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A time-dependent direct correlation function (TDDCF) is defined and discussed. The definition (which differs from

that proposed by Percus and Yevick) is motivated by linear response theory. The TDDCF consequently has a

functional-derivative or stimulus-response interpretation closely analogous to that of the static direct correlation

function. Mean-field considerations suggest that the TDDCF separates into a term which is simply related to the

pair potential and a spatially shorter-ranged remainder. This behavior is confirmed in the Vlasov-Zwanzig

approximation.

I. INTRODUCTION

The direct correlation function (DCF) has proved
to be a very fruitful concept in terms of which to
discuss the equilibrium properties of atomic and
molecular fluids. '~ It therefore seems worthwhile
to consider whether the DCF admits a natural gen-
eralization to correlations in time as well as
space. Percus and Yevick' proposed one such gen-
eralization, which was subsequently expressed in
a projection-operator form by Lado. ' Our purpose
here is to propose an alternative generalization
which seems to us more closely analogous to the
static DCF. We shall refer to this generalization
as the time-dependent direct correlation function
(TDDCF).

The DCF was originally introduced on an intui-
tive basis, according to which it was supposed to
represent, in essence, the "bare" correlation be-
tween a pair of molecules. This interpretation is
now known to be approximate. However, there is
another interpretation which is completely rigor-
ous: The DCF is simply related to the inverse of
the kernel that characterizes the response of the
single-molecule distribution function to an infini-
tesimal single-molecule external field."We are
therefore led to consider the possibility of formu-
lating an analogous definition of the TDDCF in
terms of the inverse of the kernel which governs
the corresponding time-dependent response. This
kernel is related to the Van Hove correlation func-
tion in the unperturbed fluid by the fluctuation-dis-
sipation theorem of linear response theory. &9 We
shall see that this approach indeed leads, in a
natural way, to an apparently satisfactory defini-
tion of the TDDCF.

In the static case, the DCF is useful largely be-
cause it exhibits a simpler structure than the total
correlation function (or pair distribution function).
In particular, the DCF has the universal and re-
markably simple asymptotic form -P8(12), where

P =1/ksT and 8(12) is the pair potential. Similar-
ly, one would expect the TDDCF to be useful

if it is in some sense simpler in structure than the
Van Hove correlation function. Mean-field consid-
erations provide an indication that this is indeed
the case. These considerations suggest that the
TDDCF separates into a term which is simply re-
lated to 8 (12), and a spatially shorter-ranged re-
mainder. This behavior is confirmed in the Vlas-
ov- Zwanzig approximation.

II. DEFINITION OF THE TDDCF

Our development will be presented in a form
which applies to molecular as well as atomic
fluids, since this entails no additional labor or
complexity. Attention is restricted to classical
Quids. The single-molecule distribution function

n(Q, t) is defined as the ensemble average of the
molecular quantity

n(Q, t)= g 8(Q —Q, (t)), (1)

where Q denotes a dummy set of molecular coor-
dinates, Q, (t) represents the coordinates of mole-
cule k at time t, ~(Q) is the Dirac delta function
in Q space, and the summation extends over all
molecules of the system. In the case of atomic
fluids, Q simply represents the position vector R.
For molecular fluids, Q =(R, 0), where 0 denotes
the molecular orientation. For convenience, dum-
my coordinates Q» will usually be represented by
the abbreviated notation (k).

The development is based upon the fluctuation-
dissipation theorem for the linear response of
n(1, t) to. a single-molecule external potential
(t),(l, t). This theorem takes the form&'

ii(1, d)= f 2dt fd(2)K(12, t —2 )2,'(2, t ), ''
where An(l, t) =n(1, t) -no, no=(n(1, 0))0, yo(l, t)

Py, (1, t), -
K(121t)=-H(t) —(n(2 0)n(2l, t))02

H(t) is zero for t(0 and unity otherwise, and the
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angular brackets (- ~ ~ ), signify an equilibrium en-
semble average in the absence of the external po-
tential. The equilibrium system is assumed to be
homogeneous and isotropic, so that n, is a con-
stant independent of Q, .

It is usual to discuss time-dependent pair corre-
lations in terms of the Van Hove correlation func-
tion G(12, t) =ma~(s (2, 0)n (1,t))0. However, we
shall find tt convenient to utilize a different corre-
lation function which contains the same informa-
tion. We define the time-dependent tota1 correla-
tion function h(12, t} by

n()[h(12, t) + 1]= H(t)(n (2, 0)n (1,t))()

+[1—a(t)](n(2, O)s(1, O)), . (4)

This definition has the following consequences:
(a) k(12, t)-0 as ~R -R, I-~ or t-~, and (b}
h(12, t)=jt(12) for t-0, where

I (12)=a(12)+ t}(12)/n, ;

here h(12) is the static total correlation function,
and &(12)=&(@,-Q,). Differentiation of Eq. (4)
with respect to t yields

dd)

K(12, t) = -n
~0

(6)
&t

where use has been made of the fact that f(t)dH(t)/
(ft=f(t)&(t) =f(0)&(t). It follows from Eqs. (5) and

(6) that

Comparison of Eqs. (10}and (ll) shows that

dtI 12, t =-c 12 . (13)

According to Eqs. (7) and (13), ~ (12) is related
to the time integral of L(12, t) just as noh(12) is
related to the time integral af E(12, t). It is there-
fore natural to define a time-dependent direct cor-
relation function c (12, t} which is related to L (12, t}
in the same way that -n,'h(12, t} is related to
Z(12, t); i.e. ,

L(12 )
sc{l2,t). (14)

g, d( )
sPl(12, t - t') Cs( 23t')

0(no t et
(»)

which is the time-dependent analog of the Ornstein-
Zernike equation. It reduces to the static Orn-
stein- Zernike equation when integrated over t.

To complete the definition, we must specify c(12,t)
as a function of {12}for some particular value of
t. This will be done by requiring that c(12, t) -0
as t ~. Equations (13) and (14}then imply that
c(12, -~) =D(12).

Combining Eqs. (6}, (9), and (14}, we obtain

dtE. 12, t =noh 12 .

We now proceed to consider the inverse re-.

sponse. The inverse of Eq. (2) is

y, (), t) fdd f d())d=()), t t )ddl)t )-;', '

where L(12, t) is the kernel inverse to K{12,t). In
order for Eqs. (2} and (8) to be consistent, we
must have

dt' d 2 &12,t-t' I 23, t' =&13 & t .

Integration of Eq. (9) over t yields

n d 2 h 12 dt'I 23, t' =& 13, (lo)

where Eq. (7) has been used. But the static Orn-
stein- Zernike equation is just

d 2 k 12 c 23 =-~ 13

where

c{12)=c(12) —& (12)/n „
and c{12)is the static direct correlation function.

HI. MEAN-FIELD CONSIDERATIONS

We now consider the central question of whether

c(12,t) may be expected to exhibit simple or uni-
versal behavior analogous to the universal asymp-
totic behavior of c(12). We do not attempt a rigor-
ous investigation of this question, but rather pro-
vide a suggestive heuristic analysis based on
mean-field ideas. This analysis suggests that
c(12,t) does indeed exhibit such behavior.

E the system were an ideal gas its response be-
havior could be computed easily, because each
molecule would then resyond to the external poten-
tial (t),(1, t) as though it were the only molecule
pres'ent. This simplicity is lost in a dense sys-
tem; a typical molecule is then subjected not only
to (t),(l, t) but also to the intermolecular potentials
of the other molecules. In a-mean-field descrip-
tion, one attempts to define a mean or effective
field $(l, t) which includes both (t)0(l, t) and the
average intermolecular potential of the other mo-
lecules. The hope is that each molecule will then
respond to (t) (1,t) approximately as though it were
isolated, so that the system as a whole wiQ re-
spond to (t) (1,t) in approximately the same way that
an ideal gas responds to (j),(l, t).
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The obvious definition of (t) (1,t} would be

p(l, t)=t(tl, t)e fd(2)e (x, t)p(12), (16)

L, (12, t) =L(12,t)+c(12)6(t).

We note that

(2o)

En(1) =n y(1) . (18)

But this is precisely the expression for the static
response of an ideal gas to an external field y(1).
In the static case, therefore, the definition (17)
rigorously achieves the mean-field objective of
reducing the many-body problem to an ideal-gas
problem [assuming, of course, that c(12) is
known]. In the absence of other information, it is
natural to retain this definition in the dynamical
case as well. The rigorous reduction to ideal-. gas
behavior no longer then obtains, but the corre-
sponding approximation is of potential interest.
Indeed, this approximation predicts the same dy-
namical response as does the Vlasov-Zwanzig
equation"; see Sec. IV.

Combining Eqs. (8) and (17), we obtain

y(l, t) fdy fd(2) L(tx=t —t )e (2t'), (12), , ',
where

where 8(12) is the pair potential. This definition
assumes that the molecular interactions propagate
instantaneously, and is therefore appropriate only
for frequencies sufficiently low that retardation
effects are negligible. To deal with higher-fre-
quency response, it would be necessary to replace
8(12) by a retarded potential 8 (12, t —t'), which
would then appear in conjunction with an (2, t') and

a convolution over t'. These complications will
not be considered here.

Unfortunately, Eq. (16}is unsuitable as a gener-
al definition of (t) (l, t), because the integral there-
in does not exist for most pair potentials. (Indeed,
it exists unambiguously only for the Coulomb po-
tential. ) To make the integral finite, it is evident-

ly necessary to impose some sort of short-range
cutoff in the neighborhood of the point R2= R, . Al-
ternatively, we may simply replace 8(12) in Eq.
(16) by any integrable function of (12) that becomes
asymptotic to 8(12}at long range. One such func-
tion is -c (12)/(8, and we shall see that this is a
particularly natural choice. We therefore adopt
it, whereupon Eq. (16) is replaced by

y(1, t) =y, (1, t) e fd(2) ee(2, t)r(12),

where y(1, t) = Pft) (1, t-).

The rationale for defining (I)) (1, t) in terms of
c(12) becomes apparent when Eq. (8) is specialized
to the case of static response, in which y, (l, t) and

hn (1,t) are independent of t With t.he help of Eqs.
(12), (13), and (17), we then obtain

dt L, 12, t = & 12 no,

which follows from Eq. (13}. Now one would intui-
tively expect an(l, t) to be more simply and funda-
mentally related to y(1, t) than to yo(1, t). In par-
ticular, the former relation should be more nearly
local in space (and also in time if intermolecular
retardation effects were incLuded). For this to
occur, L,(12, t) must be shorter ranged spatially
than 8(12), and we shall provisionally assume that
such is indeed the case. Equations (14) and (20}
then imply that c(12, t) is of the form

c(12, t) =c,(12, t)+ [1 —H(t)]c(12),

where c,(12, t) is also shorter ranged spatially
than 8(12) and is determined by

(22)

(23)

with c,(12, -~) =-5(12)/n, . The presence of the
step function H(t) in Eq. (22) is evidently an arti-
fact of the assumption that molecular interactions
propagate instantaneously. This function would be
smoothed if retardation effects were taken into
account.

The above considerations strongly suggest that
c(12,t) decomposes as shown in Eq. (22), but they
are in no sense conclusive. It is therefore of in-
terest to observe that c(12, t) does indeed decom-
pose in precisely this way in the well-known Vlas-
ov-Zwanzig approximation, as shown in Sec. IV.

f(k)= f dr exp(ik' rlf(r), (24)

f(k, )= fdr f te [d( xpr —ttket)]f(rt). (22),
It is understood that transforms of functions of (12)
are obtained by identifying r with R, —R .

The Vlasov-Zwanzig (VZ) equation"0 is a lin-
earized Vlasov equation with the pair potential re-
placed by -c(12)/P. This equation determines an
approximate expression for the Van Hove correla-
tion function, or, equivalently, for the response
kernel K(12, t). The latter is found to bek

, K(k, (u) = K()(kp ~)
1-c(k)K,(k, (d)

(26)

IV. THE VLASOV-ZWANZIG APPROXIMATION

We now specialize to the case of simple (i.e.,
atomic) fluids, for which Q = 8 and no is just the
unperturbed number'density p. We define Fourier
transforms in space and time by
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where EC, (k, to) is the Fourier transform of the re-
sponse kernel for an ideal gas. The ideal-gas re-
sponse is determined by the free-particle Van
Hove correlation function

Go(12, t) = (mP/2&)*"
I
t

I
'exp(=2m' I g —lt2I'/t'),

(27)

together with the fluctuation-dissipation theorem.
To determine c(12, t) we must first determine the

inverse kernel L(12, t). Fourier transformation of
Eq. (9) yields L(k, &u) = 1/K(k, &u), which combines
with Eq. (26} to give

L (k, &o) = L,(k, &o) —c (k), (26)

which is of precisely the form given in Eq. (20),
with L,(12, t) =La(12, t). R follows that

c(12, t) =c,(12, t)+ [1—K(t)]c(12), (30)

where c,(12, t) is the TDDCF for an ideal gas,
which of course is completely determined by
Go(12, t) via the fluctuation-dissipation theorem and
the relation Bc,(12, t)/St =L,(12, t) [with co(12, -~)
=-6(12)/p]. Notice that the structure of the
VZ approximation becomes much more trans-
parent when it is expressed in terms of L(12, t)
or c(12,t), as in Eq. (29) or Eq. (30). A similar
structural simplification occurs in the static the-
ory of dielectric polarization in dipolar fluids. '2

where L, (k, ar) = 1/K, (k, to) is just the Fourier
transform of the inverse response kernel for an
ideal gas. The inverse transformation now yields

L(12, t) =L (12, t) -c(12)6(t), (29}
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