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Weyl’s theory for a singular second-order differential equation and the complex scaling method of Balslev and
. Combes are combined to obtain a stable method for describing the continuous spectrum. The method obtained can
be viewed as an extension of the Siegert method. The theory is applied to a model potential earlier used by Moiseyev

etal.

The experimental development of laser spectro-
scopy, electron scattering, and in particular, the
high-frequency deflection technique,! have lead to
a considerable interest in the theory of the spect-
ral continuum and more specifically in quasibound
states and resonances in the vibrational continua
of molecules. The simultaneous development of
complex scaling in terms of the Aguilar-Balslev-
Combes (ABC) theory2™ for dilatation analytic
operators has opened a field of new ideas.
Methods of this type are important for the under-
standing of a complete, nonisolated system.

One of the first applications of the ABC theory
in the study of resonances was reported by Bain,
Bardsley, Junker, and Sukumar.® They used a
modified variational principle to obtain the com-
plex eigenvalue of the complex-rotated Hamilton-
ian. The position of the resonance as a function
of the dilatation angle was studied numerically.
One of the difficulties of the application of this
method is its basis-set dependence. This problem
was to some extent solved utilizing the existence
of the complex virial theorem.®

Weyl’s theory for a singular second-order dif-
ferential equation’ has earlier proven to be an
efficient tool in the analysis of the continuous
spectrum.® In the numerical applications made so
far (see, e.g., Hehenberger et al.® and Ref. 8)
one makes use of the numerical information of the
Green’s function or the Weyl-Titchmarsh m func-
tion on the real axis. A Siegert state!® can then
only be obtained via analytic continuation based on
the previously mentioned numerical data.

In this report we present a synthesis of Weyl’s
theory and the theory of complex scaling. The
step to “go into” the complex plane appears, in
fact, quite natural if the details of Weyl’s theory
are considered. In contrast to previous tech-
niques which one way or another were based on
the numerical dependence of the resonance so-

e}

lutions on the dilatation angle 6 = argn, we employ
a direct numerical integration of the Siegert'® so-
lution on the higher-order Riemann sheet. As a
consequence, the dependence of the resonances on
0 = argn is essentially eliminated, in agreement
with the Balslev-Combes theorem.?™ An additional
benefit of this approach, when considering Weyl’s
theory, is that we avoid the ansatz of the analytic
continuation.

Our synthesis can be viewed as an extension of
the Siegert method'® in the sense that, in addition
to relating the eigenvalue to the complex boundary
condition, we also make the coordinates complex
so as to make the wave function square integrable.
This is essential for the success of the numerical
application presented below, where the method is
applied to the model potential of Moiseyev, Cer-
tain, and Weinhold.!* The resonances of Moiseyev
et al. were obtained along with several others.

In this study we employ the second-order equa-
tion

y" (x) + '2};,%[6 -q(x)lyx)= 0. ‘ (1)

For simplicity we will only consider one equation
here. Extensions to the case of coupled equations
are easily incorporated in the present formulation,
but this will be reported elsewhere. Putting x - nx,
where 5 is a complex scale factor with 0 <argn
<w/4, we obtain the transformed equation,

y106)+ 22T [ (n) - g, ()3, () = 0. (@)

In order to emphasize the n dependence, we will
write Eq. (2) as a differential equation with the
real variable x belonging to the interval (-, + «)
and the parametric dependence on 7 indicated by
a suffix. We assume that 7 above is consistent
with

lim g, (x) = g, (=) = const< . (3)

xwi o0
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In terms of the logarithmic derivative

) _in
3"2:("_) h_z,,(x), 4)

we obtain the complex-rotated analog of the Ric-
cati equation

%z',,(x) = 2ufe(n) - g, ()]~ 23(x). (5)

Since we are dealing with the interval (—«, + «),
the condition for an eigenvalue or resonance of
Egs. (1) and (2) is equivalent to finding an energy
for which the solution x is a square integrable at
both endpoints. Separating out the even and odd
parts of z, with respect to the coupling constant
r/in, i.e., z,= z5+ 2%, one finds that x may be ex-
pressed as

X = [;{1(—;)]72- exp(%fxz‘;(s)ds> . (6)

Assuming that we have chosen the root {2 u[€(n)
-g,(&=)]}*2=k, Im(nk)> 0, we realize that the
square-integrable solution should have the follow-
ing asymptotic forms

exp <+ %ka) , X=+o (7
x () =
exp(—-%lkx), K= =0, (8)

We now proceed as previously done in the un-
rotated case by choosing initial value solutions ¢
and y as

¢(0) = sina, (0)= cosa, )
¢'(0) = —cosa, y'(0)= sina.
For a given energy e we would combine ¢ and y
such that x*= ¢ + m*) becomes the square-integr-
able solution at +« and x™= ¢ + m™) becomes the
one at — . Resonance occurs when

mt-m =0, (10)
or in terms of logarithmic derivatives when
z4(0) - 23(0)= 0, (11)

where 2% (0) is obtained from (5) via the conditions
[see Eqgs. (7) and (8)]

limzt(x)=tk. (12)
xeteo
As can be seen from Ref. 12 the quantization con-
dition [Eqgs. (10) and (11)] is equivalent to finding
the poles of the scattering matrix S, or the Green’s
function, which for a = 7/2 can be written as

(m* = )= 11 [240) = 23,01 (13)

Formula (13) is of particular importance in gen-
eralizing the present approach to the case of
coupled equations.

As a numerical test of the method we used the
model potential previously studied by Moiseyev
etal.,

Vix)= Gx2=d)e = +J, J=0.8, r=0.1. (14)

The potential is shown in Fig. 1 with its only bound
state and its lowest-lying resonances.

To locate the resonances the Hamiltonian is first
complex-rotated so as to “open up” the complex
energy plane sufficiently, i.e., making the solu-
tions square integrable. The outgoing wave func-
tions are now approximated by the asymptotic
forms [Eqgs. (7) and (8)] at sufficiently large ab-
solute x values. The corresponding logarithmic
derivatives are then propagated to a matching
point by numerical integration of the complex-ro-
tated Riccati equation (5). This integration makes
use of the log-derivative method due to Johnson,'?
here modified to include the effects of the complex
scaling of the coordinates. To efficiently locate
the poles of the Green’s function, the Newton-
Raphson method was employed in the search for
the zeros of lz‘;, —z;,l in the complex energy plane.

Moiseyev et al. gives one of the resonance eigen-
values as

E,—%P= 2,124_%(0.037). (15)

This value is obtained by investigating the varia-
tion of the eigenvalue as a function of the rotation
angle. Our calculation predicts the position as

E, _% = 21272 -é (0.03089); (16)

Our eigenvalues are, furthermore, stable with
respect to a variation of the rotation angle, as
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FIG. 1. The test potential was taken from Ref. 11.
The calculated bound state and the resonances are indi-
cated with full horizontal lines at their real resonance
energies. The asymptotic limit of the potential [V ( =)
=0.8] is indicated with a dashed line,
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FIG. 2. The calculated resonance positions displayed
in the complex energy plane. The rectangle indicated
with P/ indicates the region where the denominator of
the S matrix is displayed in Fig. 3.

long as the step size in the integration is kept
small enough and the rotation angle is large
enough to uncover the pole.

The search for resonances was continued far
out in the complex energy plane and Fig. 2 shows
the resonance positions. To show the analytic
structure of the Green’s function, a three-dimen-
sional plot was made (Fig. 3). The peaks corres-
pond to the locations of the resonances, although
the fact that the number of points plotted is lim-
ited due to our present plotting facilities, makes
the peaks lose their actual polelike appearance.
Based on the numerical results displayed in Fig.
2, it seems natural to define a complex threshold
at a real energy well above the barrier maximum.
By this we mean that there exists a real, well-de-
fined, finite energy E,, .., = Re(€y,.q) Such that for
all resonance energies €., We will have

Re (Eres) < Ethresh <+, (17)

As a consequence of this definition it is now pos-
sible to partition the resonance spectrum into es-
sentially two classes; the primary and the sec-
ondary class. The primary class embodies all
resonances with imaginary parts<Im(€,.s), and
the secondary class is the complementary set.
One would expect the primary resonance to cor-
respond to more or less pronounced peaks in the
velocity dependence of the cross section, while
the secondary resonances probably accounts for
background effects in the framework of potential
scattering.

Some immediate implications following from
this model study are as follows:

I
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FIG. 3. The quantization condition is equivalent of
finding the poles of the S matrix or the Green’s function
which are the same as the poles of (m*— m~)~1,
|m*~m=|~! is displayed in this figure, The region in
the complex plane is indicated as the rectangle P/ in
Fig. 2.

(1) The first implication is the possibility of
studying barrier penetration and predissociation
phenomena in diatomic molecules, compare for
instance Ref. 9, which actually is the original
motivation for this work.

(2) The accuracy of a particular Siegert solu-
tion, as indicated by its 6 stability, implies the
possibility of constructing-an efficient orbital
generator with accurate continuum properties.

(3) The extension to a set of coupled equations
is straightforward!4 and is necessary for a more
thorough understanding of predissociations in the
diabatic framework.

(4) Since the Hartree-Fock equations consist of
a set of coupled integrodifferential equations,
previous extensions allow for a numerical tech-
nique for solving the rotated analog of these equa-
tions in the complex plane.
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