
PHYSICAL REVIEW A VOLUME 24, NUMBER 3 SEPTEMBER 1981

Dynamic scaling theory for the critical ultrasonic attenuation in a binary liquid
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A theory of critical ultrasonic attenuation in binary liquids based on the frequency-dependent

specific heat is presented. Excellent agreement with experiment, without any adjustable parame-

ters, is found for the frequency dependence of the consolute point attenuation and for the tem-

perature dependence away from the consolute point. The latter is exhibited for two different

mixtures at several different frequencies.

Because of the absence of strains, fluids have sharp
second-order phase transitions and consequently pro-

vide excellent tests for theories of critical phenome-
na. A special feature of the binary liquids is that

they can be chosen so as to match the index of re-

fraction of the components. In this way the problem

of multiple scattering is eliminated, making possible a

thorough and complete study of both the statics and

dynamics by means of light scattering. Such a binary

system, 3-methylpentane —nitroethane, has been ex-
amined in great detail in this laboratory. The equal-

time correlation function and anomalous dimension

critical index have been measured. The experimental
value' of 0.03 +0.02 is in satisfactory agreement with

our sum rule value2 of 0.04. The slight deviation3 of
the concentration fluctuations from exponential decay

is exactly accounted for by our theoretical calcula-

tions. 4 Furthermore, the role of the critical viscosi-
ty' in the dynamic scaling of the Rayleigh linewidth

has been verified precisely. " The purpose of this

Communication is to point out that with this basic in-

formation at hand, it is possible to predict an impor-

tant remaining dynamic critical property, namely, the
ultrasonic attenuation. In fact, we will demonstrate
that the theory that we present here is in excellent
agreement with the recent measurements by Harada

et al. 9 of the attenuation in 3-methylpentane —nitro-

ethane.
Our theory of the ultrasonic attenuation differs

from that of Kawasaki' and of Kroll and Ruhland"
in that it contains no adjustable parameters. A more

fundamental difference is that we do not attempt to
calculate a bulk viscosity from pressure fluctuations.

In such an approach it is difficult to take intg account

the constraint of constant entropy. Our theory is in-

stead based on the temperature flucutations resulting

from the alternate adiabatic compression and expan-

sion of the fluid. This effect was noted by Laplace'

and was later made the cornerstone of the relaxation-

al theory of ultrasonic attenuation by Herzfeld and

Rice. ' A complex frequency-dependent specific
heat, representing the lagging response of the internal

degrees of freedom, gives hysteresis and energy dissi-
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Further differentiation at constant S gives

5 V ~P 5' T (3)

where, close to the A, line, VP&= G&' +S„T„".The
dimensionless coupling constant is g = TQSgl I g.

Critical behavior enters Eq. (3) only through the fluc-

tuation in 4T. This is related to the impressed pres-

pation. We use the same idea here with, however,

the "internal" degrees of freedom being the Fourier
components of the order parameter (concentration)
rather than vibrational modes within the molecules.

In spirit, our approach is similar to that of Fixman. '

In practice, we have had more success in implement-

ing the idea because of a more realistic choice of the
frequency-dependent specific heat.

We begin by reviewing briefly the theory of the
critical sound velocity in the thermodynamic limit.

Assume for the moment that a change in the pres-

sure P produces a shift in the critical temperature T,
but not in the critical concentration. This means that

the concentration is not directly coupled to the pres-

sure changes, and that we can limit ourselves to the
two independent thermodynamic variables P and T.

The critical point traces out a A. line described by the

function T~(P). It is advantageous to change from

the variables P and T to P and IT =—T —T„(P). In-

tegrating away from the A. line at constant pressure

gives the Gibbs function
hT

G(P, hT) =G„(P)—
J SdhT

All extensive quantities correspond to unit mass.
The volume is
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sure fluctuation by the isentropic condition

0= TSS'= T SP+ T SAT
aP „a~T,

—TiSi SP + CpSb T (4)

the function I C(y, ru). The thermodynamic (co =0)
limit is

tsa /g

EC(y, 0) =Ar '=A—

It follows that

SAT= —g SP,V]

Cp

which substituted into Eq. (3), gives for the sound
velocity v

Q2

av
V~ 8P,

1 gV 1 g 1 (6)
V SP u, T) Cp

where u, is the velocity at the critical point. Let u be
the small critical part. The critical fraction from Eq.
(6) is approximately

u~ 2 TB
(7)

Here we have substituted C~
' = (B + hC) ' = B '

—B '4C and have dropped the first term. The ap-
proximation is. justified by hC &(8, where B is the
large-constant-background specific heat and 4C is the
small critical portion.

Elsewhere" we have studied the more general
problem posed by a pressure dependence of the criti-
cal concentration. The A. line then becomes a curve
in the three-dimensional variable space of T, p. , and
P. It is specified parametrically by the functions
T„(P) and p,„(P),where the latter is the chemical
potential along the A. line. We find in this more gen-
eral case that Eq. (7) is still valid, where, however,
the coupling constant is now g = (T„/V„)[S„'
+ e& (Bp/BT), ]. c„(P) is the critical concentration
along the A. line and the thermodynamic derivative
accompanying it is taken along the critical isochore at
constant pressure.

We make contact with the critical dynamics of the
fluid by recalling that the relaxation rate of a concen-
tration fluctuation of wave number k is k'D, where
the critical diffusion coefficient is D(g) = ks T,/
(6rrgf) ks, rt, g.=/or 'i', and t =(T —T,)/T, are
Boltzmann's constant, the shear viscosity, the corre-
lation length, and the reduced temperature, respec-
tively. The energy decay rate of a fluctuation at
k = g

' gives consequently the characteristic
temperature-dependent relaxation rate

=Ae"+' —" (10)

[As seen below, a numerical factor of order unity
enters upon replacing y by —i co. But this has only a
negligible 10% effect on Eq. (10).]

Substitution of Eq. (10) into Eq. (7) gives the
complex critical velocity components ui + Iu~. The
negative imaginary part c'orresponds to the attenua-
tion per wavelength

sg 2
up kg u~ A . 77ap

a, X, =—2m —= '
sin

u, T,B~ 2
Vo

e' clog Qc A yo —ao/2

2T,B~ 2m

where f= co/2m is the frequency. Multiplying Eq.
(11) by (u,f) predicts a linear proportionality—1-Noi2
between a,/f' and f . Figure 1 shows such a

plot for the data of Harada et al. , with ap=0. 12.
The good straight-line fit is excellent confirmation of
the frequency dependence predicted by Eq. (11).
The monotonic decrease contrasts with the increase

E
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We can immediately go to the opposite limit of y 0
by means of the dynamic-scaling requirement' that
the dependence of Eq. (9) on y disappears when y
becomes less than ~. y is then replaced by —i ~ so
that the frequency-dependent specific heat at the crit-
ical point is

r

AC(0, a)) = hC( i ru, 0)—=A —l OJ

sg 2

y =2r'D(~) kg Tc

3mqgp3
(g) O. l

) -[.06
0.2

Equation (8) enables us to eliminate r in terms of y,
as the variable that indicates how close the system is
to the critical point. The temperature- and
frequency-dependent specific heat becomes, thereby,

/z
FIG. 1. a, /f~ vs f + where a, is the critical-point at-

tenuation, f the frequency, and ap =0.12 the specific-heat
exponent. The linear fit confirms the theory and the inter-
cept determines the background attenuation.
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in a, )t, for the monatomic gasses" (except for 'He).
This is because of the relatively small critical specific
heat in the binary liquids, which permits bringing b C
up into the numerator. The f ~ intercept in Fig. 1

determines the background attenuation [not included
in Eq. (11)]as as=0.070f2 m ' when f is measured
in MHz. The slope of the straight-line fit in Fig. 1

can be compared to that predicted from Eq. (11).
Rayleigh linewidth measurements' give yp/2m =15
GHz, while Brillouin scattering" provides u, =10'
m/sec. Unfortunately, specific-heat measurements
are lacking. This forces us to interpolate B =1.7
J/g K between the pure components and to estimate
A =0.22 J/g K from gp =2.2 A and two-scale factor
universality. Even more uncertainty is associated
with the value of g. A recent preliminary thermo-
dynamic determination in this laboratory' gave

g =0.5 +0.2. The slope in Fig. 1 is at the lower end
of the range predicted by these numbers. Alterna-
tively, we can use the experimerital slope to infer

g =0.3, in satisfactory accord with the thermodynamic
value. Once actual measurements are made of A and

B, the ultrasonic attenuation may prove to be the most
convenient and accurate method of determining g.

In the approach to the critical point the attenuation
relative to its critical point value, a/a„rises mono-
tonically as a function of the reduced frequency
0 co/y. The calculation of the scaling function for
this onset is a straightforward technical task which we
have solved for the A. transition' in liquid He by
means of the ~ expansion. Because of the conserved
order in the present case the distribution of relaxa-
tion rates extends down to zero rather than having a
finite threshold value as for the X transition. The
lowest-order e expansion gives a weighting of the
modes that leads to a scaling function of the form

a 2 (1+ ) & P udu u(1+u)~
a, e' "o (u +1) 0'+u'(1+u) ~

(12)

(tu corresponds to the wave number of a relaxing
order-parameter fluctuation). The parameter p in the
relaxational factor of the integrand is equal to one in
the ~ 0 limit. The resulting integral has been ex-
hibited in terms of elementary functions [L2 of Eq.
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FIG. 2. Attenuation relative to the critical point vs re-
duced frequency 0 = ao/y. The theoretical curve corre-
sponds to Eq. (12). 3-methylpentane —nitroethane (Ref. 9)
data: ~—16.5; 0—27; 5—48; 0—80; i—165. 2,2,4-
trimethylpentane —nitrobenzene (Ref. 20) data: +—3; X-11.
(All frequencies in MHz. )

In closing we are happy to acknowledge stimulating
discussions with Professor C. Garland, Professor H.
Meyer, and Professor J. V. Sengers, as well as with
Dr. H. Burstyn and M. E. Clerke. %e are also in-

debted to the National Science Foundation for sup-
port under Grants No. DMR-79-011172, No. 79-
00980, and No. 79-10819 to the University of Mary-
land.

(11) of Ref. 17]. Here, however, we use p = —,,

which is more appropriate for the three-dimensional
fluid and which yields the curve shown in Fig.— 2.
The agreement with the scaled data of Harada et al.
at various frequencies ranging from 16.5 to 165 MHz
is seen to be excellent. We emphasize that this
results without any adjustable parameter. The frequen-
cy scale is already set by yp/2m =15 GHz, as deter-
mined a priori from the Rayleigh linewidth. Also
shown in Fig. 2 are recent data of Penner' at 3 and
11 MHz in 2,2,4-trimethylpentane —nitrobenzene, for
which we take yp/2n =2.67 GHz.

To summarize, we have demonstrated that the
thermal-lag effect, supplemented by dynamic-scaling
considerations, gives an excellent account of the ex-
perimentally observed critical ultrasonic attenuation
in a binary liquid. This agreement results without the
use of any fitting parameters, because all of the con-
stants of the system are known a priori.
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