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The 5d 7d 'D, state of barium is configuration mixed with the 6snd Rydberg series. This work examines the large-r

behavior of the Rydberg character of the mixed-state wave function by projecting it experimentally onto a series of
known Rydberg states 6PII,nd, J = 3, Results agree with calculations based on the quantum-defect

characterization of the wave function. This work also presents an analytical approximation to the radial-wave-

function overlap integral between Rydberg states of arbitrary energy.

I. INTRODUCTION

A recent analysis' of the 4 =2 states of barium
using multichannel quantum-defect theory (MQDT)
concludes that the "5d7d" state (E =41 841.5 cm ')
has 31% 5d7d character and 69/p Ssnd character.
Thus, for a substantial fraction of time, the state
behaves as a 6snd Rydberg state. According to

MQDT, the large-radius (r) behavior of the nd

Rydberg electron wave function should only depend

on its binding energy relative to the Ba'(Gs)
ionization limit. 2 If an effective quantum number
n* is defined relative to the binding energy

2 (n o)2

then for our state of interest n*=23.8. For
clarity, we will refer to the 6snd character of
the 5d7d 'D, state as 6s23.8d. This work examines
the large-r behavior of the 6s23.8d state by pro-
jecting that state onto a series of unperturbed

6I'~@nd, J =3 states using isolated core excitation
(ICE). The results are entirely consistent with

the MQDT description.
Previous attempts to examine the Rydberg

composition of perturbed states have measured
characteristics which are not really dependent

on the large-x behavior of the Rydberg wave

function (e.g., magnetic g factors). ' For unper-
turbed states, the situation is somewhat better.
Polarizabilities, 4 Stark-field behavior, ' and mag-
netic field behaviore have consistently shown

agreement between calculations using simple,
Coulombic, one-electron wave functions and

measured quantities.
In the next section we will present calculations

of the relative 5d'7d 6P,~ nd excitation strengths
using the ICE model and discuss how these cal-
culations are made using numerically integrated,
one-electron wave functions based on quantum-

defect theory. The third section will outline the

experimental procedure and data reduction. The

final section will discuss the comparison of theory
and experiment.

II. THEORY

The isolated core excitation (ICE) technique

utilizes atomic states which are composed of
products of two very different one-electron wave

functions. ' %ith these states, the basic indis-
tinguishability of electrons is removed insofar as
it is easily possible to affect one wave function
without perturbing the other. For a typical state,
e.g. , 6snd, the two-product wave functions span
entirely different regions of space, and therefore
overlap (and any exchange effects) is only of the
order (n*) '. It thus becomes possible to excite
only the "core" 6s electron with a laser, while

the slow, Rydberg electron hardly responds at'

all. In our case, even though the 6s23.8d initial
state is strongly configuration mixed with the
5dvd, and the final 6Pn'd state is mixed with con-
tinuum states like Ba'(5d)+e (cP), the transition
moment will be dominated by the 6s23.8d
-6Pn'd term, rather than any terms due to direct
photoionization.

However, the Rydberg electron is not entirely
unperturbed by the core transition. The effect
of the core on Rydberg wave function is usually
treated using quantum-defect theory. The basic
assumption of quantum-defect theory is that the

Rydberg electron sees a pure Coulomb field out-
side some small core radius, v, .' Under this
assumption, the only effect of the core is to
change the boundary condition on the wave func-
tion's phase at r, from the hydrogenic value to
some new value. The new value is determined
by the requirement that the wave function inside
the core (where a Coulomb solution is not valid)
is zero at the origin. For r&r, , the wave func-
tion is thus a specific combination of two inde-
pendent solutions to the Coulomb potential such
that it has the appropriate phase at r =r, .
Quantum-defect theory shows that if the required
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phase at r, is shifted from the hydrogenic value
by &5, then orally the solution with binding energy
given by Eq. (1) for n* =n —5 will be bound as
r -. Multichannel quantum-defect theory shows
that when several configurations interact, quan-
tum-defect theory is still valid, but 5 changes
with n in a periodic fashion.

If the core is changed from Ss to 6P, then it
is entirely possible that the Rydberg electronic
wave function may also change to have the ap-
propriate phase at r=r, , and thus the final state
has a different quantum defect than the initial
state, before the core excitation. Different quan-
tum defects mean that the available Rydberg
eigenstates have different energies, and thus
different behavior, i.e., turning point and wave-
function phase, in the large-r region. The net
effect is that although the Rydberg electron
originated in a well-defined, Rydberg state, it
may be excited into any of a number of states
depending on the energy of the photon absorbed
by the core. The transition rate will depend on
the overlap between the initial Rydberg state and
the final n'd Rydberg state. Thus, we will ap-
proximate for the transition dipole moment be-
tween a 6s23.8d state and a 6Pn'd state:

u =Mr,

X =r»R(r),
a' (2u

* (2l+-,')(2l+ ~)'
2 +k ~ 2 X=8X~

(3a)

(3b}

(3c)

where R (r) is the normal radial wave function and
n*=e —5 is the effective quantum number. Radial
integrals are also scaled so that

oo

R„,r 'R„,r'dr = X&u'"X„u'du. (4)

Equation (3c) has simple, approximate solutions
in the regions of large, intermediate, and small

2s -6c/n ) & g2
t

y -sin(2v2u +/), (2l +1}& r& (s*)
}t-I'~"t"+'&, r& (2l+1) .

(5a}

(5b)

(5c)

Note that in the intermediate range, where X
changes sign, a constant step size in u gives a
constant number of steps per node. We used a
Numerov integration method, ' with a step size
of 0.1 (approximately 10 steps per node}. Figure
I shows the numerically calculated wave functions

(6s23.8d[ erL6pn'd} = (6slerl6p)(23. 8dl&'d), I I I I I I I I

where the initial factor is the constant transition
moment for the Ba' ion and the final overlap
factor only depends on the binding energies of the
23.8d and n'd Rydberg electrons, since most of
the probability density for both 23.8d and n'd
states lie in the large-r gegion.

We have constructed one-electron Rydberg
wave functions by a direct numerical integration
of the radial differential equation for a Coulomb
potential using a method similar to that of Zim-
merman et al. ' The integration begins at large
values of r where the decaying asymptotic solu-
tion only depends on the binding energy and con-
tinues to small values of r, terminating when the
wave function begins to show irregular behavior.
Additionally, the variable r is scaled so that the
change in r per step is small when the wave func-
tion changes rapidly and large when the wave func-
tion changes slowly.

Zimmerman et al. ' used a logarithmic scaling
of r; however, we wanted a variable scaling that
would lead to sinusoidal, pseudo-free-particle
solutions. Over much of the range of r,
v =a/ar-42/r, so that a/au-&Sfor u =Dr. Thus,
we have used a square-root scaling of r and a
scaled wave function X, which lead to the follow-
ing replacement for the radial differential equa-
tion:

j «~lt ~noh, RR
J & U & $ I Il II It g g tt
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FIG. 1. Scaled radial wave functions g(N) =r R(r)
as a function of a scaled radius u=~y, for different
effective quantum numbers between n *=25 and m*=27.
Amplitude scale markers show + 0.01 values. The
wave-function sign was chosen so that the wave function
would be positive for large I .
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for n* between 25 and 2'7. For integer n*, the
wave functions do converge to 0 at u =0, showing
that relatively little phase error is accumulated
during the integration procedure. Since we were
only interested in overlap integrals [k =0 in Eq.
(4}], we used the following approximation which
is derived in the Appendix:

( )
„2v sq*s~* s 1I1$(sq* —Bg }

2 nq+ +n+ v(n~+ —nq+)

(6)

III. EXPERIMENT

The Ba M7d'D, atoms were prepared by pulsed,
stepwise excitation of atoms from an effusive
atomic beam of Ba. The apparatus is described
in detail elsewhere. ' The initial excitation was in
two steps: Ss 6s6P P~ and 6s6P'P~-5d7d D2
as shown in Fig. 2. Both lasers were right circu-
larly polarized so that only the m~ =+2 state was
populated. A third pulsed laser drove the final
transition 5d7d'D, -6P]/2nd, J =3, also shown in

Fig. 2. It too was right-circularly polarized, so
that only the J=3, m~ =3 states would be excited;
this removed the possibility of ambiguity due to
multiple Z values for the 6Pnd states (each of
which could have a different width and energy).
The 6P, /, nd states were not involved since the 6P
fine structure is -380 k, much larger than the
scanning range of the third laser.

Each of the 6P,~nd states autoionizes far more
rapidly than their fluorescence rate, so that by
collecting the total number of ions produced, we
could determine the number of 5d7d atoms ex-
cited. As the wavelength of the third laser was
scanned we obtained data as shown in Fig. 3.
Where the multiple peaks represent the different
6P»nd, final states. The central region of Fig.
3 was taken at relatively low power so that the
features would not be power broadened or satu-
rated. The wings of Fig. 3 were taken at an in-
creased power level so that the small features
would be seen. The high- and low-power sweeps
were combined by scaling according to the height
of the first peak to the blue of the two major fea-
tures. In Fig. 3, this scaling would lead to an
amplification of the central region by a factor of
13.5. The narrow feature at 4948 A is a wave-
length marker due to resonant two-photon photo-
ionization of Ba 6s6P 'P, atoms as described in

Ref. 7. The small central peak at 4935A was due
to excitations from the 6s28s'S, state which was
excited since the lasers were not perfectly
polarized. ( fhe 6s28s'So state lies only 0.1 cm '
below the "5dVd" state. ')

The effective quantum number and autoionization
linewidth I' of each of the 6pz/2~ J 3 states
were determined independently by driving the
transitions 6snd-6p&/2~ J = 3, which only have
one major feature each. Figure 4 shows a plot
of quantum defect and I'(n~)~ (a.u. ) for s =23 to
33. The large uncertainty on I' results primarily
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FIG. 2. Excitation diagram. Arrows represent laser
excitations. The box shows the separation in cm of
some of the final 6P~/2 nd states.

FIG.3. Excitation spectrum for the Gd 7d D2 6P f/2nd,
J=3 transitions. For the center region, between the
dashed lines, the laser power was reduced by a factor
of 13.5 to avoid power broadening of those transitions.
The different peaks represent different n values for the
final state. The feature at 4948 A is a laser-frequency
marker. The feature at 4935 g is due to the
6s28s 6Pg/228s transition due to imperfect preparation
of the 5d 7d state.
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from our third laser linewidth (0.4 +0.1 cm '),
which was substantial when compared to the total
linewidth of the highest states (0.9 cm ').

10 Pr, ~
IV. ANALYSIS AND DISCUSSION

In order to compare the calculated and mea-
sured excitation efficiencies to each 6P,/, nd

state, it is important to determine the total area
under each of the peaks in Fig. 3. However, the
background level and the uncertainty in feature
width make this very difficult. As an alternative
me have instead measured the baseline-to-peak
amplitudes and multiplied by (s*) ' since, as
Fig. 4 shows, the widths of the 6P~~nd states
scale as (n*) '. Since the peaks were generally
symmetric, we expect less than 20% error to
result from the procedure. The peak positions
were similarly determined from the quantum-
defect measurements shown in Fig. 4, although
there mas very little difference between those and
a direct reading of position from Fig. 3.

The comparison between measurement and cal-
culation is shown in Fig. 5, where the data points,
represented by "X"are plotted along with the
calculated values of the square of the overlap
between the 23.8d state and representative states
with n* in the range 20-34. As noted earlier,
the overall normalization factor is arbitrary and
only the relative variation is determined. The
good agreement over 2& orders of magnitude
demonstrates the validity both of the quantum-
defect wave functions and of the ICE model.

It should be emphasized, however, that the
quantum-defect wave functions are only valid in
regions of large r. In regions of small r, the
true wave function is a complex combination of
Sd7d character and 6snd character, where neither
portion is mell described by simple one-electron
wave functions. This means, of course, that the
projection defined in Eq. (2}will only be valid for
highly excited states n»1, which encompass
only a small energy regime.

I i i i I

20 22 24 26 „28 30 32 34
0

FIG. 5. Comparison of measured (&&) values and cal-
culated values (solid line) for the relative transition
probabQity from a 6s 23.8d to 6Pf/28 *d states for diff-
erent values of z~. The solid line is given by Eq. (6)
in the text.
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APPENDIX

(Al)

Matrix elements calculated with this X will
typically result in errors of the order (s*) '.
However, for nonhydrogenic systems where an
additional, unknown core potential is involved,
such an error would be present anyway. The so-
lution of Eq. (A1), which asymptotically goes to 0
for h, rge u, is the parabolic cylinder function
U{-2s+,2u/un+) "

Overlap integrals can be performed exactly
with these functions. Note that

Xn2HnqX~ X@Hn X~ =0 {A2)

To calculate properties of the Rydberg wave
functions that do not depend on their behavior near
the origin (which includes matrix elements of r~
for k-0}, we may ignore the centripetal terms
and use the simpler equation:

a' 2u't'
g X+

goal

X=Hn»X =8X ~
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since the different solutions have the same ef-
fective energy, 8, but different effective poten-
tials, (2u/n~)'. Thus

1 1 )
"

~
" 92

X~Xn~+ =
Xnm a~2 Xn~

0

where i is defined

1(sg+-,') I'(n,*+-,'}
r(n,++-,'} I"(sg+ f)

' (A5)

82
, X~du (A3a)

I )a
=Xn~ X~ XgXn~ p ~

(A3b)

Now, using the values of a normalized parabolic
cylinder function and its derivative at u =0, we

obtain

f 4'~&,* 1
s+ +tl+ &(sg —sg+)

Q 4Q=

x x ——cosm n*+n*
X j 2 1

+ x+—sinF n* —n*
2 1

(A4)

For I (n,*—N,*)l «n~+, x is very close to 1. If we

let x =1 and introduce a phase factor so that both

wave functions have the same sign at the origin,
Eq. (6) results. Equation (6) was checked against
numerical integration for overlaps between

n,*=23.8 and n,*=20 to 34. Typically, the two

methods agreed to better than 0.5%. For am~ —n,*

equal to an integer +O.i, the difference was as
large as 1% but the overlaps themselves were
small, since this is near the orthogonality condi-
tion.

It should be noted that the same results would

be obtained if the integration is begun at some
small value x,&0. For small u, the parabolic
cylinder function behaves as sin(~6u+P~), so
that Eq. (A3b) becomes sin(Q ~ —p&+), independent
of the choice of origin.
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