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Translational Brownian motion in a fluid with internal degrees of freedom
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The friction coefficient for a smooth hard sphere (Brownian particle) moving through a fluid composed of finite-

sized particles with internal rotational degrees of freedom is computed. Inertial effects are included. The long-time

limit of the velocity-autocorrelation function is obtained. We find that the velocity-autocorrelation function decays

as t '" but with a coefficient that is altered from the usual Navier-Stokes results to include contributions from

transport processes involving internal rotational degrees of freedom of the fluid.

I. INTRODUCTION

The Navier-Stokes equations, which describe
the hydrodynamic behavior of fluids, assume that
the particles comprising the fluid are point par-
ticles or smooth spheres and therefore are unable

to exert a torque on one another. The Navier-
Rokes equations describe the low frequency, long-

wavelength behavior of such fluids, and result
from the conservation of mass, linear momentum,

and energy during collision processes. However,
if the particles in the fluid have a nonspherical
shape or are not smooth, they can be set into ro-
tation during collisions and energy can be trans-
ferred from translational motion to rotational mo-
tion. During these collisions, the total angular
momentum of colliding particles must be con-
served. The requirement that angular momentum

be conserved leads to an additional set of hydro-

dynamic equations which must be coupled to the
Navier-Stokes equations if one wishes to have a
complete hydrodynamic description of the fluid.

The simplest theory of Brownian motion for a
spherical particle moving through a fluid assumes
that the friction on the particle due to the sur-
rounding medium (composed of point particles) is
constant and is given by Stokes's formula. This
in turn implies that the random noise exerted on

the particle by the background medium is white. '
This "simple" theory of Brownian motion is only

applicable for an extremely massive Brownian

particle which experiences negligible accelera-
tion. When one is dealing with a Brownian particle
which is small enough to experience sizable accel-
erations due to fluctuating forces from the medium

or a fluctuating external force, then inertial ef-
fects must be retained in computing the friction
due to the medium. Inertial effects cause the fric-
tion force to become memory dependent and cause
the random noise on the Brownian particle to be-
come colored.

It is our purpose in this and a subsequent paper
to investigate the effect of the internal rotational
degrees of freedom of a fluid on the Brownian mo-

tion of a spherical particle embedded in that fluid.
We shall assume that the Brownian particle is
small enough that inertial effects must be retained.
In this paper we shall consider the translational
motion of the particle. In a subsequent paper, we

shall consider rotational motion. We shall begin
in Sec. II, with a discussion of the hydrodynamic

equations which describe a fluid with internal ro-
tational degrees of freedom. The dispersion rela-
tions for the hydrodynamic modes in such a fluid

are obtained in Sec. III. In Sec. IV solutions of the

hydrodynamic equations for a fluid at constant
temperature are obtained for the case when a hard

sphere is immersed in it, and in Sec. V we obtain

the force on a smooth hard sphere which translates
through the fluid. As we shall see, internal de-
grees of freedom in the fluid can alter the friction
force on the Brownian particle. Finally, in Sec.
VI we obtain an expression for the velocity-auto-
correlation function after long times. We find that

the velocity-autocorrelation function decays as
t ' ' but with a coefficient which is changed from
the usual Navier-Stokes results by terms which

depend on transport processes involving internal
rotational degrees of freedom of the fluid.

II. HYDRODYNAMIC EQUATIONS FOR A FLUID
WITH ROTATIONAL DEGREES OF FREEDOM

The hydrodynamic equations for a fluid with in-
ternal rotational degrees of freedom~s take the

following form. The continuity equation, as usual,

is written

8p 8
+ (pv,}=0,

+k

where p is the mass density and vk is the kth com-
ponent of average velocity. The momentum bal-
ance equation can be written

8 8 8

st (pv, }+s (pv,v,}=
s I'„,

+k +k

where Pk, is the pressure tensor and is defined in

terms of the hydrostatic pressure P and the stress
tensor H„as
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k» P k» + k» ~ (2.3)

The angular momentum balance equation can be
written

E we take the cross product of Eq. (2.2) with the
position vector and combine it with Eq. (2.4), we
obtain the following equation for the ith component
of average internal angular velocity 0

BL4 8 8 8&k»'+ (v,I.,) = (P„»(c,(,)++k +k Xk
(2.4) 8—(IQ,)+ (v IQ, ) =e, P +

8 B~k»
(2.i2)

where L, is the ith component of the total angular
momentum density for the fluid, a«z is the Levi-
Civita tensor and has the property that for even
permutations of (i'), c« =+1, for odd permuta-
tions a«~=-1, and z» =0 if any two indices are
equal. The tensor 7k, is the torque tensor and is
defined so that np k, is the ith component of torque
on a surface with unit vector n due to mutual rota-
tion of particles in the fluid. The quantity
n+~ »((«& gives the ith component of torque on a
surface with unit vector K due to the translational
motion of the fluid. The total angular momentum
density L can, in general, be written

L= pr x v+ I ' 0, (2.5)

where I is the tensor describing the moment of in-
ertia of fluid particles per unit volume and is
the average angular velocity of particles in a given
region of fluid. In the following we shall assume
that the xnolecules have a mass distribution which
to first approximation is more or less spherical
so thatI, -I&» . If we write&=pro, we may think
of VI, as an effective radius of gyration of the
fluid particles. The angular momentum then be-
comes

L=pr xv+10. (2.6)

The equation for energy balance can be written
8 8—(pg)+ (pv, p, '+pv, sT) = ', (2.7)
Bt Bg Bx

where J is a dissipative energy current, s is the
local specific entropy, T is the local temperature,

E we assume a linear relation exists between
forces and fluxes in the fluid, the dissipative cur-
rents take the following form. The dissipative en-
tropy current is written

KJ=—VTT (2.is)

where K is the coefficient of thermal conductivity.
The stress tensor becomes

Bvy
3~ 2~»~k~k

~~s», s», ( )
(2.i4)

where g, and g2 are the coefficients of shear and
bulk viscosity, respectively, and g, is a new vis-
cous transport coefficient which couples rotational
motion of fluid particles to translational flow. The
torque tensor takes the form

0 ~8~ 8

(2.is)

where $„f„$,are three new transport coeffi-
cients describing dissipation of the average intern-
al angular velocity of particles due to mutual fric-
tion between particles. Equation (2.1) completely
determines the hydrodynamic behavior for a fluid
of particles which have rotational motion in addi-
tion to translational motion.

1 I
p = p+ —— ++gv vq2 p

(2.S)
HI. DISPERSION RELATIONS

8 8 BJ—(ps)+ (psv, ) = ~ +(r, ,
Xk Xk

where Jk is the dissipative entropy current

(2.9)

J~=—(J +7 'Q —w v)T (2.10)

and e, is the entropy production per unit volume
due to dissipative processes in the fluid

and p, is the chemical potential of the fluid.
It is also useful to write an equation for the en-

tropy density ps:
We will now linearize these equations about ab-

solute equilibrium and find the dispersion relations
for the hydrodynamic modes. ' Let p~, s„and p,I,
denote the equilibrium values of the mass density,
specific entropy, and moment of inertia density,
respectively. At equilibrium 0= 0 and we assume
v=0. After linearization, Eqs. (2.1), (2.2), (2.9),
and (2.12) together with (2.13)-(2.15) take the form

Bp—+pov 'V=02

1, BT 1 BGk 1 Bvk 1

(2.ii)

Bv
p, —=-vP+(q, + —,'q, )v(v v)'Bt

('g + 'g )v x v x v+ 2tlgv + 0
p (2 2)
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8g K
p —=—V T'et T

p,I,
s&

--3'9, (vx~ Sg}+(~,+, ~,)v(v ~ fl)

—(g, + (,)v x v xg.

(3 3)

(s.4)

We can simplify these equations if we divide the
average velocity v and average angular velocity
0 into their longitudinal and transverse parts

v= v +vg (3.6)
and

(3 6)

Bp—+p V'v =0
et 0 g

(3.7)

p,
' =vP+(q, + —,'q, )v(v v, ),0

Bs E
p —=—V T0 et

The transverse part of the average velocity be-
comes coupled to the transverse part of the aver-
age angular velocity,

(s.s)

(s.9)

po = -(&~+ps)v x v x v~ y slav x 0 (3.10)

0= 0,+0,
where by definition the longitudinal parts v„and
0, have the properties V ~v, =O and V~A, =O and
the transverse parts v, and 0, have the property
V ' v, = 0 and V' '0, = 0. For a plane wave disturb-
ance, v, and 0, are parallel to the direction of
propagation of the wave and v, and 0, are perpen-
dicular to it. The hydrodynamic equations now

decouple into the following sets. For the coupled
longitudinal sound and heat modes we have the
usual equations

ea,
poIo 2&3V Xv ) 4$3Q)et

—((,+f,)v xv xQ, , (s.11)

and the longitudinal part of the average angular
velocity obeys the equation

p, I,
"' = 4q, G, +($,+~],)v(v 0,). (s.12)

We can now find the dispersion relations for the
normal ~odes of this system. We first must
Fourier transform the space and time dependence
of these equations. We use the convention that

v(r, t}-v(k, &o) e''i' "" (3.1s)

. Ek'
(d = —g

pocp
(s.14)

where c~ is the specific heat at constant pressure.
For the sound modes we obtain

ik2 ~ 1 1=+c k- 'g +—'g +K ———0 2p 2 3 1 C0 V P

(3.16)

where c, is the speed of sound, co= (sP/Bp)o, and
c„is the specific heat at constant volume. The
coupled transverse velocity and angular velocity
modes yield the dispersion relations

with similar expressions for other quantities. We
also choose the entropy and pressure as our inde-
pendent thermodynamic variables. We then find
the following dispersion relations. From Eqs.
(3.7)-(3.9) we find the usual dispersion relations
for heat and sound modes. For the heat mode we
find

2poIo 2poIo
(3.16)

In Eq. (3.16), we have let p=p, +p, and $=$, +$s.
Let us note that in the limit k-0 the dispersion
relations for the transverse modes reduce to & =0
and ~=-4 i7i(/p, lg. Thus, one of the transverse
normal modes (&u= 0) is hydrodynamic and the oth-
er, &u = 4q,i/(poIO), i-s not. ' This is a conse-
quence of the fact that the average velocity is a
conserved quantity while the transverse angular
velocity is not. The longitudinal angular velocity
mode is also not hydrodynamic. It has a disper-
sion relation

and both the transverse and longitudinal average
angular velocity modes become hydrodynamic.

VP = —Vp, (4.1)

IV. SOLUTIONS TO THE HYDRODYNAMIC
EgVATIONS

Let us now solve the hydrodynamic equations for
the case when the system has uniform tempera-
ture. ' Then pressure gradients can be expressed
in terms of density gradients

-4qy i (g~+ ~~ $~)km(d=
PoIo PoIo

(s.17)
where

Notice that if we set g3= 0 then the internal angular
velocity decouples from the translational motion
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and

( ~ poc
i(-dpov -) Tjn+ ~ Tj~ — . V(V 'v )

Z(d

—(g, + q,)V x V x v„+2q, V x Q„(4.2)

is the isothermal compressibility. We can now
Fourier transform the time dependence of Eqs.
(3.1), (3.2), and (3.4), and using (4.1) we can write
them in the form

where

(4.12)I"„(r,4,) = Q &„"k„(g,r)P„(cos9).
n=O

In Eq. (4.12), the functions h„(Ar) are spherical
Hankel functions, the functions P„(cos&) are Le'

gendre polynomials, and &„". are constants to be
determined by the boundary conditions on the
sphere. Equation (4.8) can be written

i~p,-I,A„=2q, (v xv„—2Q„)+(g,+ —,
' ],)v(v Q )

—(g, +g,)v x v xQ (4.3)

where c' =c', c~ /c„and

where

$4)po I —4g
k, =

(4.13)

(4.14)

].v„-=v„(r)=-
27T 4

dt e '"' v(r, t) (4.4)

with a similar expression for Q„=A„(r).
Let us now decouple Eqs. (4.2) and (4.3) into

their transverse and longitudinal parts. We obtain
for the longitudinal velocity

c'l-- c'l
i(up,-v„'= 0 — '. ~V(V 'v„')= 4 — '. ~V'vg,

j z)
(4.5)

where 4 = g, + —,
' q, . For the transverse velocity and

angular velocity we obtain

-i p, v'„= -g T & V x v„' 2q, V x 0„' (4.6)

and

(-i(opoIO+4q, )Q' =2@,V xv' —)v x v x A„', (4.7)

Its solution has the form

A~ (r) =v 1,(r, k, ),
where

(4.15)

I'„(r,k, ) = g &„"k„(k,r)P„(cos&) (4.16)
n=O

and the constants &„"are also determined by
boundary conditions on the sphere.

The equations for the transverse velocity and
angular velocity are slightly more complicated.
If we combine Eqs. (4.6) and (4.7) we obtain

)qv v'+ (g8 +i&up0$+4q, )V v'„+is&p,8„v„'=0 (4.17)

and

)qV Q„'+ (n&„+i&up,$+4q', )v'A„'+irupo9„0'„=0,

where p=g~+gs and $ =(,+ps. Finally, the equa-
tion for the longitudinal angular velocity takes the
form where

(4.18)

( i&up, l, 4g+,)A 5~v(v A~) =5v'Q~, (4.8) ao ~ Po 0 4~s (4.19)

where & = $2++s$x.
We now wish to find the force exerted on a hard

sphere as it moves through an infinite medium
whose motion is governed by Eqs. (4.5)-(4.8). If
we assume that the disturbances created by the
motion of the sphere either propagate outward or
decay to zero as one moves far from the sphere,
we can immediately write the solutions to Eqs.
(4.5) and (4.8). Equation (4.5) can be written in
the form

The solution to Eq. (4.17) can be written

v (r) = v x (rg;+ r g„)+—v x v x (rX„')
+

vxgx(, X-)

where

g„(r)= g M„'h„(k,r)P„(cos&)
n~O

(4.20)

(4.21)

V*v' +k', v„'=0,

where

(4.9)

(4.10)

and

X„'(r)= g N„'h„(k, r)P„(cos6).
fIaO

The solution for (4.18) can be written

(4.22)

Its solution in spherical coordinates is

v' (r) =V I'„(r, A, ), (4.11)

A (r ) = V x (rg„'+ rp„)+—V x V x (rX„')
+

]
+—V x 'V x ( rXo) (4.23)
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where

and

g'„(r) = g Ã?'„h„(k,r)&„(cose)
n~0

(4.24)

}t'„(r)= g OI„'h„(k,r) P„(cose) .
n o

(4.25}

The constants M„', gg'„, N„', and 9t„' are determined

by boundary conditions on the sphere and are in-
terrelated through Eqs. (4.2) and (4.3). The wave

vectors k, obey the equation

$rtk, (qe—„+i&up,$+4q,') k,'+trop e„=0. (4.26)

terms for which n=1 in Eqs. (4.12), (4.24), and

(4.25) contribute to the motion of the fluid.
E we now require that ~„' and v'„be related

through Eqs. (4.6) and (4.V) and if we impose
boundary conditions (5.1)-(5.3), we obtain the fol-
lowing expression for transverse velocity

gg~ N, 2h' N 2hv'(r, e}=c oser & +—' +=
er k, r
br N (h+ ~h+ N (h- ~h

-since a —+—
i
—+ +=I —+r k, &r sx k (r srj

(s.4)

The Hankel functions in Eq. (5.4) are defined

Thus,

k', = g~„+i(dP0$+4g,' ~

x[(qe„~p,~
.

4q',}' 4~@ ~p,e„]'~'.
(4.27)

and

efA)&
h' = — » (A r+i)

egk~rh'= —» (k,r+i) .

(s.s}

(s.s)

E we remember that The constants & and N, are defined

v~ = v~+v~

Q Ql +g~y

(4.26)

(4.26)

0 g2RS
e-i~is X A C+ "' - X A C+ "~

R I
' R

(s.v)

and

we obtain the full solutions to Eqs. (4.2) and (4.3).

V. FORCE ON A SMOOTH HARD SPHERE

r x [r 'v(R, e)]=0, (s.s)

where R is the radius of the sphere. The boundary

condition in Eq. (5.1) together with Eqs. (5.2) and

(5.3) and (3.10) and (3.11) ensure that only the

Let us now consider a smooth hard sphere which

moves through the fluid with velocity u(t) =u(t)z.
The fact that it is smooth means that no torques
and no force directed tangent to its surface can be
exerted on it. The only force on the sphere will

be normal to the surface. Since for a sphere all
normal forces are directed through the center of
mass, there is no way that the fluid can excite or
damp rotational motion in the sphere. Therefore,
the only motion of interest is translational motion.
Because the sphere is hard, we must also require
that the normal component of velocity of the fluid

at the surface of the sphere is equal to the normal
component of velocity of the sphere. Then no fluid

can flow into or out of the sphere. The boundary
conditions at the surface of the sphere thus take
the form

r 'v(R, e) = r 'u(t), (5.1)

r 7(R, e}=0, (s.a)

and

(2g ~
e~~~s~ ~

~X A [3D -ik2R'] (5.8)

where u„' is the Fourier transform of the Brown-
ian-particle velocity,

X,= (qk,' - i(op/,

D, =(g, R+i),

D, = (k, R+i),

(s.e)

(5.10)

(5.11)

L

A =[)(D —ik~~R }'+2)~DJ,
(s.la)

(s.13)

B,=2&, -ik, R . (5.15)

It is interesting to note that only the transverse
components of the average angular velocity contri-
bute to the friction on the Brownian particle.

Let us now compute the total force exerted by the

medium on the sphere
2r

F„= dS' P„=R de) d8 gin~P & r,
0 0

(5.16)

~=A.X.(B,C — "'D,D) -A X (B,C.—„'D,D.
i

.

(5.14)
In Eq. (5.14),
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where d8 is an infinitesimal area element on the
surface and is directed along the outward normal
to the surface. Since no tangential force can be

exerted on the sphere, only component P,„(tu) of
the pressure tensor contributes. From Eq. (5.16),
me obtain

X„=— (irrP)DD, X A. (C + 'D
(

—X A(C. + 'D.
)

—433(3D, -44R )(kD A X 3'D A X )I.
4v R'u'g . ( 4q, )( 4)7,

(5.17)
Equation (5.17) gives the friction force on a smooth sphere moving in a fluid composed af particles which
have rotational degrees of freedom, mhen inertial effects are included.

As a check on Eq. (5.17), it is useful to consider various limiting cases. In the limit &,-0, the rota-
tional modes decouple from the translational modes and we obtain

—u„)73k Rg(D, [18D —kmR (k R+3i)] -4igmD RQ

[(k R+ 3i)(ig~k'R' —2D,k') —ale', D ]
(5.18)

where now

k2 Zp0

~1
(5.19)

4vg, RuDD-S 8)7,D'.((+2),}—(q, +ay}iR'~

0

(9+2)7,) D'.(5+2$,)+—' i[4)I,R' —(5+2$,)]
~'n

where
(5.22)

1/2
D'. =i R~

' '~ +1 . (5.28)

Thus, we see that even for a smooth hard sphere,
rotational modes in the fluid can substantially
change the friction. Corrections to the static fric-
tion which result from rotational modes go to
zero as g,-0.

Thus, all information relating to rotational motion
has cancelled out as it should. This expression
for the frictional force has been obtained by Zwan-

zig and Bixon. ' The limit of an incompressible
fluid is found by setting $,-0. Then we obtain

F = -4w)7,Ru~
i
1+ . —

6 i. (5.20)
2k R k2R2)

0 R+3z 6

Finally, let us take the static limit ((d- 0). In that
case, the friction force reduces to the well known

result obtained by Stokes

F0 477g~RQPg (5.21)

It is also.of interest to find the friction force in
the static limit when the rotational modes are al-
lowed to contribute. E we let (d- 0 in Eq. (5.18),
we find

VI. VELOCITY AUTOCORRELATION FOR THE
BROWNIAN PARTICLE

Nom that we have determined the friction force
on the hard sphere, we can focus on the motion of
sphere. The equation of motion for the sphere can
be written

+ ( o(f -f')s(f')dt'=F„(t)+F, ,(f),du(t)
dt

(6.1)

where &(f) is a memory-dependent friction force
whose Fourier transform &((4)) is just

&(~) = ——," (6.2}
4 Q~

[cf. Eq. (5.17)]. The friction force is assumed to
be causal [&(t)=0 for t&0 and c((f)330 for t&0].
On the right hand side of Eq. (6.1), &„(t) is an ex-
ternal force which couples to the hard sphere and

F,~~(t) represents the effect of random fluctuating
forces on the sphere due to the medium in which it
is embedded. We shall assume that

&F, ,(f)}=0and (&. ,(&')s(f)}=0 (6 8)

The average is taken with respect to the probabil-
ity distribution for F, ~(t). We expect that tem-
poral variations in the velocity of the sphere will
be much slower than those of the random force,
so the average of the product of F, ~(t) and u(t)
is zero. The autocorrelation function for the ran-
dom force (F, ~(t)E, D(t')} is determined from
the friction force through use of the fluctuation-
dissipation theorem. ' "

The linear response of the sphere to an external
field is most easily determined by first finding the
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response function P (t) which is defined through
the equation

(u (&e) u ((d')&,(&d)F,(&d')&= -( )
-,

( )
~ (6.11)

(u(t)) I=«(( ( )-)" 'lt .),dt' (6.4)

1
:im(d+&z((d) 'e((d)= .

where

(6.6)

(s.v)

Prom Eq. (6.6) we can find the linear response of
the system to any external force;

(u(t)&=2 d&d e ' '&t)((d)F„((d),2' (e.s)

where P„(u&) is the Fourier transform of the ex-
ternal force.

We next obtain the velocity-autocorrelation func-
tion of the hard sphere. ff we multiply Eq. (6.1)
by u(t") and take the average we find

m —(u(t)u(t")& + u(t —t')(u (t')u(t ")&dt' = 0
dt

(6.8)

[we have assumed that F„(t)= 0]. From this equa-
tion we can readily show that the Fourier trans-
form of the autocorrelation function is given by

(u(~) u(&e')& =2zksTe(~+ &d')[&t (~)+p'(&d)],

(6.10)

where the asterisk denotes complex conjugation
and k~ is Boltzmann's constant. To obtain Eq.
(6.10) we use the equipartition theorem to write
(u'(0)& =kzT/m. From the fluctuation-dissipation
theorem the correlation function for the random
force can be written

(3)) (t) is assumed to be causal. Let us now take the
average of Eq. (6.1)

(())+f &(t —t')(u(('))d('=& (t). (6.5)

Then we can substitute Eq. (6.4) into Eq. (6.5),
take the Fourier transform, and we obtain

As a rule the noise on the sphere will not be
"white" when the friction force includes frequency-
dependent effects.

We can now simplify the expression for the vel-
ocity-autocorrelation function and find its long
time behavior. The velocity-autocorrelation func-
tion can be written

(u(t) u (0)&

k~T ™,„, 1 1
dMg . +.

2v ~ „i(om-+ n((d) i(dm+ &)& (&e)

(6.12)

Since the response function P(t) is causal, p(&d)

will have no poles in the upper half complex-fre-
quency plane. Furthermore, because &z(t) is
real, a*(«)}= o ( &u) [one can show this explicitly
in Eq. (5.1V)]. Thus by letting v- -«) in the sec-
ond term, we obtain an integral involving (I)) (&d)

which must be closed in the upper half complex-
frequency plane and we get no contribution. Then
we find

(6.18)

We can evaluate Eq. (6.13) by finding an appropri-
ate contour in the lower half plane.

Before attempting to evaluate Eq. (6.13), we
must find the branch points of &)((z), where z is
now a complex frequency. This is the same as
finding the branch points of k, (z) [cf. Eq. (4.27)].
One can easily show that k, (z) has branch points
at z =0 and z =-i((a —b) + [(a —b)' —a'] 'I'j/po,
where a = 4q~q~/(Ioq —$) and b = eqzs)/ (Ioq —$); and
k (z) has branch points for z = -4ql/poio and,
z=-i{(a—b)a[(a —b) —a ] ~ ]/po. Thus Eq. (6.13)
may be evaluated using the contour in Fig. 1.
However, if we note that the function (x(v) remains
unchanged under the interchange k, k, we find
that the contributions from branch cuts associated
to the branch points -i((a —b}+ [(a —b)' —a']&~ ')/p,
cancel and we obtain the following expression for
the correlation function

(u(t)u(0)&= '
2w &~ -mr+ c&(re 'I ') mr+ &). (re-"~')j
kaT$ -ct ~ ( 1

2v 0 l~ m(C+r)+c& ( ic+re "-~ ) -m(C+r)+&z(-iC+re "& ),I

+ (contribution from poles within contour), (6.14)

where C =4g, /p, i,. The expression for &z(&()) is too
complicated for us to search for poles within the
contour analytically. If explicit values for the
transport coefficients are used, they can be found

I

numerically. However, in the limit g~- 0 no poles
exist within the contour, so it is unlikely that they
will be found for g, +0.

The long-time contribution to the correlation
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where

and

4mRrt, [(r/, +2q) a, 2—q, d, ((+2(,)j
P'

(r/+2@,)a.-n. (5+2(,)(d.+ "'~~'
j

(6.16)

) 1/2~„„,(t'.
)

b=. L'gg J

(r/+29, )a, r/, (-5+ 2f,)(d.+ "'
~

(6.17)

In Eqs. (6.16) and (6.17)

FIG. 1. Integration contour in the lower half complex-
frequency plane for the velocity-autocorrelation function.
Contributions from the two complex branch points in the
lower half plane cancel.

a((o) =a+ah~~(1 i), - (6.15)

function' comes from the first integral in Eq.
(6.14) (the branch point at z =0). The second inte-
gral dies away exponentially. The long time be-
havior of the correlation function comes from
small values of r since contributions for large r
are exponentially small. Thus we can obtain the
long-time limit by expanding the integral in powers
of v r. This is straightforward but tedious. Let
us first note that

(6.is)

&4g g 't'~~ 4g na.=(g+2$,) 1+8~ ' '
~

+ ' 'R' (6.19)
E nk)

We thus find that

/z(re"'/') =a+ W2ab v ri (6.20)

&(xe "/') =a —W2ab ~ri, (6.21)

and the long-time limit of the velocity-autocorre-
lation function becomes

&u(t)u(0)&- ' i (
po 4wrt~t) ((@~+2@)a,—2r/zd, ($+2$~)/ „0 3po 4wg~t J

(6.22)

Thus we obtain a t ' tail but with a coefficient
which is altered by the transport processes asso-
ciated with the internal degrees of freedom.

Contributions from transport processes associ-
ated with internal degrees of freedom cancel out
of Eq. (6.22) when g, —0. Grad' estimates the size
of g, for gases to be

I

where X is the mean free path and W&, is the effec-
tive radius of gyration of the particles in the fluid.
Thus for gases, effects of internal degrees of
freedom can be neglected. However, for dense
gases or liquids where internal and translational
degrees of freedom are more strongly coupled,
the effects might be quite large.

Io
~3 ~y ~10 (6.23)
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