs in certain kinds of
luminescence that involves a multiplicative cascade of
two Poisson processes. Expressions are obtained for
the degrees of freedom and the degeneracy parameter
for shot-noise light; they are shown to be very dif-

ferent in character from those for thermal light. %e
provide an expression for the count variance and

show that it is maximized for large counting times.
Finally, we demonstrate that the Neyman type-A dis-

tribution, '5 rather than the Poisson, governs the
registration of such photons. Only sensitive and

carefully designed experiments will reveal deviations
from the Neyman type-A for shot-noise light, much

as special conditions are required to produce some-
thing other than Poisson counting statistics for ther-

mal light.
For the general DSPP, the count variance is related

to the count mean by' "
var(n) = (n ) +var( II')

where %is the integrated intensity of the light h, (t),

II'= jl X(t)dt .

For h(t) station. ary, (n }= ( II' }= (A. }T. If the light

is thermal (choatic) in nature, the intensity correla-

tion function is

(Z(t) ) (t + r) ) = ()~(t) }'[I+
~
y(r) ['], (3)

where y(7) is the normalized correlation function of
the field. The variance of 8'can then be written
as4, 9, 12

var( II') = ( W}2/M = (n)'/M (4)

where the inverse number of modes (degrees of free-
dom of the light fluctuations within the resolution
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time of the detector) is

Thus

var(n) = (n ) + (n )2/M (6)

g(r) = Jl /i(t)h(t+r)dt J~l /i(t)dr

Again assuming stationarity, we have

(W) - (n) =p,aT,
where the multiplication parameter a ( &0) is

a= Jt h(r)Cr

(s)

(10)

The variance of the integrated intensity then assumes
the form

var( W) = a( W)/OR= a(n )/OR,

where

The first term on the right-hand side of Eq. (6),
(n ), is representative of the Poisson distribution and
is associated with the irreducible fluctuations of clas-
sical particles. The excess fluctuations, on the other
hand, are represented by the second term, (n ) 2/M.

This contribution reflects the statistical properties of
the thermal light intensity and is associated with wave
fluctuations. '

Of the many forms that var( W) can take, a partic-
ularly interesting choice that has not been previously
investigated occurs when var( W) ~ ( W), for then
the excess count flucutations behave in a particle-like
way. If X(t) represents shot noise, '6 "generated by
filtering a Poisson process of rate p, with a linear
filter whose (non-negative) impulse response func-
tion is h(r), the light will have an intensity correla-
tion function

(z(r) z( +rr)) - (z'(r) ) + (z(r) ) g(r), (7)

with

It will be useful to examine the dependence of 9R
on T/r„and the form of the degeneracy parameter
for shot-noise light, and to compare the results with

those for thermal light. The comparison is carried
out for an exponentially decaying correlation in both
cases:

h(r) = (2a/r, ) exp( —2r/r, )

)y(r) ('=exp(-2r/r, )

Combining Eqs. (8), (12), and (14) leads to

2( T/r, )
exp( —2 T/r, ) +2 T/r, —1

(14)

(15)

(16)

for the shot-noise light. The result for thermal light
is well known

2(T/ r)~

exp( —2T/r, ) +2T/r, —1
(17)
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The consequences of what appears to be a minor
difference between Eqs. (16) and (17) turn out to be
far ranging. This is demonstrated in Fig. 1 where it
is apparent that M vs T/r, and OR vs r, /T behave
very similarly. In particular, M =1 for T (& r,
whereas OR =1 for r, « T. Also M = T/r, for
T &) r, whereas OR = r, /T for r, &) T It is impor. -

tant to note that the asymptotic results for M and 9R
are maintained for arbitrary ~y(r) ~i and h (r)

The degeneracy parameter 5, as it is usually de-
fined for thermal light, ' ' is the ratio of the coher-

(12)

var(n) =(I +a/OR) (n) (13)

In this case, the parameter OR represents the number
of degrees of freedom of the counting time within.
the correlation time of the light r, . The count vari-
ance for shot-noise light is therefore

1

0.1 1.0

T/~~ (DASHED CURVE )

~c/T (SOLID CURVE)

10

exhibiting the promised proportionality to (n). A

relationship in the form of Eq. (13) is a special case
of the Burgess variance theorem. " The shot-noise
driven DSPP has been discussed previously in con-
nection with ecology, and Bartlett has shown that it is
a particular Neyman-Scott cluster process. '

FIG. 1. Dashed curve represents degrees-of-freedom
parameter M vs T/~, for thermal light. Solid curve
represents degrees-of-freedom parameter 9R vs ~,/T for
shot-noise light. The correlation function is assumed to be
exponentially decaying in both cases. M and 9R behave in

opposite ways, though the curves do intersect at T = T, . -

The solid line represents unity slope.
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ence time to the average photon inter-arrival time or,
equivalently, it is the average number of detected
photons contained in a coherence time (5= (h. ) r,
= (n ) r, /T). It depends on the average intensity of
the light, but not on the counting time T, and pro-

vides a measure of the degree to which excess fluc-

tuations are inherent in the detected radiation. The
analogous quantity for shot-noise light is simply the
multiplication parameter n, indeed, it is immediately

apparent from Eq. (13) that the count variance ap-

proaches the mean as 0. 0.
The degrees-of-freedom and degeneracy parame-

ters are important determinants of the statistical
behavior of n for shot-noise light, as they are for
thermal light, but not in the same way, as we will see
presently. The behavior of the count variance for
thermal light, given in Eq. (6), is well understood.
For T « r, (M =1), the wave fluctuations of the

light are entirely resolved and Eq. (6) reflects the

maximum possible excess variance. This is associat-

ed with the Bose-Einstein counting distribution,
which reduces to the Poisson as (h. ) 0. For
T » r, (M = T/r, ), Eq. (6) can be rewritten as
var(n) = (n)(1+5}. Excess fluctuations therefore
disappear when 5= (n) r, /T « 1. Thus, thermal

light produces Poisson counts when T/r, » 1 and

T/r, » (n ). The Poisson limit is very simple to
demonstrate experimentally, whereas the Bose-
Einstein limit requires quite careful experimentation
because of the small value of r, . '" An asymptotic
formula derived by 61auber24 is useful when

T/r, » 1 but T/r, & (n )."
The analogous results for shot-noise light are ob-

tained from Eq. (13). For r, « T (OR =1), the

variance achieves its maximum value, var(n)
= (I +a}(n), which is associated with the Neyman

type-A distribution. ' Note that this occurs in the
limit of large counting times and is therefore easily

demonstrated experimentally as we will see subse-

quently. The Neyman type-A reduces to the Poisson
when o, 0 but, unlike the Bose-Einstein, it does not
so reduce when (h. ) 0. For a » 1 it approaches

the fixed multiplicative Poisson distribution. " For
r, » T (OR = r, /T}, Eq. (13) can be rewritten as

var(n) = (n) (1+nT/r, } Excess fluctu. ations there-

fore disappear when aT/r, « 1 so that shot-noise

light produces Poisson counts when r,/T » I and

r,/T » a, i.e., in the limit of small counting times.
This is now the more difficult region to examine ex-

perirnentally.
The diverse behavior of Eqs. (6) and (13) stems

from the different (n ) dependence of the excess
term in the variance. For arbitrary T/r„ the statis-

tics of thermal light become Poisson as (k) 0,
whereas the statistics of shot-noise light are indepen-

dent of (X), approaching Poisson when a 0. Even
barely detectable shot-noise light, therefore, can ex-
hibit substantial photon bunching. This distinction

arises because pairs of photons are necessary to gen-

erate the wave fluctuations associated with thermal

light (this is reflected in the (n )' dependence),
whereas single photons suffice to produce the particle

fluctuations associated with shot-noise light (this is

reflected in the (n ) dependence). Thus for T « v,
we conceive of the counting-time interval as a narrow

ribbon that in the thermal case resolves the wave

fluctuations, but in the shot-noise case cuts apart the
natural particle correlations. For T ))~, the count-

ing time is viewed as a broad ribbon that, for thermal

light, averages out the wave fluctuations but for
shot-noise light collects all of the natural particle
correlations. It is clear that the natural bunched
character of shot-noise light is most evident in the
long-counting-time limit, which is the opposite from
thermal light.

The generation of shot-noise light, in fact, involves

a multiplicative cascade of two Poisson processes.
The first is associated with the underlying point pro-

cess of the shot-noise representing the intensity of
the light, and the second is associated with the intrin-

sic nature of light. This can be readily seen by exa-
mining the limit ~, (& 'T. The light intensity then
takes the form of a random sequence of narrow

pulses that arrive at rate p, . The total number of
such pulses within the counting time T is a Poisson
random variable m with mean (m) = p, T Each pulse.

produces a random number of photons A, where A is

Poisson distributed with mean (A ) = a. (For
0 ( n & 1, multiplication is reduction. ) Therefore,
the total number of photons n produced within the
counting time T is n = g&, AJ, where the (A&) are

independent realizations of the random variable A.

This'leads directly to the Neyman type-A counting
distribution which has the moment-generating function

(e *") =exp (exp[a(e ' —I}]—I j . (18)(n)

The counting distribution and moments of n for arbi-

trary r, /Tean also be obtained, as can the time statis-
lcs 26, 27

We proceed now to demonstrate that the experi-
mental counting distribution for radioluminescence
photons produced in glass can be represented in

terms of the Neyman type-A. That this is plausible
can be understood from the following argument.
Consider a stream of Poisson-distributed P rays irra-

diating a glass sample. If each high-energy electron
produces a Poisson distributed number of lumines-
cence photons with a maximum time delay that is
short in comparison with the counting time
(r, « T), the overall photon count will reflect both
sources of independent Poisson randomness, leading
to the Neyman type-A photon-counting distribution.

A series of such experiments was carried out. ' J8
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particles from a Sr- Y equilibrium-mixture source
irradiated the Corning 7056 glass faceplate of an
EMR type 541N-01 photomultiplier tube from a dis-
tance of about 11.5 cm. The maximum P energies
were 0.54 and 2.23 MeV for the Sr and ~ Y, respec-
tively, and the P flux was -8.2 &10' cm 2s '.
External light was excluded. The photomultiplier
anode pulses were passed through a discriminator and
standardized. Unavoidable system dead time was
-60 ns. The standardized pulses were counted dur-

ing consecutive fixed counting intervals ( T =400 ps)
and the counts were recorded. The experiment was
performed repeatedly to obtain good statistical accu-
racy, and a histogram representing the relative fre-
quency of the counts was constructed. The total
duration of a run was about 4 min. In the particular
experiment we illustrate, the observed mean count
was 85.89 (this number was substantialiy higher than
the mean dark count which could therefore be
neglected) and the observed count variance was

429.58. The data are shown as the dots in Fig. 2.
The solid curve represents the Neyman type-A
theoretical counting distribution with the count mean
and variance fixed at the experimental values. It is

clearly in accord with the data. %'hen one assumes
that r, (( T (Ott- 1), Eq. (13) yields an experimen-
tal multiplication parameter a -4.0. A Poisson distri-
bution with mean 85.89 (indicated by arrow) is plot-
ted as the dashed curve in Fig. 2; clearly it bears no
relation to the data.

The shot-noise light model will also provide a suit-
able description for certain other types of lumines-
cence radiation where the photons are produced by a
multiplicative cascade of two Poisson processes. If
the photons generated by the primary process exhibit
wave fluctuations, the photon-counting distribution
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FIG. 2. Photon counting distribution p(n) vs number of
photon counts n. Data (dots) represent radioluminescence
photon registrations from the glass faceplate of a photomul-
tiplier tube, induced by Sr- Y P rays. The counting time
T 400 p,s. The experimental count mean and variance are
85.89 and 429.58, respectively. The solid curve represents
the Neyman type-A theoretical counting distribution with the
same values of count mean and variance (a =4.0). The
Poisson distribution with mean 85.89 (indicated by arrow) is

sho~n as the dashed curve.

analogous to the Neyman type-A is the generalized
Polya-Aeppli distribution.
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