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Although the method of dual coordinates has been employed in the literature to quantize the damped harmonic

oscillator, one cannot reproduce the proper classical limit by this method. This is shown by constructing operators
which have the correct damped behavior and obtaining coherent states as their eigenstates. These states turn out to
be nonnormalizable; this is shown to be due to the unphysical nature of the Hamiltonian employed in the method of
dual coordinates.

I. INTRODUCTION

The quantization of damped harmonic oscillators
is of considerable importance these days owing
to its prospective application, for instance, in
the study of deep-inelastic heavy ion scattering
where an essential part of the incident kinetic
energy is dissipated as internal energy of the
reaction products. Of course, microscopically
such processes as dissipation can only be under-
stood as the irreversible leakage of energy from
a system to its surrounding considered as an in-
finite reservoir with which it ineracts. ' ' How-
ever, there are phenomenological theories where
these effects are taken into account in terms of
bulk properties such as the friction or viscosity
constants. As a first step to this end, one tries
to understand how damping can occur in a simple
quantum system like the harmonic oscillator.

At present, there exist essentially three methods
to achieve this end, viz. , the time-dependent
Lagrangian, the nonlinear Schrodinger equation,
and the method of dual coordinates. Although the
first method' "has long been shown to be unsat-
isfactory, articles continue to appear on this sub-
ject. This method violates the uncertainty princi-
ple by the introduction of an exp(-yi) time de-
pendence in the Lagrangian. This causes the
system to go ultimately to a state of zero en-
ergy instead of going to the quantum ground state.
Furthermore, the time-dependent Lagrangian
has been shown to describe another real physical
system, namely an oscillator with a variable
mass. ' " This interpretation comes out naturally
if one identifies the energy with the Hamiltonian
of the system instead of the sum of kinetic and
potential parts which is assumed by authors who

favor a damped-system interpretation. The former
assumption seems natural since no time-dependent
constraints are included there. We agree with
Dodonov and Man'ko" that the study of such models
is important to the extent that they describe, e.g. ,
stars of variable mass. In the nonlinear Schro-
dinger approach, ""on the other hand, the re-
striction that the expectation values satisfy the
classical equations of motion is too loose to define
a unique Hamiltonian. This means that as long
as one neglects quantum fluctuations, one can
construct a whole set of nonlinear potentials, which
in the classical limit, yields linear damping.

In this paper, we show that the third approach
of employing dual coordinates, followed, e.g. , by
Feshbach and Tikochinsky" and others, "is also
not free of inconsistency. For the quantization
of a damped system, there remains, hence, the
physical profound theory of extracting a Hamiltoni-
an or Liouvillean from the coupling to a loss mech-
anism.

The plan of the paper is as follows. In Sec. II
we discuss briefly the method of dual coordinates
and how quantization is achieved in this method.
In Sec. III we find the relevant operators with

appropriate damped time dependences and con-
struct the coherent states as their eigenstates.
In Sec. IV we discuss the cause for the non-norm-
alizability of the coherent states.

II. THE METHOD OF DUAL COORDINATES

The method of dual coordinates" consists in
adding to the system governed by the equation

7+Rx+(g~x = 0

another system whose equation of motion is
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9 -&y+~'y=o

so that the total system is conservative and the
equations of motion are derivable as the Euler-
T~~range equations from the Te~rangian

L=nuy+2R(xy -xy) —m~'xy.

The corresponding canonical momenta and the
Hamiltonian are given by

aZ, . , aL
p =

~ =my gRyy p = ~ =six'+gRxyx g~ ~ & 9 gy'

H = mxy+ m~'xy.

(3)

(4)

and their Hermitean adjoints, will serve our pur-
pose.

The Heisenberg equation Of motion for the above
operators yield

—(A+B') = -[K (A+a')]d =Z
dt I

= I-«+ —l(A+B')( . r't
21]

and the adjoint equations so that these operators
have the simple time dependence

Quantization is usually achieved with the intro-
duction Of the following creation and annihilation
operators"".

„„[(p„+p„)-im&(~+y)],1

a= „[(p,-p„}-imfl(x-y)],1

[(p, +p,)+trna(x+y}],2lmQI

(p, —1

(5)

where

Q'= ((o' -R'/4m')

and the commutation relations

[A,At] =[B,at] =1,

[A,B]=[At,at] =0.

The Hamiltonian assumes the form

K =RA(AtA -BtB)+i —(Atat AB)-
2

Ho+H

r =ga/m.

(6)

(8)
(8)

To construct the eigenstates of H one notes that
H, and H, commute. The eigenstates of H, are
degenerate and the effect of H, is to mix in states
belonging to the same eigenvalue of Ho. These
eigenstates have been constructed and extensively
discussed, "so we refrain from discussing them
any further.

HI. THE COHERENT STATE AND
ITS CLASSICAL LIMIT

In our search for operators with proper damped
time dependence we easily find that the following
operators

(A~B )t=(A+B ).exp I-i&~ lt —.
2I)

if we construct simultaneous eigenstates of the
commuting operators (A Bt) and -(A+at) with
eigenvalues a (= (a(e'e) and p(= (p(e'e), respective-
ly, then the expectation values of x andy in such
state will satisfy the equations

tI&~/2 i z i
($)g =

I I exp( ——t l(a( sin(Qt —8),(mQ) I,

(y& =
I exp( —t l(pl»n(at-y}.mQ] I,2S &

(14)

Finally with the usual prescription"" Q p,
lal -~, I pl -~ in such a way that (k/mn)' '(a(-A
(finite), and (ft/mA)' 'Ip( B (finite) we recover
the classical solutions for x and y with initial
amplitudes A and B, respectively.

To solve for the simultaneous eigenfunctions
of (A+a~) given by

(A-B')Ia, p) = (apa), (A+B')Ia, p) =pla, p) (»)

one Of these is an exponentially growing solution
and the other exponentially decaying. Note that
by virtue of the second equality in (11) these oper-
ators can be looked upon as raising and lowering
operators for the eigenstates Of H. They raise
and lower the eigenvalues by complex quantities.
The raising and lowering operators for the eigen-
states of K, as given by Feshbach and Tikochinsky
are simply products of these operators. Since x
andy are related to the operators (A+at) in the
following way

( k i '/'
lm(A -a'),

(mQ]
(18)

~ j./2
lm(A+a'),

imQ )

1A+B =~ g (p, imny), -
v'mQg

1
A -B =

~ (p„—tmgx),
VmQS

(10)
we note that with the operators as given in (10),
the system of Eqs. (15) are decoupled in the cen-
ter of mass and relative coordinates defined, re-
spectively, by
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R =-,'(x+y), r = (z -y} (18) H= mxy + me'xy

with the total wave function written as a product

@„s(x,y) = P s(R)}( s(r).
This is permissible since the total system is

Galilean invariant although the individual ones
are not.

The solutions are

mu, . (ma ''
s(R)-exp —

~ R'+i(a+p)~ ~ Rk
(18)

-mn, n —. p (mni"
}t„,s(r)- exp 4+

r'+i
2 ( & [ r .
2 I, S

Q~(R) is normalizable and has the usual form
of the coherent state for a one-dimensional oscil-
lator. }(„s(r)is not normalizable because of
the positive sign of the first term in the exponen-
tial. Furthermore, these wave functions cannot
be normalized by changing the metric of the Hil-
bert space and defining the normalization integral
as the integral of the product of the wave function
and its time reverse as has been done by Fesh-
bach and Tikochinsky for the eigenstates of Qy.

IV. DISCUSSION

The non-normalizability of the coherent state
stems from the fact that it is impossible to con-
struct such states as an eigenfunction of annihila-
tion operators alone. This is readily seen by go-
ing back to the Hamiltonian (4),

= (-,'MR'+-,'Mu&'R'}- (-,
'

p, i'*+-,'ttu&'r'),

where M= 2m and g = m/2 are the total and reduced
masses, respectively. Thus the total energy of
the system instead of being the sum of the center
of mass and internal energies turns out to be the
difference of the two. The negative internal ener-
gy can be formally considered as the energy of
a harmonic oscillator with imaginary coordinates;
the center-of-mass coordinate being real. This
can happen if the x and y oscillators have coordi-
nates which are complex conjugates of each other.
The coherent state for the relative coordinate is
obtained by replacing x by ix in the usual one-
dimensional harmonic oscillator coherent state. "
Thus the rion-normalizability of y s(r) is related
directly to the form of the Hamiltonian (4) which
is just a mathematical Hamiltonian reproducing
the equation of motion and has nothing to do with
the energy of the physical system.

Thus we have seen that although the Hamiltonian
for the damped harmonic oscillator in the method
of dual coordinates reproduces the correct equa-
tions of motion as given in Eq. (14), we cannot
make use of this opportunity since the wave func-
tion turns out to be non-normalizable and this
has been shown to be directly due to the unphysical
nature of the particular Hamiltonian employed.
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