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Raman scattering from pure liquids. Theory of band profiles

S. Bratos and G. Tarjus

(Received 17 December 1980j

A theory is presented to analyze the Raman scattering from liquids formed by diatomic molecules. This theory is

based on the fact that the Hamiltonian of a liquid sample is invariant under the operations of the full ¹ymmetric
group. This symmetry entirely determines the structure of the theory; it is applicable for all vibrational-modulation

speeds. Moreover, the notion of coherence and incoherence of a light scattering process is examined. One finds that

the isotropic Raman process is partially coherent, and the anisotropic Raman scattering is basically an incoherent

process.

I. INTRODUCTION

A considerable interest has been manifested the
last few years in studying Raman-band profiles
of pure liquids; for review articles on this sub-
ject, see Refs. 1 and 2. This difficult problem in-
volves the study of collective vibrational-rotation-
al motions extending over large portions of the
macroscopic sample; the complexity of the theore-
tical analysis increases by an order of magnitude
when going from dilute solutions to pure liquids.
The early work in this field is due to Valiev, '
Vincent-Geisse, Doge,"and Tokuhiro and Roths-
child. ' More recently, the following three direc-
tions of investigation have been explored: (i) The
theories proposed by Oxtoby, "Oxtoby, Levesque,
and Weis' and Levesque, Weis, and Oxtoby" are
based on the generalized cumulant expansion
theorem for noncommuting operators. In princi-
ple, these theories are fully quantum mechanical
although, in practice, averaging over rotational
and translational degrees of -freedom is classical;
computer simulation may be used for that purpose.
(ii) The theories due to Madden and Lynden-Bell, "
and Lynden-Bell, ""either employ the Redfield
equation familiar in nuclear magnetic resonance
or apply methods derived from it. In these the-
ories, the vibrational dynamics is described with
the help of quantum mechanics whereas the bath
dynamics is simulated by stochastic models. (iii)
Finally, the theories by Wang, ' "Wertheimer, '

and Knauss" are based on the Zwanzig-Mori
theory of Brownian motion; some of them are fully
quantum mechanical and the others analyze vibra-
tional motions quantum mechanically and rotation-
al-transl. ational motions classically. It results
from this investigation that vibrational relaxation
in liquids is due to three main mechanisms: the
environmental fluctuations of vibrational frequen-
cy, the resonant transfer of vibrational energy,
and population changes. Unfortunately, at the
present time, the theory of vibrational relaxation
in liquids is only established in its fast modulation
limit; this contrasts with the situation in dilute
solutions for which an analysis is available for all
modulation speeds.

The purpose of this paper is to reexamine the
Raman scattering from a diatomic-molecule li-
quid, the simplest representative molecular sys-
tem of interest. The theory employs symmetry
arguments, the Hamiltonian of a liquid sample be-
ing invariant under permutations of identical mol-
ecules. This symmetry entirely determines the
structure of the theory which is applicable for all
modulation speeds. Moreover, the notion of co-
herence of a light scattering process is carefully
examined and is compared to that of a neutron
scattering process. It results from the present
theory that the isotropic Raman process is par-
tially coherent, and the anisotrpic Raman scat-
tering is a basically incoherent, process. For a
preliminary account of this work, see Ref. 20.

II. BASIC FORMULATION

A. Description of the model

The system under investigation is a liquid containing N identical, diatomic molecules. The following
model is used to investigate its optical behavior: (i) The molecules in the liquid are executing anharmonic
vibrations described by the free-molecule normal coordinate n=(n„n„. . . , n„). They are perturbed by ~

stochastic potential V(n, t) expressing molecular interaction and the Hamiltonian is
N N N N N N

H(, t)=(ngp', +nPn, ', +ngnn, ' +( V t) tt+tn(gnVtt(t)nnt+nP Vtt, (t)nnt, )j'1 j 1 jn1 k j=l jf=l jfy 1

=H(0) (n) + V(n, t) .
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The terms V, (t), V«(t), V«, (t) provide the coupling
between vibrations of a molecule and the bath
whereas the terms V, ~(t} describe the resonant
coupling between them. (ii) The molecules in the
liquid are executing stochastic reorientations de-
scribed by 8=(8„8„.. . , 8„), the ensemble of
angular coordinates of the individual molecules.
(iii) The correlation between vibrations and rota-
tions is weak. (iv) There is no collision-induced
scattering. For the justification of this type of
approach see, e.g. , Ref. 21.

B. Description of the scattering process

Once the basic properties of the model have been
chosen, the formulas relating the isotropic and the
anisotropic Raman differential cross sections to
appropriate correlation functions must be presen-
ted. If, as usual, the k-dependent spectral fea-
tures are neglected, one can write

=—k, ( dt e '"' g(az", (0)a,'z'(t)), (2a)
t 82c l
E, B(g BQg

( dfe '"'P(s"'(0)a"'(I)) . (2b)
B(g BO ~ 2m

In these equations the a,', "s are components of the
standard irreducible tensorial sets associated with
6„the polarizability tensor of molecule i. These
equations only apply if the difference between the
external and the internal Maxwellian electric fields
is sufficiently small; unfortunately, this assump-
tion is heavily restrictive for polar systems.

C. Coherence and incoherence

Microscopic properties of the scattered light are
only partially under the experimentalist's control.
This is due, not only to the fact that the micro-
scopic properties of the incident radiation may not
be completely known, but also to the impossibility

I

of preparing the scattering system in a well de-
fined quantum state. While the first difficulty may
be overcome by employing a laser source, the
second is intrinsically unavoidable and imposes the
scattered electric field to be considered as a stat-
istical object defined by an ensemble of correlation
functions

(E,*(r,t, )E,*(rzt 2) E,"(r t )E,(r „f,) ~ ~ E (r f )),

where the variable E,(r, t, ) represents the magni-
tude of the scattered electric field at P„t,. This
sort of description is required, not only in the
present problem, but also in many other prob-
lems in optics. For example, second-order cor-
relation functions permit the description of the
conventional interference experiments and of the
power spectrum of a stationary electromagnetic
field whereas higher-order correlation functions
are needed in more sophisticated experiments
such as the Hanbury-Brown-Twiss experiment.
For a detailed discussion, see the textbooks by
Born and Wolf'2 and by Crosignani, di Porto and

Bertolotti. 3

On the other side, it is convenient in the present
context to consider the liquid sample as an optical
source, each molecule representing an elementary
radiatior. Its optical properties can, in turn, be
related to its physical properties. Then, (i} ap-
plying the electromagnetic theory of retarded po-
tentials, (ii) writing c, (F, t) =go,.(r, t) where g(P, t)
is the total polarizability density at I', f and g, (f, I)
the contribution to u(r, t) due to molecule i, and

(iii) designating by ez, e~ the unit vectors along
the directions of the incident and scattered elec-
tric fields, the optical properties of the source
can be specified by the ensemble of correlation
functions

([Ey5) (rgfg)6 ][fg@( (rgfg)fg] ~ ~ [EyPj (r f )6 ][Eg5g (r ~f g)E ] ' [fg5g (r„f„)P]) . (4)

It is usual to discuss the coherence and incoher-
ence of an optical source by applying the following
definitions. An optical source is said to be inco-
herent if all elementary radiators composing it are
statistically independent; it is said to be coherent
if there is a fixed phase relation between the wave-
lets emitted by them.

This general theory can now be applied to the
calculation of the differential scattering cross
section of a Raman. process; in that case, only
one- and two-particle second-order polarizability
density correlation functions are required. Then,
if the source is completely incoherent in the sense

I

defined above, all distinct pair-correlation func-
tions

([e,a, (r, t)e, ][a,n, (r', t')e, ])
vanish as the averaging over each factor may be
performed separately; the distinct pair-correla-
tion functions (o. , (0)a&(t)) and (P, (0)$&(t)) of Eqs.
(2a) and (2b) vanish in consequence. It then seems
reasonable to call incoherent a Raman process
such that distinct pair-correlation functions van-
ish for all times and to call it partially coherent
otherw'ise. This definition will be retained in
what follows.
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III. CALCULATION OF CORRELATION FUNCTIONS

A. General considerations

The calculation of the isotropic and anisotropic
Raman-band profiles requires, according to Eqs.
(2a) and (2b), separate determinations of the cor-
relation functions (ap(p()(0)ap(&p)(t)) and (a,'2('(0)a,"J'(t)) .
A convenient procedure consists of (i) developing
ap) ap~ y ap) ap) . into Taylor series in the nor-
mal coordinates n, , n, of molecules, i, j and (ii)
of considering the fact that the a,","s, ap'&"s are
invariant under rotations of the molecular frames
whereas the aug s any' 's undergo a linear trans-
formation with coefficients given by the elements
of the Wigner rotation matrix D"'(8). Then, taking
the symmetry of the linear rotators into account,
the following formulas are readily derived:

( g2 y
oa

! =—u', dt e '"'G'"(t),
&8(g) BQ 2w

(5a)

It' 8'o 1 tnl

=—u', dt e '"'G"'(t),
I QQ7 QQ gag

(5b)

p (0))2
G'"(t) = ! Q(n, (0)n, (t)),an p (1

(5c)

(P)( 2

G«)(t) = '
j! g (n((0)n&(t)),

8 np (y
(ea)

( (2)) 2
G"'(t) =! j! Q (n((0)n, (t))(D,",'(8((0))D(')(')'(8, (t)))(gnjp„

(eb}

(2) 2
G"'(t) = g(n((0)D.".'(8, (0)},(t)D"'(8, (t))& .

Bn

(5d)

A further simplification of the theoretical descrip-
tion may be obtained by using the assumption of
the present model according to which vibrational
and rotational motions are only weakly correlated.
Then, the four-variable two-time correlation func-
tions of Eq. (5d) may be presented, in the low-
est-order approximation, as products of two-var-
iable correlation functions involving either n&'s or
D,",'(8, )'s, but not n, 's and D,",'(8, )'s simultaneous-
ly; for the discussion of higher-order effects, see
Section III D below. The following important inter-
mediate result is obtained in this way:

The problem thus reduces to a separate determin-
ation of the vibrational and rotational correlation
functions (n((0)n&(t)) and (Dpp'(8((0))D«(8&(t))) . It
should also be noted that, a Priori, G"'(t) appears
as a sum of products of vibrational and rotational
factors rather than a product of a single-vibra-
tional and a single-rotational correlation function,
found in dilute solutions; compare with the paper-
by Bratos and Marechal. "

B. Vibrational correlation functions

1. Symmetry considerations

The exact Hamiltonian of a liquid sample is in-
variant under permutations of two, three, or
several molecules, i.e. , under the operations of
the full N-symmetric group. This is also true for
the approximate Hamiltonian of Eq. (1) as well as
for the probability densities p(R,"'8,")R2"'82")...R„"'
g(1) t ) d, (R(1)g(1)R(1)g(1) R(1)g(1) t . R(2) g(2)R(2)

N 7 1 ~ W j. 1 2 2 ''' N N 7 17 1 1
8(2). ..R(2) 8&2), t, ), etc. The potential V(n, t)
—= V(n, (8t), R(t) }entering into H(n, t} is stochastic
through the time dependence of 8(t}, R(t) and not
through its functional form. The existence of
these symmetry elements simplifies the calcula-
tions to an extent which makes the problem acces-
sible to mathematical analysis.

2. Equation of motion for n; (t)

The basic problem to examine is that of the vi-
brational dynamics of a set of N-coupled vibrators
evolving in a spatially and temporally disordered
medium. Its counterpart in an ordered crystalline
phase has been carefully examined by Born and
Huang, Davydov, and many others. It is conven-
ient to start by writing the Heisenberg equations
of motion( for the variables n, . Then, (i} choosing
a basic set of vibrational wave functions ! s) of
H(0), s =0,1,2. . . ,N, such that! 0) describes the
ground vibrational states, whereas ! s) for s 40
denotes a state in which the sth molecule is mono-
excited, (ii) constructing column matrices A(, i
= 1,2, . . . ,N, where (A )(, = (n )(„ps=1,2, . . . ,N,
(iii) defining a N&&N frequency matrix where hQ„
=V„(n, t}—6„Vpp(n, t), s, t=1,2, . . . ,N, and (iv)
suppressing all matrix elements which connect
vibrational states of different degrees of excita-
tion, there results

=—H, n& ~—n&, 0
——— H~~ n& tp

—n&,~Hpp =icup n, ,0+i Q,t n«0

:'[tgt+ (tP) )(dt) dt(t)=t tt )t
'

d P( ))A (D)dt 0
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(o(O&o, (t&,& $„((=,(O&&„(o,(t&&..&

=[n (0)],[n (0)]

(xe'"0' exp, i d70 7

jig
(8)

3. Frequency matrbr and its properties

In this equation, w0 is the vibrational frequency of
the free molecule, the ordered exponential pre-
scribes a chronological ordering and depends on a
matrix. argument. The energy relaxation proces-
ses have been eliminated by neglecting the matrix
elements V„(n, t); this is allowed in the present
case since the excited vibrational levels are wide-
ly separated. Then, using Eq. .(7) it is easy to
express the vibrational correlation functions in
terms of appropriate matrix elements of the or-
dered exponential. Since in all cases of practical
interest only the ground vibrational states is ther-
mally populated, the component (n, (0)nz(t)&„, of
(n, (0)n~(t)& describing a fundamental transition can
be written in the form

etc. ... play the same role on the average. More
formally, the n-time probability densities p(R&"
8&1) /&1~ /&1) R&1)8&1~ g R(» g&2) 8&2) /&2~

1 y. 2 2 ) ' ' N N & 1& 1 1 & 2 2

, t2;. . .R&"' 8&",Rm" 82" . . .R»" 8»", t„) are invar-
iant under the operations of the full N-symmetric
group, which justifies the above statement. (ii)
The matrices X, Y ~ having all diagonal elements
equal and all nondiagonal elements equal have a
number of remarkable mathematical properties.
It can be easily seen that the linear combinations
XX+ p.Y, the product XY, and the inverse X ' con-
serve this property and that X and Y commute.
Moreover, these matrices can always be diagon-
alized whatever their order may be; two different
eigenvalues exist, a nondegenerate eigenvalue X»
+ (N —1)X» and a (N —1)-fold degenerate eigen-
value X» -X», where N is the order of the ma-
trix; the transformation matrix does not depend on
the particular values of the matrix elements. One
concludes that the averaged frequency matrix and
averaged products of it are comparatively simple
objects; their simplicity may be exploited as fol-
lows.

The results of the preceding analysis by no
means represent the decisive step in the present
calculation; handling ordered exponentials is diffi-
cult and not easily practicable. In fact, the decisive
element of this theory is provided by the symmetry
arguments enumerated in Sec. IIIB1; the following
statements relating to the frequency matrix Q(t)
can easily be proved (i) All d. iagonal elements of
the matrices (Q(t)&, (Q(t)Q(t')&, (Q(t)Q(t')Q(t")&, . . .
are equal to each other and all nondiagonal
elements are equal too. This can be under-
stood intuitively by noticing that all molecules, or
all pairs of molecules, or all triples of molecules,

I

4. Averaging over the process 0(t), R(t) and anal forInggas

Averaging of the ordered exponential of Eq. (8)
over the stochastic process 8(t), R(t} can most
conveniently be carried out by applying the cumu-
lant expansion technique; see the papers by Kubo"
and Van Kampen. " The application of these
techniques is particularly simple in the present
case where all operators commute after averaging.
Thus generalized cumulants may be replaced by
ordered cumulants and ordered exponentials by
ordinary exponentials. Then, diagonalizing all
NxN matrices, the following final result is ob-
tained:

(n, (0}n,(t)) =—
~

(n, )» ~

'e'"0'[e"~(o'+ (N 1)e&'2«&]
1

1 Ol (ea)

(n, (0)n, (t) =—
( (n, )0& ('e' &&'(e"&"' —e"2"'), t oog (eb)

t
&,(t) = t dt'[(Q„(t )&+ (N —1)(Q„(t )&]

0

t t'
+t dt' dt"((nQ, &(t')dQ&i(t")&

0 0

+ (N —1)[(&Q„(t')&Q, (t")) +(t& Q„(t')&Q„(t")&+(nQ„(t') bQ (t"}&]

+ (N —1)(N —2)(&Q&2(t')~, (t»)'}j+ ~ ~ ~ (10a)



RAMAN SCATTERING FROM PURE LIQUIDS. THEORY OF. . . l595

+i2 dt' dt" [(aQ»(t')LQ„(t")) -(&Q»(t')&Q„(t")) -(&Q'»(t'}&Q»(t"))
0 0

—(N —1)(EQ,2(t')b Q,2(t")) —(N —2)(&Q,2(t')&Q, s(t"))] + ' ' ' (10b)

In these equations, AQ, ~=Q„-(Q„). It can easily
be shown that X,(t) is expressible in terms of cum-
ulants of a scalar variable u&, =Q»+g~, Q».
However, this simplification does not apply beyond
the terms of second order in &O, ~; no simple ex-
pressions of this kind were found for )2(t). The
mathematical structure of solutions (9a) and (9b)
is remarkably simple and is entirely conditioned

by symmetry.

C. Rotational correlation functions

1. Equation of motion for D~&(8&(t)j

The basic problem, according to Eq. (Sd}, is to
study the rotations of a set of N-coupled diatomic
rotators forming a liquid sample. This problem
has first been examined by Kivelson and Keyes."~'
To simplify the notation, the function D~'(8&(t))
will be designated by a, (t), i=1,2, . . . , N. The
problem may then be treated by (i} constructing
a sequence of matrix variables A'"r = (g„g„.. . ,

(2) T ~ (3)T =a„), A' ' =(uz, g„u2, +. . . , a„,a„), A =(a„a„
l„a„a„a„.. .a„,a„,if„), etc . and (ii) by assum-
ing that either A"', or A'", or else A'", etc. , sa-
tisfy the simple Langevin equation

dA'") ~t Q(n)A(n) (t ) + P(n&(t)
dt

where Q'"' is the nNxnN constant friction matrix
and E'"' the random force associated with A'"'(t);
the dots in quantities like p,. and a, indicate time
derivatives and n=1, 2, 3, etc. The approxima-
tions of this sequence are called the one-variable,
two-variable, three-variable, etc. , theory, re-
spectively; they have been shown to converge, if
n- ~, to an exact solution of the present prob-
lem. ' It leading terms describe a small-step ro-
tational diffusion and a large-step extended diffu-
sion, respectively. The free rotation limit is of
no interest here; this motion does not occur in

systems in which molecular interaction is large
enough to produce nonnegligible collective vibra-
tional and rotational effects.

2. Friction matrix and its properties

Here again, the symmetry imposes severe re-
strictions on the form of the friction matrix Q'"',
the following statements can readily be proved.

I

(i) A correlation matrix R'"'(t}=(A'"'(t)A'"' (0))
can be thought of as an array of n~n matrices
R,',"'(t) associated with molecules i,j . Then, all
submatrices R,',"'(t) are equal to each other and all
submatrices R,'J'(t), i& j, are equal too. This can
be understood intuitively by noticing that all mol-
ecules, or all pairs of molecules, play the same
role on the average. More formally, the two-time
probability density p(R"'8"', R"'8"' . .R"'8'", t, ;
R '8 ', R '8' ' . .R '8' ', t ) is invariant under the
operations of the full N-symmetric group, which
justifies the above statement. (ii) The matrices
X(t) formed by NXN submatrices X,, (t) of order
nx n and such that all X«(t)' are equal and all X, ,
(t), i &j, are equal too, have a number of remark-
able mathematical properties. It can first be
shown that X '(t} and f "„dtX(t} conserve this
property. Moreover, they can be diagonalized
whatever N may be, provided n is small or mod-
erately large. There exist n nondegenerate roots
obtainable by diagonalizing the matrix X» + (N 1)—
X», as well as n(N - 1)-fold degenerate roots cal-
culable by diagonalizing the matrix X» —X», they
are of order n rather that of order nN, and the
diagonalization does not represent any difficulty
for small or moderate n's. (iii) The friction
matrix Q'"' is related to the corresponding cor-
relation matrix R'"'(t) through the relation

Then, using the arguments which have been pre-
sented above, the conclusion may easily be reached
that the friction matrix Q'"' is composed of N iden-
tical nxn submatrices Q,'P' and of N(N —1) identical
submatrices Q,'&', iW j. The simplicity of its
structure is exploited below.

3. Solution of the Langevin equation and final formulas

The solution of the Langevin equation (11}pro-
duces a correlation matrix of the form R'"'(t)
=exp(-Q'"'t}R'"'(0) and the problem finally re-
duces to the calculation of the elements of that ma-
trix; this last problem requires the diagonalization
of Q'"'. Eventually, applying the results of the
preceding section, the following one-variable ap-
proximation correlation functions are obtained:
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(a&(0)a((t)& =—([(a,(0) ) + (N —1)(a,(0)a (0))]e

+ (N —1)[(a,(0)'& -(a, (0)am(0)&]e "g
(12a)

(a&(0)a&(t)& =+()a,(0)&+ (N —1)(a,(0)~(0)&]e

them. The mathematical structure of the rotation-
al correlation functions (12a) and (12b) is striking-
ly similar to that of the vibrational, correlation
functions (9a) and (9b); the essential role of the
symmetry in these problems may be appreciated
by this comparison.

D. Rotation-vibration. correlation effects

—[(a,(0)& -(a, (0)a2(0)&]e ~"), i&j.
(12b)

In these equations p, is the nondegenerate and p,
the (N —1)-fold degenerate root of the friction ma-
trix. The n-variable approximation gives similar
results but each exponential is replaced by n of

This section may be concluded by briefly discus-
sing the effect of the rotation-vibration correla-
tions on G"'(t), the correlation function associated
with an anisotropic Raman spectrum. A conven-
ient procedure is to use Eq. (7) for A, (t) and to
construct a matrix P(t) such that P~, (t) =D(3(8, (0))
Doo'(e&(f)), i,j=1,2, . . . , N. There results

g(2) 2 (G' '(i)=
( Q( „)(n„)e""exp(i I dr))(v)( P„()))

]&y

a(2)i' ]. t ( t
[ (no, )'e'"O'Tr P(t)exp, ]i dvQ(r))

)

6a(2) )2 t ( t
f (n») e'"o'Tr P(t) +i dt'P(t)&Q(t')+ ' expo] i dt'Q(t')

fan y, "
p o ]

=(G"'(f)),+(G"'(i)), + " .

This expansion can be proven by (i) considering the
identity

( ye'*& = —.lim —&e""'"'&,1 . d g(x+a)
Zx-o dA.

where x, y are stochastic variables and (ii) gener-
alizing it to the case of an ordered exponential of
operators which commute after averaging. For
other papers on this subject see Van Woerkom,
de Bleyser et pl. ,

"and Lynden-Bell. "'3 The sim-
plified theory presented here is that associated
with (G")(t)),; it thus represents a correct zero-
order theory of G"'(t}.

IV. RAMAN SPECTRA OF PURE LIQUIDS

A. Isotropic Raman spectra

Spectral properties of the scattered light may
be described either by the correlation function
G'0'(t) or by its Fourier transform; compare with
Eqs. (5a}, (6a), and (9a). The following results
are obtained from the present theory: (i) The to-
tal, self- and distinct pair-correlation functions
G' '(t), G& '(t), Gn '(f) have, in the large-N limit,
the following analytical form:

8nG(0)(f) (
el(aotexg(t)

2p&(), Bn),

G '(i}= —e "O~e"2Nn an)',
2 p(a)p Bn j o

G (i}
~

( () (exp( eL2 ))
NS' &Bn 2

2 p(e, i,Bn,

(14a)

(14b)

(14c)

where n is the mean polarizability of a diatomic
molecule and X, (t), L, (t) are given by Eqs. (10a)
and (10b). (ii) The total correlation function G(0'(t)

always has a single exponential form although the

(n, (0)n~(t)&'s contain two exponentials if iv j; typic-
ally, it exhibits a monotonic time decay (Fig. 1).
(iii) The self-correlation function G(~o)(t) of a pure
liquid and the correlation function G((0)(t} of a dilute
isotopic solution coincide after normalization.
This statement can be proved by noticing that Qy2
is of the order of (1/N)Q» and can safely be neg-
lected in the expression for L(t). The tacit as-
sumption is that the rotational-translational mol-
ecular dynamics of the liquid sample is not altered
in a significant way by the isotropic substitution.
The decay of G~"(t) most often is monotonic and
similar to that of G'0 (t) (Fig. 2). (iv) The distinct
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G (t)

0.5

G(P) ( t. )

G(t) '

1

L G[o) (t)

Re G'0'(t)
05-' —---

1m GO'(t)

\
t

IL I/
5

0
0 3 4

—0.5

FIG. 1. Total isotropic and anisotropic Raman cor-
relation functions of a pure liquid. Purely periodic
factors are not reproduced. Only the cumulants up to
the second order are considered in the expression for
~f (t) and X2(t) and an exponential form is given to the
second-order cumulant. One has (g&Q&(t)) =@i,
( I)(t(t)l =v(, (z+(()((&(0)z201)( (t)) = ntexp( —o 2 t),
~&ki(0)&%i(t)) ='Y2exp(-'Y2t) (p= &i ='Yi= 0T
(y2=1T, F2=0.5T, +2=1T, y2=0.5T, and p2
= 1T .) T is expressed in arbitrary time units.

pair-correlation function G~" (t) is generally non-
vanishing. Thus the isotropic Raman scattering is
a partially coherent process, contrary to what is
frequently stated Nev. ertheless, although GD" (t)
contributes to the spectral intensity at a frequency
(d, its contribution to the integrated intensity van-
ishes; in fact, limt, G~" (t) =0. The time depen-
dence of G"'(t) is complicated and may be oscil-

(p)latory (Fig. 2). (v) The correlation function G (t)
has two simple limits, the slow and the fast mod-
ulation limits; they are defined by the inequalities
T, » T and T, «T, where Ty indicates the correla-
tion time of Q(t), and v-I/4&d»2 is the reference
time. Then, if n, =(&0,(0}), n, =(&d, (0}') -(o)I(0})2,
p= f 2"df(&o)I(0)4&d, (t)), etc. , one finds

(p) NA BnG'"(t) = —exp(i&d, t) exp(in)t —F)n2t'+ ' ),
2p~p Bn

(15a)

(p) . NS' ~Be &G'"(t) = ]
—

[ exp(io), t) exp(in)t —Pt),
2 pvp 8n jp

(15b)

The corresponding spectral density is either an
asymmetric distorted Gaussian (r&» v) or a Lor-
entzian (2, «r) (Fig. 2). No simple expressions
exist to describe the band profiles outside these
two limits.

B. Anisotropic Raman spectra

—1,5

G (t)

0,5-

G[0) (&)

Re GD" (t)--——Im G'0'(t)0

'~ ~
I I

4 5

—0,5-

(b)

FIG. 2. Self- and distinct-pair isotropic Raman cor-
relation functions of a pure liquid. The real and im-
aginary part of the pair-correlation functions are both
considered. If ni -yi ) ~~2 or Wp~, Gz' (t) has an os-
cillatory behavior. Ai(t) and A2(t) have the same form
as in Fig. 1. (Mp=pi=OT, n2=1T, y2=0.5T
cz2=1T, y2=0.5T (Figs. (a) and (b)]; ~i=3T
[Fig. (2)] or n(=0.01T [Fig. (b)J).

G(2) (I)
2 NS BP 2

152'(d, Bn,

)& IIPot[ 22(t)+P2(t)+E(ski(t)+ Pt(t) e22(t)+P2(t))I
N

(16)

i.e. , for sufficiently weak vibration-rotation cor-
relation. (i) If the molecules execute a, small-step
rotational diffusion, i.e. , if the one-variable
theory is used to describe the rotations, the total,
self- and distinct pair-correlation functions G' '(t},
G'2' (t), Go"(t) can be written

Here again, the spectra may be described, ac-
cording to Eqs. (5b), (6b), (9b}, and (12a), and

(12b), either by the correlation function G(2) (t) or
by its Fourier transform. The following results
are obtained from the present zero-order theory,

G(2)(f} e PIP e22t+P2 t2 NS BP ]„~,( )

15 2pw Bn

G(2)($) G(2) ($)

G(2)(f) 0

(17a}

(IVb}

(IVc)
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I

—10 0. 10 20
(s)

60 eo {cm ') —10 0 10 20
(c)

cc (cm ')

60 to(cm ')—60 —10 0 10 20 —60 —10 0 10 20 60
(b) (d)

FIG. 3. Isotropic and anisotropic Raman-band profiles of a pure liquid [Figs. (a) and (c)] and of an isotopically
diluted solution [Figs. (b) and (d)]; both the slow [Figs. (c) and (d)] and the fast [Figs. (a) and (b)] modulation limits
are considered. The positions of isotropic and anisotropic Raman bands do not coincide in liquids but coincide in
solutions. The correlation functions are those of Eels. (15a), (15b) and (18a), (18b). (&u en tOT, yt =1T, pe
=1T [Figs. (a), (b), (c), and (d)]; P =0.5T, 6=0.4T [Figs. (a) and (b)]; e2=4T, y2=3T, o3=1r8T
=1.8T [Figs. (c) and (d)]). The time unit is 1/6ee 10 tt sec.

tions are of interest in the present context. Then,
if y, =(fi„(0)},r, =(0'„(0)}-(f)„(0))', 5= f, dt
(teQ»(0)teQ»(t)), etc. one can write

( ) 2 NS BP ~
G' '(t) =— —exp(itd, t)15 2 p, (g) Bn

x exp(iy, t —vy, t'+ . ) exp(-p, t), Te» 7'

(18a}

( ) 2 Ng QP12G"'(t}=— —
~

exp(iae, t) exp(iy, t —Ot)
15 2 P Q) 0 Bs]()

(18b)x exp(-p, t), &, «T .
The corresponding spectral density has either an
asymmetrically distorted Voigt profile (re» 7) or
a Lorentzian profile (v', «7) (Fig. 3). No simple
expressions describing band shapes exist outside
of these two limits.

C. Raman analysis of molecular dynamics of liquids

The following experiments are suggested by the
present theory (Fig. 4). (i) Determination of self-
and distinct pair-vibrational-correlation function.
The isotropic Raman spectrum is recorded for a

Here, p is the anisotropy of the molecule, g=(Q&
ae(0)a&(0))/(a, (0)') the Frolich-Kirkwood correla-
tion factor, )te(t), )t (t) are given by Eqs. (10a) and
(10b), and p, (t) =-p, t, p, (t) =-p, t. Similar results
are obtained in the two-, three-, etc. variable
theory of rotational motions except that the expo-
nentials e'i"', 8'&"' are replaced by a linear com-
bination of two, two, three, etc. of them. Equation
(17a) represents the large-N limit of Etl. (16a); in
fact, the correlation factor g is of the order of 10'
in the systems under consideration and g/N 10"-
(ii) The distinct pair-correlation function GnI '(t) is
of the order of (1/N)Gesa'(t) and vanishes in the
large-N limit. Thus, contrary to an isotropic
Raman process which is partially coherent, the
anisotropic Raman scattering is a purely incoher-
ent process. As a consequence, the total correl-
ation function G'"(t), the self-correlation function
Gs '(t), and the correlation function GIs'(t) of an
isotopically dilute solution coincide. Their time
decay is generally monotonic, but faster than in
isotropic spectra (Fig. 1). (iii) The correlation
function G'"(t) has two simple limits according to
whether vibrational motions are modulated slowly
or rapidly; only rapidly modulated rotational mo-
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V. DISCUSSION
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FIG. 4. Comparison of information contained in iso-
tropic and anisotropic Baman spectra of a pure liquid
and of an isotopically diluted solution.

M~ —Mr =)I(ALL),

Ms —M~ =NB (Q,2)

(19a)

(19b)

provides the desired information. The information
contained in Eq. (19b) can also be obtained, in
principle, by comparing the first moments of an
isotropic and of an anisotropic Raman spectrum of
a liquid; however, the presence of the rotation-
vibration correlations makes this information
somewhat less reliable.

pure liquid and for a dilute isotopic solution. Then
the Fourier-inverted solution spectrum gives GIDDY(f)

whereas the Fourier-inverted liquid-solution
difference spectrum gives GaI" (t). This procedure
depends critically on the fact, proved earlier in
this section, that the self-correlation function of a
liquid and the correlation function of a dilute iso-
topic solution are equal to each other; moreover,
the bands of the two species must be spectrally
separated. See also the proposal. s by Van Woer-
kom et al. ,

' Lynden-Bell, "Oxtoby, ' and Werth-
eimer. " (ii) Determination of vibrational and ro-
tational self-correlation functions. Isotropic and
anisotropic Raman spectra are recorded for a di-
lute isotopic solution. Then, application of the
standard VV-VH separation technique furnishes
the desired information. '4 It should be pointed out,
however, that it is not permissible to apply this
technique to pure liquids. The reason is that the
vibrational correlation functions which enter into
G'"(t) and G'"(t), respectively, differ from each
other. (iii) Role of environmental fluctuations of
vibrational frequency and of resonant transfers of
vibrational energy in a vibrational relaxation pro-
cess. The first moments M~, M~, M~ of an iso-
tropic Raman band are measured for a gas, a di-
lute isotopic solution and for a pure liquid. Then,

The present theory represents a generalization
of the Bratos-Marechal theory of Raman-band pro-
files of dilute van der Waals solutions. '4 How-
ever, the following points shouM be mentioned.

As far as vibrational correlation functions are
concerned, the results of the present theory are in
excellent agreement with those obtained by other
authors. The formula (10a) reduces to that pro-
posed by Oxtoby' and extends its validity to all
modulation speeds. The expressions for the vi-
brational half-width given by Wertheimer" are
deducible from Eq. (10a) if the modulation is as-
sumed to be fast. The important result of Wang, '
who showed that the pair-correlation functions do
not contribute to the integrated intensity of iso-
tropic Raman bands, is also rederived. An over-
all agreement is found between the predictions of
this theory and the qualitative description due to
Doge." Finally, the effect of the rotation-vibra-
tion correlation on the first moment of an aniso-
tropic Raman band has recently been investigated
by Wang et al.";this effect is also described by
Eq. (13). On the other hand, the results obtained
here for the slow and intermediate modulation
regimes are entirely novel. This is also true for
the present discussion of coherence and incoher-
ence of a Raman scattering process.

As far as rotational correlation functions are
concerned, the theory elaborated here parallels
closely that proposed by Kivelson and Keyes"";
this latter theory provides an analysis of Rayleigh
scattering from pure liquids. However, there ex-
ists an important difference between the Rayleigh
and Raman scattering processes: the pelf- and
distinct pair-rotational correlation functions enter
in the former case whereas only the self-rotational
correlation functions are involved in the latter. A
similar sort of vibrational decoupling was also ob-
served by Thibeau et al. ' in their study of the de-
polarized collision-induced Rayleigh and Raman
scattering from dense fluids.

This paper may be concluded by briefly compar-
ing the notions of coherence and incoherence in
light and neutron scattering experiments. " These
notions are required whenever the microscopic
properties of a wave are incompletely defined.
Two sources of uncertainty exist in the case of
neutrons; one is related to the fact that the ele-
mentary scattering act between a neutron and a
nucleus is usually outside the experimentalist's
control and the second is related to the impossibil-
ity of preparing a liquid sample in a well-deter-
mined quantum state. Only the first of these two
elements is built into the definition of a coherent
and incoherent component of a scattered neutron
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wave. On the other hand, only one single element
of uncertainty is present in light scattering. The
elementary scattering act between a photon and a
molecule being perfectly well known, the uncer-
tainty comes exclusively from the impossiblity of

preparing the liquid sample in a given quantum
state. Thus the notions of coherence and inco-
herence have a different meaning in these two ex-
periments.
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