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Observation of collisionless electron-cyclotron damping in a plasma
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(Received 21 January 1981)

The collisionless cyclotron damping of a transverse wave near electron-cyclotron resonance is measured in well-

defined experimental conditions. The observed wave dispersion and damping are in good agreement with a hot-

plasma theory. It has been revealed that spatial damping rates are determined by only one parameter, i.e., the ratio
of resonance velocity to the thermal velocity.

Electron -cyclotron damping in a uniform hot
collisionless plasma is an important fundamental
process in rf plasma heating. However, it has
not yet been clearly verified in the experiment,
in contrast to a clear-cut experiment on elec-
tron Landau damping of longitudinal waves. Ol-
son has demonstrated several criteria for ac-
curate measurement of spatial cyclotron damping .

of transverse waves [right-hand circularly pol-
arized (RHCP) waves). Many pioneering at-
tempts ' to observe the cyclotron damping have
violated at least one of his criteria, in point of
dominant collisional effect, low electron temp-
erature, ' density and magnetic field gradient. '
In this paper, we present the first experimental
evidence which confirms cyclotron damping of a
RHCP wave near resonance. A useful simple
expression for the cyclotron damping rate is der-
ived on the analogy of Landau damping and es-
tablished in the well-defined experiment.

For a Maxwellian electron distribution, the
dispersion relation of the RHCP wave propagating
parallel to a magnetic field is given by

[(ck/(o) —I](&2(okv r/(uP =Z(g), (1)

where f =(&u —&a, +iv)/Wkvr, electron thermal
velocity vr=(zT, /m) ~, v is an effective collision
frequency, and Z is the plasma dispersion func-
tion. Spatial collisionless damping is obtained
for complex wave number k = k„+ ik&, real fre-
quency ~, and v=0. This damping rate can only
be obtained numerically since an asymptotic ex-
pression analogous to Landau damping does not
exist. ' Therefore, Eq. (1) is inconvenient to
physical interpretation of the damping process.

Expanding Eq. (1}for weak damping (k, «k, )
and v=p, we have

[(ck„/~) —1](v 2&uvr/&uPk„= Re[Z(t,)],
[3(ck„/(c))' —1](W(uv /(u )k, = Im[Z(t', )],

where f, =m/v 2vr, and the cyclotron-resonance
velocity s=(~ —ur, )/k„. From Eq. (2) for slow
phase velocity (c k„/uP» 1), we find an expres-

sion for the damping rate as

k /k„= -'Im[Z(&„)]/Re[Z(g„)] . (3)
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FIG. 1. (a) Schematic of experimental setup, e))
normalized magnetic field variation along gp, and (c)
normalized radial density profile.

Evidently, the damping rate is governed by P„,
i.e. , the ratio of cyclotron-resonance velocity to
thermal velocity. By analogy with Landau damp-
ing for longitudinal waves, this means that the
damping rate is determined by the slope of the
velocity distribution function at the cyclotron-
resonance velocity. '

The experiment is performed in a discharge
plasma" produced in argon at a pressure of 5-
1P x1P Torr with an oxide-coated cathode of
10-c'm diameter [see Fig. 1(a)]. Experimental
parameters are carefully arranged to satisfy the
following Olson s, criteria. Provided (i) (~J
&uJ c/vr»1 and (ii) k,c/~, s I, the cyclotron-
damped response (the least-damped pole) is dom-
inant for (iii) z ~ c/~„where z is the distance
from the exciter. In addition (iv} the collisional
damping should be negligible, and (v) the magnetic
field should be sufficiently uniform. Our exper-
imental parameters are the plasma density 'Qp

=1-3x10 cm ', aT, =2-3 eV, and the magnetic
field B,=900-1000 G; typically rug~, =4, c/vr
=300 and c/u&, =2 cm. Therefore, the first three
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FIG. 2. Typical wave patterns of RHCP waves for
different frequencies. The distance z is measured from
the exciter.

criteria suggest that the least-damped pole term
should be measurable for z &2 cm. The total col-
lision frequency with electron-electron and elec-
tron-neutral collisions included is v/&o, = 10
10, and hence the collisional effect is negligible
(the fourth criterion}. Numerical calculations
show that the fifth criterion requires the magnetic
variation 5B/B0&6x10 . Figure 1(b) shows that
the measured spatial variation is 5B/Bo s10
The temporal stability (5B/B0 & 10 ~) also is at-
tained by driving external solenoidal coils with a
transistor-regulated power supply.

Besides Olson's criteria, the recent experi-
ment ' has shown that the wave refraction effect
due to the density inhomogeneity significantly
modifies the effective damping along Bo. To ex-
clude this effect, great care is devoted to the

density uniformity. The plasma column is sub-
stantially uniform over 8 cm in diameter [Fig.
1(c)] and 100 cm in length.

Microwaves of frequency &o/3w =3350-3700
MHz are applied to an exciter antenna (an electro-
statically shielded loop of 1.3-cm diameter) in
the center of the plasma column. A similar loop
antenna which is moved axially along 80 is used
as the detector. Both loops are oriented to pick
up only transverse magnetic fields. Interfero-
meter techniques are used to measure the spatial
amplitude and phase variations of waves. All
data are sampled with a boxcar integrator and

averaged over many discharge periods.
Figure 2 shows typical raw data of the axial in-

terferometer traces of the RHCP waves. We
omitted the region near the exciter where free-
streaming or branch-cut terms are dominant.
Also, the geometric divergence of waves from

Ckr/~
FIG. 3. Normalized frequency versus normalized

wave number. Closed circles, open circles, and tri-
angles show the experimental results for (Bo =924 G,
no=1.3x10 cm ), (980 G, 2.4&10 cm ), and (943 G,
3.0 X 10 cm ), respectively. Solid and dashed lines
indicate hot-plasma and cold-plasma dispersion, respec-
tively.

the small source appears near the exciter. Two-
dimensional measurements of the wave phase and

amplitude profiles have confirmed good approx-
imations of parallel propagation of plane waves
for z & 5 cm. Further, the one-dimensional prop-
agation is justified by another type of excitation,
in which the wave is launched from a large plane
exciter (open-waveguide antenna"} placed at the

plasma end [Fig. 1(a)]. The wave patterns in this
large plane excitation coincide with those in the
small loop excitation for z & 5 cm. The polariza-
tion of the waves has been confirmed, by rotating
the exciter loop, in a customary manner.

When the frequency is changed for constant
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FIG. 4. Logarithm of damping rate versus, normalized
cyclotron-resonance velocity squared. Experimental
points as pair of data in Fig. 3. Solid and dashed line
indicate the pure cyclotron damping (v = 0) and the
damping with weak collisions (p/roc= 6 @10 ), respec-
tively.



24 OBSERVATION OF COLLISION LESS ELECTRON-CYCLOTRON. . . 1573

magnetic field B, and plasma density n„ the cor-
responding wavelength is derived from the axial
interferometer trace. In this way, the real part
of the dispersion relation is measured and plotted
in Fig. 3 for three different combinations of Bo
and no. Dashed lines indicate the cold-plasma
dispersion relation (ck/~)'= 1+ (a~2/[(u(&o, —~)].
Solid lines indicate Eq. (1) for v= 0, where the
electron temperature (xT, = 2.5 eV) measured
with the Langmuir probe is used. Experimental
points agree with the hot-plasma theory very
well.

For &u/ur, s 0.9, the waves propagate nearly un-

damped. With increasing frequency, the wave at-
tenuation is recognized as shown in Fig. 2. It
should be noted that a slight increase in the fre-
quency (e.g. , «o/to, = 1.5%) gives rise to consid-
erable attenuation as &u/+, -1. The damping
length kP is determined from the slope in the
semilogarithmic plot of the wave amplitude
against distance z. Instead of illustrating k, vs
tu/ra„ the damping rate is plotted as a function of
the cyclotron-resonance velocity u = (tu —&,)/k„,

as shown in Fig. 4.
The solid line in Fig. 4,indicates the collision-

less damping calculated from Eg. (3). This ap-
proximate solution has been confirmed to agree
with the exact solutions [Eq. (1) for v= 0] very
well. The effect of weak collisions (v/~, = 6x 10~
expected in the experiment) is demonstrated by the

dashed line, which is derived from Eq. (1) direct-
ly. The measured damping for (u/vr)'C 3 is des-
cribed by the collisionless damping very well,
while the weak collisional effect is apparent for
larger value of (u/vr)'. It is remarkable that the

experimental points obtained for three different
combinations of B, and n, lie on only one curve in

Fig. 4. Thus, the experiment has explicitly veri-
fied characteristics of wave-particle interactions
in a magnetized plasma, that is, the damping rate
determined by u/vr.
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