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Effect of ponderomotive forces on wave dispersion and second-harmonic light emissions in laser-
produced plasmas

S. Jackel, S. Eliezer, and A. Zigler
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(Received 27 October 1980j

In this paper we analyze the basic characteristics of experimentally observed second-harmonic light spectra
generated during long-duration high-intensity laser-plasma interactions. It is shown that the observed spectrum
characteristics of threshold, red-shift, and target material dependence can be explained by a two-step mechanism of
parametric coupling affected by a strong "imposed" ponderomotive force. The imposed ponderomotive force,
generated by the laser light's standing-wave pattern, affects the parametric coupling through increased linear wave
dispersion. Experimental results agree with the theoretica1 prediction and suggest the existence of additional

I

parametric instabilities in the ponderomotive-force-dominated regime.

I. INTRODUCTION

An important diagnostic used in the study of
laser-plasma interactions is the light emitted at
the second harmonic of the incident laser light' s
frequency. Spatially resolved measurements can
yield information regarding the hydrodynamic
evolution of the plasma" while spectrally resolv-
ed measurements can provide information re-
garding the mechanisms of laser light absorption
near the critical density. ' '

Results obtained from experiments performed
with long-duration laser pulses of low intensity
(Nd:glass-). ~, =1.06 pm, r~ &1 nsec, I~
(10"W/cm' (Ref. 4); CO, -X„„,= 10.6 p. m,
r ~ &10 nsec, I~ (10"W/cm'(Ref. 5) have
shown evidence consistent with the existence of
parametric instabilities near the critical density.
Experiments performed by us' and at Rutherford'
have yielded data in the high-intensity long-duration
regime (Nd:glass-Xa =1.06 pm, r~ &1 nsec,
I~ &10"W/cm'). At these intensities the pon-
deromotive force, generated by the standing-
wave pattern of laser light within the plasma, was
believed to result in a steepening of the plasma's
density profile and a turning off of the parametric
instabilities. '

In this paper we show that instead of reduced
instabilities, the data suggest additional insta-
bilities in the ponderomotive-force-dominated re-
gime. In particular (Fig. 1), for intensities&2
x 10"W/cm', an additional 2' spectral compo-
nent appears with the dominant characteristics of
a parametric instability source: threshold, rapid
growth rate, red. shift, and red-shift dependence
on target material (Z/A).

By including the effect of a strong imposed
ponderomotive force on linear wave dispersion
("natural modes of the plasma" ), we obtain ex-
pressions that accurately predict the measured
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FIG. 1. 2' and (d spectroscopic results for low-Z &~-
gets. The narrow lines superimposed on the 2' spectra
are calibration lines from a Rb vapor lamp. Incident and
backscatter co spectra were taken simultaneously. Band-
width of the incident laser light is less than the 0.5-A
spectrometer resolution. The Brillouin-broadened and
red-shifted ur spectra were not found to correlate with
the 2' spectra.

2(d red shifts. The strong imposed ponderomotive
force is due to the laser light's standing-wave
pattern within the plasma. Near critical density,
where the 2+ light is generated, a resonant field
structure may exist and the imposed ponderomotive
force is of maximum strength. [Frequency shifts
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due to strong pump distortions (quasimodes) have
been analyzed for Brillouin and Raman instabili-
ties.' Some (d, backscatter spectra from laser-
plasma experiments have been interpreted in terms
of the existence of these quasimodes. "]

Our model also provides a possible answer to
the question of why the parametric instabilities
do not turn off as the density profile steepens. The
model indicates the possibility of wave growth with
energy extracted from the imposed yonderomotive
force. This results in enhanced "noise levels"
for those plasma waves of just the right frequen-
cies to participate in the parametric coupling.
Thus, both enhanced wave growth and enhanced
convective dissipation occur at the same time.

The remainder of this paper is divided into
three sections and two appendices. In Sec. II, the
dispersion relations are derived for linear waves
subjected to a strong imposed ponderomotive
force. A normal mode analysis is used to derive
the dispersion relations. In Sec. III, the dispers-
ion relations together with the Manley-Rowe rela-
tions are used to derive the red shifts expected
from a two-step parametric coupling process.
We are here dealing with the parametric coupling
of traveling waves within a background laser
light-produced standing wave. (In general, the
laser light forms a partial standing wave in the
plasma. The standing wave is formed from that
portion of the laser light which remains unabsorb-
ed. ) In Sec. IV, the experiment' is reviewed and
the data are compared to the model predictions.
The implications are then discussed. In Appendix
A, we apply our model to the previously studied
problem of Brillouin instability in the strong
coupling regime. ' We find that our model can also
give reasonable agreement to the red-shift values
calculated for the case of a strong traveling wave
pump. In Appendix B we present a simple elec-
tronic analog of the plasma response to imposed
ponderomotive forces.

forces may also act as a source of energy for
resonant plasma waves. This is a case of para-
metric amplification in which a time varying
feedback signal in a resonant system modulates an
otherwise dc source. (An electronic analogy is
presented in Appendix B.)

To see in detail the effect of ponderomotive
forces, note that the force per electron f' due to
spatial variations of the imposed electric field
E =E,(r) cos&o,t is given by":

- (E'&
+ vi ~i —2E, x(vxE, ) cos2~, t,

(I)
where n„is the critical density. The pondero-
motive force is, in general, treated as a time-
averaged quantity. Since, however, we are deal-
ing with the interaction of the ponderomotive
force with waves that may oscillate with frequen-
cies up to co —- (d„atime average is not appropri-
ate.

The force exerted on a unit volume of plasma
F is given by

F=nf', (2)

where n is the electron number density. If a
plasma wave of frequency (d passes through the
region subjected to the imposed ponderomotive
force f', then the electron density will vary as
n no + ngcoscdt and the ponderomotive force per
unit volume will be given by

n, -(S''t n, -&S'F= ' v) ~( — ' v( ~- coscot.
2n„~Swan 2n„&8w

Sion„(&)
v

i

~
i
- 2E x (V x E ) cos2ar, ts

n, - E'l8'„2)
V ~

i
—2E x (v x E ) cos2~ tcoscot.s 0

II. WAVE PROPAGATION

Ponderomotive forces produced by focusing
laser light in a plasma are believed to result in a
number of effects: axial steepening of the density
profile, "transverse profile modification with
laser beam self-focusing, "and density rippling
with turbulence production. " Wave propagation
may be affected by the alteration of the density
profile. '4

Imposed ponderomotive forces may directly
affect plasma-wave propagation through the dis-
persion of longitudinal-wave-induced density
perturbations. This is similar to the action of
plasma pressure in a hot plasma. Ponderomotive

Here, n, is the steady-state density and n, cosset
is the induced density perturbation. In order to
calculate the wave' s dispersion relation, Eq. (3)
[not just Eq. (I)] must be included in the electron
momentum equation.

It is important to note that only the second term
of Eq. (3) oscillates in unison with the density
perturbing wave, and only it appears in the first-
order expression defining the plasma' s normal
modes. The first term appears in the zeroth-
order equation and is the cause of steady-state
profile modification. The third term appears in
the second-order equations and is a source term
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for the current of frequency 2+,. Second-harmonic
light generated by. this current will not be red
shifted and has been treated elsewhere. " The
fourth term is equivalent to a higher-order plasma
coupling with the driver at frequency 2cop, and
remains non-resonant so long as coW ~p or (00 2(Up.

For the waves dealt with here, ~& ~p and the
fourth term can be neglected.

In the remaining analysis only the component of
the instantaneous ponderomotive force required
for calculation of the linear dispersion relations
will be retained. Defining f as the relevant corn-
ponent of f', we have that

(4)

In Eq. (4) the equality (E') = —,
' E', has been used.

The quantity f is not, however, a time-averaged
quantity.

The calculation of dispersion relations will be
commenced with the treatment of Langmuir waves.
Following Chen, "but including the term nf, the
electron momentum, continuity, and Poisson' s
equation are given by

Bv Bv~ Bp
mn —+ v.—I = —enE' ——+ nf,

Bt Bx)'
Bn—+ —(nv) = 0,
Bt B~
BE'

= -4@en,
Bx

(5a}

(5b)

(5c}

where m and e are the mass and charge per elec-
tron, n, e, and p are the density, velocity, and
pressure of the electrons, and E' is the induced
electric field. It has been assumed that the pro-
blem is one-dimensional and that the ions are
immobile. The high-frequency electron oscill-
ations are adiabatic so that the -equation of state
is given by

pn-' = const.

Linearizing about the steady state no, v0=0 (no

may represent a point in the modified density
profile) and assuming first-order variations of the
form n„v„E,' - e" -'"", one obtains the system
of first-order equations

f2km z/2
2+p+ 4 2m M&

(9a)

2m ~„ (ob)

It is of interest to note that when imposed pon-
deromotive forces are present, wave propagation
occurs even for T-0. The amount of wave dis-
persion depends directly on the strength of the
ponderomotive force. In the usual case of no
imposed ponderomotive forces, the group velocity
(&&a/Sk) goes to zero as T -0 and wave propaga-
tion ceases. [Using Eq. (8) with f=0, T -0.]

Ion-acoustic waves are next considered. The
oscillation frequency is slow enough so that the
ions and electrons move together. The electrons
possess the system energy while the ions provide
the inertia. The system response is specified by
the electron momentum and continuity equations,
the ion momentum equation, and an isothermal
electron equation of state:

0= en E -— + ng,f

peal

Bx

e B'+ —(n v )=0,
Bt Bg

Bvg
Mn,. ' = eZn, .E',

(loa)

(10b)

(11c}

pp,-' = const. (lod)

Electron inertia has been neglected in (10a) and
ion pressure has been neglected in (10c). Linea-
rizing, assuming that n, o

= Zn„(quasineutrality},
and combining, as before, the dispersion relation
for ion-acoustic waves is obtained:

uP = —(keTk'+ ifk).

Note in Eq. (8) the additional term that gives the
ponderomotive force contribution to wave dis-
persion. The right-hand side is complex so that
wave growth, fed by the imposed ponderomotive
force, is possible. In the limit of T-0 (or when

the imposed ponderomotive force dominates the
plasma pressure), the real and imaginary parts
of (o become

-imnourv, = enoE,' —i3ksTk-n, + fn, ,

i(on, i+nPv, = 0,

ikE,'= -4ren, .

(7a)

(7b)

(7c)

M is the ion mass, Z is the ionization state, and
T is the electron temperature. The real and ima-
ginary part of ~ in the limit of T —0 (or in the
region where ponderomotive forces dominate over
the plasma pressure) are

The dispersion relation for Langmuir waves is
obtained by combining (7a), (7b), and (7c). Thus, (12a)

k2+ ~ k
3k T if

(8)
1 zfk

Q7 2M (d„ (18b)

where uP~=4ve num. Here too, ion-acoustic waves can propagate even
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for T 0.
The propagation of transverse electromagnetic

waves is the last type to be considered. A TEM
wave does not cause density oscillations so that
n, =0. (Electrons are caused to oscillate so that
v, 40.) The ponderomotive force F'= nf' will not
have an ur oscillatory component. Therefore, the
ponderomotive force will not directly affect the
dispersion relation for TEM waves. Its effect
may, of course, be felt through an alteration of
the zeroth-order density profile. ~4

At this point it is worthwhile to consider the
imaginary parts of the dispersion relations, i.e.,
E|l. (9b) and (12b). Since n, o» and E, are pro-
portional to e '"'= e-'"~'e"&', growth of both
Langmuir and ion-acoustic waves occurs for w, & 0.
From (9b) and (12b), this is seen to correspond
to waves propagating out of the plasma. Inward
propagating waves are damped and so do not build
up out of any initially present noise.

Wave growth, by this mechanism, can occur
only when and where there is the externally im-
posed ponderomotive force. Energy is taken from
the ponderomotive force and is transferred to
plasma waves. This may limit or damp the pon-
deromotive force.

tion with ion-acoustic waves produced in heat
flux instabilities')

In the second step, a 2' photon p' is produced
through the coalescence of a plasmon and an inci-
dent light photon or through the coalescence of
two plasmons. Schematically, these two steps can
be represented by the relations

Step I.
p-l+ i,

Step II.
l+ p-p', l+ l-p'.

(13a)

(13b)

Because the plasmon receives only part of the
laser light photon's energy, it will, in step II,
produce a 2v photon with an energy less than
28(dp and with a frequency less than 2~p. This is
the source of the 2~ spectrum' s red shift.

The magnitude of the red shift is quantified by
applying the Manley-Rowe relations to the para-
metric processes of steps I and G. Physically,
the Manley-Rawe relations are just the conserva-
tion laws of momentum and energy applied to
parametric wave coupling. For the wave coupling
of step I:

(14a)

III. 247 SPECTRA

The production of 2(d light is a second-order
effect resulting from either the second-order
currents produced in conjunction with the reson-
ant absorption process" or the parametric coale-
scence of plasma waves." 2' light generated via
the second-order current of resonant absorption
has a spectrum that is either centered on the 2arp

frequency or is blue shifted due to a plasma
motion induced Doppler shift. 2' light generated
via parametric coalescence of plasma waves has
a spectrum with a characteristic red shift. As
was shown in previous work, "when the incident
light intensity becomes strong enough, nonlinear
effects alter the spectrum of 2~ light generated
via parametric coalescence. As we will show,
this nonlinear effect is just the additional wave
dispersion induced by the imposed ponderomotive
force.

2(d production via parametric coalescence is a
two-step process. In the first step, the essential
Langmuir wave is generated. This is generally
thought to be the result of the parametric decay
instability in which an incident laser light photon
p decays into a plasmon (Langmuir wave) /, plus
a phonon (ion-a, coustic wave) i (An altern. ate
Langmuir wave production mechanism recently
proposed by Cairns ' involves coupling of the
plasma oscillations generated in resonant absorp-

For the wave coupling of step II:
k + k~=ks,

p+ l-p'
I &Op+ (Og = (0!

or

(14b)

(15a)

(15b)

(16a)

(16b)

p= +C kp~
2 2 2 2

Langmuir wave:

(d2= ~2+ 3~TQ +g kg &

.f
m ' m"

Ion-acoustic wave:

(17a)

(17b)

&o~ = (ksT JP~ + ffk~)— (17c).

2' light;

4t)3= 40p+ C k3 .2 2 2 2 (17d)

l+l-pI 2k) ——k3,

1,2%1= R3 .
The subscript 0 represents the incident photon, 1
is the plasmon, 2 is the phonon, and 3 is the 2+
photon.

The wave vectors kp, . . . , k3 can be eliminated
through use of the dispersion relations (Sec. I).
These are summarized below.

Incident light:
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In our experiment, a 1.064- p, m wavelength dif-
fraction-limited beam from a Nd:glass laser was
used to irradiate gold and aluminum slab targets.
The pulse duration was 2. 5 nsec. Focused inten-
sities up to 10' W/cm were achieved. 2' spec-
tra were obtained along with measurements of the
corona temperature, ionization state, and the
asymptotic plasma velocity.

Figure 1 shows 2~ spectra from Al targets for
a series of shots with increasing laser intensity.
At low intensities (Io c 10' W/cm ), a single-
peaked distribution is observed within several
angstroms of X,/2. At a threshold of 2x10"
W/cm, 2&@ light with a substantial red shift is
observed. It first appears as a "pedestal" but
then emerges as a distinct distribution. Its in-
tensity increases rapidly until by 8 x10" W/cm' it
has completely overpowered the original peak.

The red shift was found to be a function of Z/A.
The measurements showed that for Al targets,
Z/A = —,

' and the 2&v peak was red shifted by hX
=11+3A. For Au targets, Z/A= —,

' and nÃ=5
+2 A.

The 2~ component appearing at high intensities
has the characteristics of a parametric instability
source, i.e. , threshold, rapid growth rate, 2~
red shift, and a red shift that is Z/A dependent.
In order to compare the experimental and theoret-
ical red shifts, the Doppler shift due to plasma
expansion must be included. This shift is to the
blue and is given by

(23)

Using Eq. (23) we have that M, = 9 A for Al and
M~ = 7 A for Au (T = 1.5 keV at 10' W/cm') .
Adding these Doppler shifts to the experimental
results yield the red shifts due to the parametric
processes: &X~=20 A for Al and ~X~=12 A for
Au.

Referring back to Sec. III, it can be seen that
these red shifts are much larger than can be ac-
counted for by thermal dispersion. The red shifts
are accurately predicted with the inclusion of the
imposed ponderomotive force. From Eq. (22) we
have for the l+ p and l+l processes, respective-
ly: 4A& ——17, 25 A in Al and 4X~= 12, 18 A in Au.
The model prediction is, thus, quantitatively ac-
curate.

In Sec. II it was shown how strong ponderomo-
tive forces could increase wave dispersion. Since
additional wave dispersion leads to the possibility
of additional instabilities, the question arises of
whether or not new or modified parametric in-
stabilities exist in the high-intensity range. The
2' data suggest that this may be the case. The

observed threshold at 2x10" W/cm is also the
intensity near which ponderomotive forces have
been found to strongly affect other plasma pro-
cesses. The observed rapid growth above
threshold suggests an instability increasing with
intensity. Energy absorption measurements 5

indicate that, after losses due to stimulated back-
scatter are accounted for, some absorption mech-
anisms remain efficient at high intensities.
Parametric instabilities may, thus, be contribut-
ing to the absorption of high-intensity, long-dura-
tion laser pulses.

To summarize, it has been shown that imposed
ponderomotive forces affect plasma wave disper-
sion. This effect can be observed in the spectra
of second-harmonic light emitted from laser-
produced plasmas. The theoretical predictions
agree with the experimental results. The data
suggest additional parametric instabilities in the
high-intensity region.
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APPENDIX A

Brillouin backscatter has been previously studied
in the strong coupling regime. In these analyses
there is no imposed ponderomotive force. There
is an induced ponderomotive force caused by
beating between the pump wave and the high-fre-
quency wave produced in the parametric decay
process. This induced ponderomotive force drives
the ion-acoustic wave which, when the pump be-
comes strong enough, need not be at the normal
mode frequency.

In our analysis an imposed ponderomotive force
interacts with density perturbing waves to alter
the normal mode frequencies of these linear
waves. The parametric coupling processes con-
sidered in Sec. III imply the existence of addi-
tional induced ponderomotive forces. The beat
frequencies are, however, always at a normal
mode frequency.

Although the two theoretical models describe
two physically different situations, it is still pos-
sible to compare the model predictions. We do
this by taking the ion-acoustic frequency given by
Eq. (12a), an estimate for the pondermotive force
f which is compatible with the analysis of Forslund
et aL and the wave vector matching condition
k=2ko. To start, consider incident and reflected
waves of the form E,=E,e" 0' "o" and E~
=E„e'+ "~". The total electric field is given by
E~=E~+E&. The ponderomotive force is given
by Eq. (4) so that, with the assumption that &oo
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T is the electron temperature in keV, Z is the

ionization state, and A is the atomic number.
For the limit of T -0 (ponderomotive forces

dominate):

Z '&/2

=28o —xf (19a)

1, u+l-O'

I2, I+ I-p'.
(19b)

f is in units of dyn/cm and Xo is in units of cm.
[Note that Eq. (18) is identical to the first term
of the expression giving 4X as Calculated by
Krokhin. ' Equation (19) is functionally similar
to the second term in Krokhin's expression which,

however, is written in terms of the incident laser
light intensity. ]

In order to obtain a numerical estimate for 4X'

it is necessary to estimate the magnitude of the
ponderomotive force. We do this by making use
of Ginzburg's formulas for the field structure
near the critical density. ' Near the critical den-

sity there is a resonance between p-polarized
light and the plasma. The maximum electric field
E and the width of the resonant region &Z are

The red shift is calculated by combining the Man-

ley-Rowe relation for the first-order process
(14a) and (14b) with the Manley-Rowe relations
for one of the two second-order processes (15a),
and (15b) or (16a) and (16b), and with the real
parts of the dispersion relations (17a)-(1Vd). In

an inhomogeneous plasma, a solution is obtained

with the assumption that the first- and second-
order processes occur at the same point in space,
i.e. , at the same density.

To see the effect of the imposed ponderomotive
force on the 2~ spectra, it is sufficient to con-
sider the two limits of f-0 and T-0. The de-

rivation, consisting of algebraic manipulation and

the elimination of small terms, will not be pre-
sented. We only note that if the ion-acoustic wave

has a frequency ~2 —= 4~, then the Langmuir wave

will be red shifted by an amount 4' to a frequency

R~ = cop, +('d, The 2~ light will be red shifted,
depending on whether the coupling is l+ p or l+ l,
to a frequency ~3 ——2~p —4(d or ~3 ——2~p 2+%.
The 2+ light's wavelength shift is given by M'
= —4(&ar/&oo)XO. In addition, by combining (12a)
and (12b) with (15a)-(15c), it can be shown that

the Langmuir wave source density n, is given by

nJn„=1 —2&~/(u, .
For the limit f-0 (plasma pressure dominates):

( z 1/2
= i(8x10 ') —T, p+I-p', I+I-p'. (18)

given by

1.2(op c
Em~ 2 l

Ep
7T p

(2Oa)

&Z= —l.V

(dp
(2ob)

v is the effective collision frequency, l is the
plasma density scale length, and Eo is the light's
electric field outside of the plasma. The pon-
deromotive force is given by

E2
f= —v- msx

n 8~ n„8waZ ' (21}

By inserting Eqs. (21), (20a), and (20b) into Eq.
(19a), an estimate of AX' in the limit of strong
ponderomotive forces is obtained:

Z(g 2 3

, =(s.sxso-"} a„—
~

—') (
—
)j (22}

Ia is the incident laser light intensity in W/cm .
Numerical estimates can now be calculated.

For 10 = 10 W/cm at XD ——1.06 gm on an Al tar-
get: 8/A= —,', T=1.5 keV, I/Xo= 1." From
numerical simulation, v/&v=0. 05. Under these
conditions, aX'= 4 A from Eq. (18}for the ther-
mal contribution and AX'= I'I A (l+ p), 25 A (l+ I)
from Eq. (22) for the ponderomotive contribution.

Clearly, the 2~ red shift due to the imposed
ponderomotive force dominates the red shift due

to thermal dispersion.
Before concluding this section, it should be

pointed out that the above estimate passes an im-
portant consistency test, i.e. , that the pondero-
motive force is, in fact, large at the source lo-
cation of the 2~ light. To see this, note that for
a linear density profile n/n„= 1-2/I. Using

(20b), the density at the edge of the resonance
zone is given by n„/n„=l—v/&u. For v/&v=0. 05,
n„/n„=0.95. The 2&@ source density can be
shown to be approximately given by m'en„= 1
- 2hru/&uo = 1 - 8s X'/Xo. For 4A'/), 0

= 1.6 x 10 3,

n,/n„=0.99. The 2&o source is, thus, in the re-
gion of strong ponderomotive forces.

IV. DISCUSSION

An experiment was conducted by us in which

laser-produced plasmas were generated under
conditions simultaneously favorable to parametric
instabilities and ponderomotive forces, i.e. , with

long-duration high-intensity pulses. A similar
experiment with similar results was performed
at Rutherford. ' We shall summarize only the im-
portant points.
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2
k'OEc

2~+cr
(A1)

The ion-acoustic wave's frequency is obtained by
inserting Eq. (Al) into Eq. (12a), setting k=2ko,
and using the definitions for the ion plasma fre-
quency (uP~, = ~~&m/I) and the quiver velocity
[v„,= ez(/(m(oo) ] .

Dl osc(d

(00 (dp C
(A2)

From Forslund et aL we have that the quasimode
frequency ~, is given by

&q 1(~o( +osc
2/3

+0 2'k 0
(A3)

Although (A2) and (A3) differ somewhat, they give
similar values for the ion-acoustic wave's fre-
quency. At n/n =0.1: &u„/&o,=0.57, 0.72, and
1.23 at v„,/c =0.05, 0.10, and 0.50, respective-
ly. Thus, with an estimate for the ponderomotive
force, reasonable agreement between the two
models is obtained.

APPENDIX B

As with many plasma phenomena, there exists
an analogy between the plasma response to im-
posed ponderomotive forces and an electronic
circuit. In this section an analog circuit will be
developed with characteristics similar to disper-
sion in Langmuir waves via an imposed pondero-
motive force.

To form the analog circuit we start by noting
that a plasma oscillation represents a normal
mode of the plasma. This behavior is identical
to the response of an LC circuit (inducter and
capacitor linked in parallel) connected to an os-
cillatory current source j (see Fig. 2). In order

—~„+&(do, we have that

(k&- k„)
4nn„

x sin[(ko- k,)x- (mo —(u„)tJ E,E„.
Taking the maximum local value for f, using the
condition that k„=-ko, and that far above thresh-
old E„=Ec,

J =Xe

FIG. 2. An electronic analog to Langmuir waves in the
high-intensity region. The response of the LC circuit to
the oscillating source j is analogous to the plasma's re-
sponse to Langmuir waves. The addition of the linear
feedback controlled current source J, shifts the sys-
tem's natural frequency and acts as an energy source
just as occurs with strong imposed ponderomotive
forces.

to introduce the ponderomotive force's analog, a
second current source J is added in parallel to
the LC circuit. The output of this current source
is controlled by a feedback mechanism such that
the current J is proportional to the voltage dif-
ferential across the IC circuit, i.e. , J=Xe.
we will show, the current source J will shift the
natural frequency of the circuit and that at reso-
nance, J will add energy to the system.

The circuit equation for this system is

j+J=C —+ — edt.1
dt L (Bl)

Taking the Fourier transform and solving for e'.

t(C&u--I/L~) —X
' (B2)

The natural frequency is found by setting the de-
nominator of Eq. (B2) equal to zero. Since the
denominator is complex, ~ will have real and
imaginary parts. — The growth rate z is equal to
QPc ~

1 X

IC 4C ' (B3a)

Xy=
2C

(B3b)

We thus see that the natural frequency (&o~—1/LC)
has been shifted by the introduction of the second
current source (F—J). The oscillation grows at
a rate proportional to the gain of the second cur-
rent source (f—g) and inversely proportional to
the system inertia (m —c).
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