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The autocorrelation functions of the microscopic electric current J(t) and the electron velocity Z,(t) are calculated
for strongly coupled, semiclassical twowomponent plasmas. The corresponding memory functions are expressed in
terms of mod~oupling integrals involving density- and energy~rrelation function in the framework of a
microscopic kinetic theory which preserves the exact statics. Through a sequence of well-defined approximations,
the expressions for the memory functions are made self-consistent, the resulting equations are solved iteratively with
the interaction potentials, and the static-partial-structure factors as the only input. The theory is then applied to
weakly degenerate hydrogen and carbon plasmas for values of the plasma parameter of order 1. The resulting
correlational functions J(t) and Z,(t) and their integrals, the electrical conductivity, and the electron self-diffusion
constant, agree reasonably well with the "molecular-dynamics" data of Hansen and McDonald and with additional
simulation results presented here. The "long-time tail" in J(t) observed in the simulations is interpreted in terms of
mod~upling effects. The 6~mping and frequency shift of the plasmon peak in the dynamical charge-fluctuation
spectrum are explicitly evaluated in the long-wavelength»~it; the frequency shift above the plasma frequency is
shown to be nonnegligible for strong coupling.

I. INTRODUCTION

The statistical. mechanics of highly compressed,
fully ionized plasmas is attracting an increasing
amount of attention, particularly in connection
with the physics of laser fusion and of steller in-
teriors. 'g Extensive information on the micro-
scopic dynamics of a strongly coupled two-com-
ponent (TCP} hydrogen plasma has recently been
gained from "molecular-dynamics" (MD) simula-
tions. '4 From an analysis of the time-dependent
equilibrium correlation functions generated in
these simulations it was concluded that: (a) the
frequency of the plasmon mode in the long-wave-
length limit is shifted by a sizable amount above
the electron plasma frequency, due to ion-electron
collisions (resistivity); (b) a marked "long-time
tail" occurs in the electric current autocorrelation
function (ACF), J(t}, which leads to a considerable
enhancement of the electrical conductivity o over
the value expected on the basis of electron self-
diffusion. In a subsequent paper, ' a first attempt
was made to estimate o theoretically and a diver-
gence free generalization of the standard Spitzer
formula' for 0 was derived. In this paper we ex-
tend the latter analysis and present a microscopic
kinetic theory for the calculation of the time de-
pendence of the electric current ACF J(t), and of
the electron velocity ACF Z,(t}. To test some of
our theoretical results, we have performed addi-
tional MD simulations which complement those
contained in Refs. 3 and 4.

We consider a fully ionized plasma of iona (1)
and electrons (2), of mass m, and charge Z, e (a
=1,2), respectively. From the partial number
density n, =N, /V (where V denotes the volume of
the system} we define the total number density

n ng

and the total mass density

p= p, = nm, .

Z,n, =O.

For the special case of a hydrogen plasma, we
have Z, =-Z, =1, which implies that n, =n, . More
generally, the ionic charge is Z, =Z and then n,

Zng ~

To characterize an equilibrium state of the plas-
ma, we introduce the usual dimensionless para-
meters I and r„where

r=-Pe'
a (1.2)

is the plasma parameter defined in terms of the

Owing to overall charge neutrality, the total charge
density vanishes:
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inverse temperature P=1/ksT and of the mean
inter-electronic spacing (or "electron sphere
radius") a=(~ wn, )'". r, is the ratio of this spac-
ing over the Bohr radius ao=g'/mme',

a
ap

(1.3)

The strong-coupling regime investigated in this
work corresponds to I'~ 1.

The microscopic dynamics of the plasma typi-
cally involve two very distinct time scales, due

to the large ion to electron mass ratio; these
time scales are characterized by the electron and

ion plasma frequencies

fully ionized carbon plasma (Z=6).
The outline of the paper is the following: In

Sec. II we introduce various definitions and formal
expressions for the memory function of Z(t) and

Zw(t) in a kinetic theoretical formulation. A suc-
cession of approximations, leading to a tractable
expression for these memory functions, is de-
scribed in Sec. III. Section IV is devoted to an

analysis of the weak-coupling limit of the theory.
Numerical results, based on the 'approximation
scheme outlined in Sec. III, are compared in Sec.
V to MD simulation data and discussed in the con-
cluding See. VI.

II. FORMAL EXPRESSIONS FOR THE MEMORY
FUNCTION

%e shall, restrict ourselves to a range of tem-
peratures and densities such that the electron de
Broglie thermal wavelength is shorter than the
inter-particle spacing a. For such a semiclassi-
cal plasma, quantum diffraction effects, which

come into play only at short distances, can ap-
proximately be accounted for by the use of effect-
ive pair potentials of the form' &I (t) I (0)&

&j'(0)&
(2.1)

Our analysis is based on the kinetic theory of
equilibrium fluctuations which has been developed
in connection with simpI. e classiea}. liquids, two-
component neutral fluids'0 and plasmas, l' and we
refer the reader to these references for details.

The basic quantities of interest in this paper
are the autocorrelation function (ACF) J(t) of the'
total microscopic electric current"

ay5 =1y 2 (1.4)
where

w*,'(r) = exp[-r'/(w ln2q, )] .ln2 (1.5)

Note that the MD simulations of Hansen and
McDonald'~ were carried out with the effective
pair potentials (1.4), i.e., without including the
additional electron-electron repulsion (1.5) due

to the Pauli principle. In order to test the sensi-
tivity of the various corxelation functions and
transport coefficients with respect to electron
symmetry effects, we have carried out the cal-
culations presented in this paper for a hydrogen
plasma both with and without the inclusion of the
term (1.5} in the effective pair potential. We have
also extended the calculations to the case of a

where X,,=)I(p/2wt(„p" is the de Broglie thermal
wavelength for the pair (a, b), and t),„is the re-
duced mass of the pair. Note that the potential
(1.4) prevents the classical collapse of ion-elec-
tron pairs. Moreover, when the temperature be-
comes of the order of the electron Fermi temper-
ature T~, electron degeneracy effects become im-
portant, and these are approximately taken into
account by adding a symmetry term to the elec-
tron- electron interaction'

and the velocity ACF of species a

&v,.(t) v„(0)& (2.3)

Z(z) = [z+M,(z)]-',

Z.(z) = [z+ M,(z)]-',
(2.4)

(2.5)

where

(2.6)

denotes the Laplace transform of J(t), etc. The
fre(luency-dependent (ac) conductivity is simply
related to Z(z) by

gz) = tZ(z),
QP

4' (2.7)

In E(ls. (2.2) and (2.3), v„(t}denotes the velocity
at time t of particle i belonging to species a.

The memory functions associated with Z(t) and

Z,(t) are defined in terms of the Laplace trans-
forms by
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where oP = Hz+ (d2& is the square of the total plas-
ma frequency.

Explicit expressions for the memory functions
can be obtained by considering the microscopic
phase- space correlation functions

C' (lt; 2t') =(6f~(lt)6f ~(2t'))»

and correspondingly for the self-motion

(2.8)

C~(lt; 2t'} = (6f~~(lt)6f f'(2t')) . (2.9)

Here 6f,' and 6f~~ denote the fluctuations in the
microscopic phase-space distribution functions:

&f,"(lt) = (N.)'"6(1—q,.(t) )

species a; @„denotes the Maxwellian distribution

(2.11)

It is customary to eliminate the momentum depen-
dence of the phase-space correlation functions by
defining their matrix elements with respect to a
complete set of Hermite polynomials H„'(p) as
follows:

c'„'„(«i.'( = f«(i, f«ii~„'(»,)c"(u; »,»,)«„'((7,),
(2.12)

—'"""egp) (2.10a)
where the H'(p) are orthornormalized according to

6f,'(lt) = 6(1-q„(t) ) n. y-jp,), (2.10b)
dpi'„p H„' p n, '„ (2.13)

and q„(t}=(r„(t),P„(t)) is the six-dimensional
phase-space variable associated with particle i of

The phase-space correlation functions C'„'„(kz) can
be expressed in terms of memory functions 1"'„'„(kz)
by9, 10

zC'„'„(kz) —g g 0'„'„&(kz)C'„~„'(kz}+g g 1' „&(kz)C„'&'(kz) =C'„'„(k)
a1

(2.14)

and similarly for C". Q denotes the initial value of C. 0 is explicitly known in terms of static correlation
functions.

The first five polynomials H'„(p), (t( = 0, . . . , 4) are given by

H'„(»( =I(ii.I'",(»I».(»', (»I».l»'', (»I».(»", ((( .('"'»' —»)}-ma
(2.15)

and correspond to the density, momentum, and
kinetic energy fluctuations of species a, respect-
ively. The wave vector k is chosen to be parallel
to the z direction, and the element p, =1 is there-
fore associated with the longitudinal current. In
addition to the five elements in Eq. (2.15), we
shall need the element H gp) representing the
longitudinal energy current:

C (kz) = QZ,n, QQZ, Z (n,n ) ~ C'(kz).
a ab

(2.17)

The dielectric function e(kz) is related to the
charge-charge response function'X»(kz}, which,
in turn, is given in terms of Czz(kz) via the fluc-
tuation-dissipation theorem

(2.16) 1 4we2.= 1+ 2 Xzz(k, z)
~(kzj

Hgp} coincides in fact with the so-cailed "second-
order Sonine polynomial" from the conventional
set of polynomials at k=O." Taking p. = v=O in Eq.
(2.12) we generate the partial dynamical de'nsity
correlation functions and, by suitable linear com-
bination, the charge-charge, charge-mass, and
mass-mass dynamical structure factors Czz C~z,
and C»,. for instance,

~k~= 1+~2 [zC zz(kz) —Szz(k) ), (2.18)

k~ = 4vPe Q Zmn,

where S«(k) =—Czz(k) is the static charge-charge
structure factor, and
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is the square of the Debye wave. number. The di-
electric function is also related to the nonlocal
conductivity o(kz) via"

tion, which leads to"

(p )~/21 u&(z) g F a&(p )x/2 0 (2.26)

4m
c(kz) = 1+—o(kz) . (2.19)

III. APPROXIMATIONS

To derive an explicit expression of the memory
function M~ in terms of the I"~ introduced in Eq.
(2.14) we now proceed as follows. From Eqs.
(2.16) and (2.19) we obtain a relation between o(z)
= lim/, ~o(kz) and the long-wavelength limit of
Czz(kz). To extract an expression for the latter
function from Eq. (2.14) we proceed along the con-
ventional lines proposed by Forster and Martin"
by introducing a hydrodynamic projection opera-
tor, which projects into the subspace spanned by
the five hydrodynamic momentum states of Eq.
(2.15). The details of this procedure in the case
of a two-component plasma can be found in the
papers by Baus,"leading to the final result

lim —,[zCzz(kz) —Szz(k)]
k~ k

z'+/d'+z[v", (z)+ v2/2(z)]
'

where

v", (z}=r,",(z}—P P r,''„~(z)H„'~"(z)r „'~'(z},
a~a2 )t, v) & 4

(2.21}

with

5„,5„i+I"„'), z R" z
)t) 4

p, v &4 (2.22}

I"„'„(z)= lim r'„'„(1 ).
k~

Combming Eqs. (2.18)-(2.20) we then obtain

As it stands, the exact expression (2.21)-(2.24)
for M~(z) is untractable, and we are led to make
a succession of four well-defined approximations
which allow an explicit, self-consistent calcula-
tion of the memory functions Mz(z) and ~(z). We
introduce and discuss these approximations one

by one.

A. Two Sonine polynomial approximation

Returning to Eq. (2.21) we see that the second
term on the right-hand side (rhs) involves a double
sum over all nonhydrodynamic states X, g &4. In
Ref. 5 this term was neglected altogether (except
for a factor of 1.93 in the resulting expression for
&r), leading immediately to an explicit expression
of M~(t) in terms of the density correlation func-
tions C,",(k, t). It is known from previous calcula-
tions based on Boltzmann-type or Fokker-Planck
equations, '~" that for a plasma in the weak-coup-
ling limit (I'«1}, this term can give a contribu-
tion comparable to the first term I'gy Moreover,
these studies have shown that the sum in Eq. (2.21}
is practically exhausted by the first nonvanishing
element, which involves precisely the nonhydro-
dynamic element Hq introduced in Eq. (2.16). Re-
stricting the sum to this term corresponds to the
second-order Sonine polynomial approximation
which, after solving for 8'zo from Eq. (2.22),
yields the following expression for v", (z):

p', 2(z) = I'2', (z) —((p,/p, ) [r",q(z) ]'[z + r 'qc(z) ]
+ 2(p, /p, }'"r,"c(z}F",o(z) r 'oo(z}

+ [r,",(z)]'[z+ r,",(z) ]j/n(z),
(3.1)

where

n(z) = [z + I' " (z)] [z + I'"(z)] —[I' " (z)1 '.
(3.2}

/d2 1
z) D

4xz+v", (z)+ v", (z)
(2.23)

To derive Eq. (3.1), use was made of Eq. (2.25)
and of the symmetry of the memory function ma-
trix

and, by identification with Eqs. (2.4) and (2.7), the
desired exact expression for M~(z) reads I"„'„(z)= —I'„'„(-z) . (3.3)

M~(z) = v"(z) + v"(z) =—v"(z) .
Px

(2.24)

The last step follows from momentum conserva-

Consideration of the dependence of the matrix
elements I"„'„on the mass ratio m, /m, will in
fact lead to a considerable simplification of the
expression (3.1) for v 2/2 for a plasma, where
m, /m, «1. For more generality we keep at pre-
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sent the full expression (3.1) which could also be
used for an analysis of electrical conductivity in
molten salts, where m, /m, = 1.""

The analysis for the self-motion is similar to
the previous analysis of electrical conductivity,
but considerably simpler, and the resulting
memory function reads in the two Sonine polyno-
mial approximation

where l "denotes the phase-space memory func-
tion matrix for the self-motion. The remaining
task is to calculate explicitly the matrix elements
of I'" and r" appearing in Eqs. (3.1), (3.2), and

(3.4).

B. Disconnected approximation

M, (z) = r', ;(z)—[r*„'( )]-
z+Fp'(, z

(3.4)
Exact expressions for the phase-space memory

functions r~ (and l"")are known in the form'"

r&'„(t)= —p p dl ~ ~ ~ d4 V H'„(p, ) V v &(r, —r, ) G "~'"2(12;34t) 9, v"2(r, —r, ) ~ & H'„(p,). (3.5)
I tI

p~ II rq 1 2 y I3 3 4 p V 3

1 2

The four-point function G describes the correlated
motion of two particles in the plasma. The simp-
lest approximation for this function is a straight-
forward factorization ("disconnected approxima-
tion"'), i.e. , G = G 2), where

G2')'"'22(12 34t) = C"(13t)C'&'2(24t)

+ C'2(14t) C' i(23t). (3.6)
Physically, this factorization describes a situa-
tion where the two particles move independently of

I

each other, but interact with the other particles
in the surrounding medium. The approximation
(8.6) will, however, destroy the exact initial value
of I "(t) in Eq. (3.5), and consequently of M~(t);
we expect that this failure might introduce large
errors for a strongly coupled system. In Appen-
dix A we sketch a procedure"'" which preserves
the exact value of M2(t= 0) and satisfies the sym-
metry relation (3.3). The final result for I'"
reads

I" (I)= ——gg (22 n )' ' k' k' [v"&(k')c" (k'2}+c"&(k')v" (k'2)]
dk'

2p, , 'i '2 (2)r)2

x [Cz'„(-k', t}C '&'2(k't) —C ~g( %', t) C'-~'(k't)]

(3.7)x
J drifdri. i4, 2f (ri)2' (ri ) i'2!i(ri.)(i2(ri ) 4;(()ii4i'i(().ii

P2

In Eq. (3.7) the c' (k) are the partial direct-cor-
relation functions, and summation over repeated
Greek indices is implied, a convention which we
henceforth adopt Note t.hat to derive Eq. (3.7),
the correlation functions have been expanded in the
complete set of momentum states H'„(p). Effec-
tively what we have done to derive Eq. (3.7) from
Eq. (3.5) is to replace one of the bare potentials
v by the effective potential (- c/P}.22 In the weak-
coupling limit this replacement has no effect since
the two potentials are then identical, while for
stronger coupling we expect the static correlations
inherent in c to play an important role. From Eq.
(3.7) we obtain for the matrix element p, = v = 1

I",',(t) =- ' dk'k "v"(k')c"(k')n 1
m26m

&& [c"(k'I) c"(k'I)- c"(k'f) c"(k't)].

(3 6)

I

Using the Ornstein-Zernike relation

ll/2 12(yt S"(k)
[s"(k}s-(k)—s"(k)s"(k)] ' (

we find for t=0

r 22(f 0} 1 (n 22 ) )/2 dklkl4V (k ) S 1 (k )
n, 1- — -- m' ~ ~ 6r2 0

n. dr g" r -1 &'e" r, 3.10
2

where g' (r) denotes the partial-pair distribution
function between species a and b, and S'2(k) the
corresponding partial structure factor.

From Eqs (2.24) and . (3.1) it is readily checked
that Eq. (3.10) implies the known exact initial
value of M2(t}.4 Indeed r;o2 starts as t2, i.e.,
behaves as 1/z' for large z, and the second term
in Eq. (3.1) therefore starts as 1/z, ' i.e. , as t2

for short times; hence, in the t-0 limit only
r",,(t) contributes to M~(t}.
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In Eq. (3.8) we have expressed I",', in terms
of the partial-density correlation functions. Al-
ternatively, we could introduce linear combina-
tions of these, as in Eq. (2.1V}, and express I'",,
in terms of the total mass and charge fluctuations.
This linear transformation gives

C,",(kt)C~(kt) —C'„'(kt) CM(kt)

= —[C (kt) C (kt) —C (kt}C (kt)], (3.11)
P

where Czz Cu~ an Cuz =Czar ha g
charge, mass-mass, and mass-charge correla-
tion functions, respectively. Equations (3.8) and

(3.11) indicate how the time dependence of I",,(t}
or J(t) 'is built up from the coupling to micro-
scopic charge and mass fluctuations. The former
give rise to a microscopic electric field and

thereby a corresponding electric current, while
the latter represent an electrostrictive effect."
Note that in the one Sonine polynomial approxima-
tion, M~(t) reduces to I",,(t}p/p„so that Eq.
(3.8) is precisely the expression for M~(t) derived
in Ref. 5. In the two Sonine polynomial approxima-
tion, we must evaluate the other matrix clem. ents
entering in the second term on the rhs of Eq.
(3.1). proceeding as for I",,(t), we find

1 t« I 8 44 I a4I';c(t) =—,&, gg (s,,s,,)'~' ', k" k' [v"&(k')c '2(k')+ c™~(k')v'2(k')]

x [C (- k', t) C '~(k't)- C,"(R't) C ' (%'t)] [(-)')'6 6 +(-)'t '6 ]

(3.12}

This expression involves the correlation function C «, which couples to the kinetic energy Quctuations,
and the correlation functions C, ~ defined by

C z(lt t)= Jl dpfdp (,z) 't'C" ( t)(5p)( —P'Pz-tttz
)

(P= z pz). (3.13)

The latter functions can in fact be written as linear combinations of C «and other nonhydrodynamic func-
tions representing fluctuations in the kinetic stresses. Similarly, we find

1 df k'r" (t)=-
2(m m )'~' n n (2z)'

k~k' [v"&(kt)c'2(kt)+c"t(kt)v"2(kt}]
b 4l 42

x [(-')')"6 6 4+(-')'t'6~][C&„(-g', t)C'~'p(g't) C;;2(-—kt, t}C'&'(R't)]

x [(s)' '~g ~„,+(s)' '~„z]D (3.14)

which involves the correlation functions C,4, C &, and C 6, where the latter are defined analogously to
C ~ in Eq. (3.13), e.g. ,

C B()tt)= /dDJ( dD(p p, —z ., )C' ("'t'D. D )I pp -zz)2
(pyg «) (/gal

(3.15)

C. Effective-field approximation I "„„(|lz)= I'„'„(kz)6.,+ I'„'„'(Kz), (3.16)

In order to calculate the relevant matrix ele-
ments of I", given by Eqs. (3.8), (3.12), and

(3.14), we need explicit expressions for the
various matrix elements of the phase-space cor-
relation function C". This can be achieved by
assuming some simple form for I'~ in Eq. (2.14)
and solving for C ~. In this work we have used
the "effective-field" (or "generalized mean field" )
approximation" to carry out this program; this
approximation amounts to writing 1' as the sum
of its self and distinct parts

and then setting F = 0. The resulting expression
for the correlation functions C' reads

C'„'„(kz) -ik(Pm ) '~'C*„;(kz)

x Q (s s )'~'c"&(k) C Qp(k z)
41

= C'„' (kz) C i„(k). (3.17)

In this approximation the dynamics of C is given
in terms of the corresponding self-motion C" and
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the static structure factors. The approximation
(3.16)-(3.1V) becomes exact in the limit of large
A or weak coupling; in the latter, collisionless
regime, it leads correctly to the correlation
functions obtained from the linearimed Vlasov
equation. Moreover, comparison with the MD

data on the hydrogen plasma shows that it gives
a rather accurate description of the charge fluc-
tuations. 4'~ It should be noted, however, that Eq.
(3.1V) violates conservation of momentum, and
therefore fails to describe the mass fluctuations
at small wave numbers.

D. Gaussian approximation for the self-motion

We now make a final approximation by adopting the so-called Gaussian approximation for the self-
motion entering in Eq. (3.1V); this approximation implies that all correlation functions can be expressed
in terms of the velocity ACF's Z,(t). The Gaussian approxinetion has been tested for the one-component
plasma, "where it was found to be very accurate; it also becomes exact in the weak-coupling limit. Within
this approximation our expressions for I", and I'z are greatly simplified, since the only independent
correlation functions turn out to be C'„,C ~= C',; and C ~. Details of the calculations are given in Ap-
pendix B. Using the results of this appendix we find

r'~(t)=-(m m ) '~'g (~ )'~'( —,')'~'

~tys4 &aa pI be2 yI +t3o pI &1a2 I I

0

where u«, and

x [c,(a' t) c- (a' t) —c;; (a' t) c "„(a't)], (3.18)

9r,",(t)=-(m. m, ) '~' P (s. n )'t'
20+«62

x
J

da'a"[v"i(a') c"2(a')+c i(a')v''2(a')]
0

with

x c"(a't) c'"'(a' t)- c'+(a' t) c'~'(a' t)] (3.19)

(3.20)
Iw'

k2 t
c'„'(at}=c„"(at)- f [z.(t)]'+ ~ z.(t) J dt'z. (t') c"(at) 6.,

0 0

Both F',z and Fzz involve the coupling to the energy fluctuations via the correlation functions C,", and C
this means that these terms represent a thermoelectric effect which gives rise to a microscopic electric
current.

As already noted earlier, our expression for vms in Eq. (3.1) can be greatly simplified by analyzing the
mass dependence of the matrix elements in Eqs. (3.18) and (3.19). Expressing these in units of &o~, we
find that r',-(m, /m, )', ro'o-(m2/m, )'~', and ro'o-m, /m„while r',o and rorno are of order 1. Con-
sequently, we have from Eq. (3.1) for m, «m,

a2( ) ra( )
[ a( )] 0~~~

a+rmo'o(s) ~( m, ] ' (3.21)

For the self-motion we find after a similar analysis

r"(t)=-—p (s n )'~' 'I da'a"v"~(a')c"2(a') C"(a't) C~' ( 2at)
1 1

11 6+ 00 00
a ale2 0

(3.22}

t )2 1r", (t)= dt'z, (t') ~, g (s, e )'~'(~)'~' / da'a" 5" (a')c''2(a') c,",(a' t) cg' (a' t) (3.23)
0
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( t t 4

r",,(t) = 3[Z (t)]'r,;(t)+(IO)'~2zz Z (t) r „'(t)-(J
dt' Z (t')

0 P m,

oo

x g (n, n, )'~' dk'k+ v™~(k')c"~(k') C',;(k't) C;)'2(k't). (3.24)

We now have a closed set of equations, since the
memory functions I'" determine the self-correla-
tion functions via the Gaussian approximation; the
latter in turn yield the partial density correlation
functions via the effective-field approximation.
The set of equations must be solved self-consis-
tently, as discussed in Sec. V.

If we express the partial correlation functions
in the preceding equations (3.22)-(3.24) in terms
of mass and charge-density fluctuations, we find
that the coupling to the mass fluctuations involve
the combination Q, n, v"~. For purely Coulombic
potentials, this coupling would be identically zero,
due to overall charge neutrality, and the inte-
grals in Eqs. (3.22)-(3.24) would only contain the
coupling between the self-motion of a particle and
the charge fluctuations in the medium. Even
with the effective potentials defined in Eqs. (1.4)
and (1.5), we expect the dominant contribution to
the self-motion to arise from the latter coupling.
Physically, in a mass fluctuation both species
move in phase, and hence, do not produce any net
force acting on the self-particle, while a charge
fluctuation creates an electric field which will
influence the motion of the individual particle.

2 k2 1 k4 4i
C44(kt) =

I
1 —

3
'+

6 (P )mt'&I

(4.4)

which coincide with the corresponding self-parts.
Inserting these expressions into our formulas
for the memory functions, we obtain from Eq.
(3.8)

2 ljl2
r'*(z = O) =Zr'» —

~
ln (4.5)

(4.6)

(4.V)

Inserting these results into the expression (2.23)
for the dc conductivity o=cr(z =0), we recover the
well-known result" "

where k and k „are two cutoff wave numbers.
Choosing these, in the usual way, to be the inverse
I,andau and Debye lengths, respectively, we ob-
tain a Spitzer-type expression for F",,."' From
Eqs. (3.18) and (3.19), we can similarily calculate
the low-frequency limit of 1"

yQ and 1 Q2Q.

IV. WEAK-COUPLING LIMIT

where

13Z + 4M2

4Z+ 4M2
(4.8a)

In order to make contact with earlier work on
coupled plasmas, we shall consider here the limit
I'&& 1. 'The effective potentials reduce then to
the bare Coulomb potential, and the direct corre-
lation functions to their Debye-Huckel limit

COp(P&(x& &~ rn(z 0)4~,p, '

4n'(2 j ~~ k )] (4.8b)

c"(k) = Pv~(k) . - (4.1)

C00(kt)= e — t 6~,fRg

C~(kt)= —
~6 t exp — t ~5~,v6 Pm. 2Pm, ) ~'

(4.2)

(4.3)

The various correlation functions, on the other
hand, can be expressed in terms of the free-par-
ticle propagators

is the conductivity calculated in the one Sonine
polynomial approximation. In Ref. 5 it was shown
how the cutoff and divergence problems arising
in the standard Spitzer expression (4.8) can be
overcome by an Enskog-type procedure which
preserves the exact statics.

'The large contribution to a from 1"',Q2 and I",,',
which, for Z=1, results in a factor 1.93, is mainly
a mass effect." If we consider an ionic Quid
where the two species have essentially equal maS-
ses, such as a molten salt, we obtain in the
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weak-coupling limit, starting from Eq (.3.1)

QRO (&)
50 (4.9)

3 4Z+ M2

2~10 2Z+ v 2
(4.10}

104Z+ 59M2&'('= }=
40(2Z+~2 (4.11)

i.e. , in this case the enhancement due to energy
fluctuations results only in a factor of 1.18.

This strong dependence on the mass ratio of
the terms coupling to the energy fluctuations has
a simple physical interpretation. A local fluctua-
tion of the energy will give rise to a corresponding
temperature gradient, and this in turn induces
a diffusion of the particles. In a plasma where
m, «m„ this duffusion affects only the electrons,
and, therefore, results in a microscopic electric
current, while in a system with equal masses,
both species diffuse in the same direction, thereby
preserving local charge neutrality and inducing
no electric current. In a weakly coupled electron-
ion plasma, the microscopic electric current due
to thermoelectric effects, therefore, gives a con-
tribution which is comparable to that arising from
charge fluctuations, while in a molten salt the
latter effect dominates. 'The simple proportion-
ality which exists between the matrix elements
in Eqs. (4.6) and (4.7) reflects the fact that in
the weak-coupling limit the energy fluctuations
are due to the motion of the individual particles.
However, if we increase the coupling, an energy
fluctuation will mainly spread out through col-
lisions between the particles, and not through
particle floe. For this reason we expect the non-
linear coupling to the energy fluctuation to be-
come less important with increasing 1, i.e.,
the numerical factors 1.93 or 1.18 should decrease
for larger I' values. For a real molten salt, which
is a strongly coupled ionic fluid with I'~ 50 and
m 1 m 2 the conductivity can therefore be cal-
culated by just considering the coupling to the
charge fluctuations, embodied in I'1y.

For the electron self-motion, we similarly find
for I'«1

This gives for the electron diffusion constant

104Z ~+ 111M2Z+ 59 (,)
32Z'+ 75M2Z y 50 (4.12a)

For Z = 1, Eq. (4.12a) gives D, =1.7QD~", i.e. ,
the electron diffusion is also greatly enhanced
when energy fluctuations are taken into account.
When m, =m„we again find D, = 1.18D,". The
ionic diffusion on the other hand is largely in-
dependent of the mass ration, and the second
term in Eq. (3.4) yields a factor of 1.18 both for
m, »m, and m, =m, .

V. NUMERICAL RESULTS

On the basis of the theory presented in Sec. III,
we have calculated J(t) and Z, (t} for a hydrogen
plasma (Z = 1) and for a carbon plasma (Z = 6),
for several values of I' and r, . 'The calculations
have been performed using effective potentials
both without [Eq. (1.4)] and with [Eq. (1.5)] elec-
tron symmetry effects included. In this section
we confront the theoretical correlation functions
with the simulation results for a hydrogen plas:-
ma. '4 Since the dat@of-Refs. 3 and 4 are based
on the effective pair potentials (1.4) which take
no account of the Pauli principle, we have carried
out additional MD simulations, including symmetry
effects via the extra term (1.5} in the electron-
electron potential. Two simulations were perfor-
med on a system of 64 electrons and 64 protons
in a cubic volume with the usual periodic boundary
conditions and Ewald summations of the interac-
tions of one particle with the infinite array of
periodic images of all other particles. The es-
sential characteristics of these simulations are
summarized in Table I. It should be noted that
both in the previous work" and in the present
simulations, the statistical uncertainties on D,

where D,"' denotes the value obtained from the
first term, I"„', in Eq. (3.4) (one Sonine polyno-
mial approximation):

1/2 kD,"= a'&u& — (Z M2+ 1)I' ln2 )(

(4.12b)

TABLE I. Details of the MD simulations. bt is the time step in the numerical integration
of the equations of motion and N& is the total number of steps in the simulation.

1st run
2nd run

2
0.5

1.$8x10~
6.3 x10~

g (cm 3)

1.61 x10
1.61 xl 024

co~ (sec ~)

7.2 x10
7.2 x10

0.03
0.02

220 000
110000
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are estimated to be 3%, while they are much
larger (as much as 20%) for o.

A. Iteration scheme

In the framework of the kinetic theory discussed
in Sec. III, we have obtained the dynamical corre-
lation functions by solving the matrix equations
(82), (84), and (86). For the static input tluan-
tities, we have systematically used the numerical
solutions of the coupled hypernetted chain (HNC)
equations, which yield excellent partial pair dis-
tribution functions compared to the MD data. "'
To calculate J(t) and Z, (t), we need six correla-
tion functions, C~0, C,'4', C,'4, and C44. In our ap-
proximation scheme, all dynamics are expressed
in terms of the velocity AC F's Z, (t) and Z,(t).
Within the characteristic times of the el.ectronic
motion, which govern the decay of J(t) and Z,(t),
the much slower ions behave essentially as free
particles, i.e. , Z, (t) —1. To obtain an initial
guess of Z, (t) and Z, (t), we have used the short
time expansion of their memory functions M, (t)
and M, (t)." From this initial guess we have then
calculated J'(t) and Z, (t), and from these new values
of Z, (t), we have calculated a second set of values
of J(t) and Z, (t), and so on. The values of Z, (t)
have not been changed in this iteration scheme,
since, as already pointed out, the ionic motion
is practically free-particle-like within the charac-
teristic times of the much faster electronic mo-
tion. In practice this scheme converged after
only one iteration.

8. Electrical conductivity of the hydrogen plasma

We first present our results for the electric
current AC F J(t) of a hydrogen plasma. , obtained
with the potential. model (1.4) (i. e. , without el.ec-
tron symmetry effects), and compare them to the
MD data of Refs. 3 and 4 based on the same ef-
fective potentials. The theoretical (full curves)
and computer generated (dots) Z(t) curves are
shown in Fig. 1 for the three states r, = 0.4, F= 0.5,
aad r, = j., F= 0.5 and 2. The agreement between

~ ~ ~

—0

0

'0 20 60 80

FIG. 1. Normalized electric current ACF J(t) of the
hydrogen plasma for, from top to bottom, r, =0.4, F
=0.5 r~=l, I'=0.5' and r~=l, I'=2. The full curves
are our theoretical results and the dots represent the
simulation results of Hansen and McDonald (Refs. 3 and
4). The time is in units of co&~ which will remain our
unit of time in all subsequent figures.

our theory and the MD data is excellent for the
strongest coupling (I'= 2), while the results for
the two other cases show rather large discrepan-
cies. The corresponding values of the dc con-
ductivity are listed in Table II. For r, = 1, 1"=0.5,
the theoretical conductivity lies almost 30% be-
low its "exact" MD value, while for the other
states the agreement is better. If we had used
free-particle dynamics, instead of the effective-
field approximation, while including the correct
statics by making the approximation

C ~„(ks ) = C'„'„(ks )Ci (k), (5.1)

where Co' denotes the free particle correlation
function, the theoretical values for o would have
been reduced by 20%. The form (5.1) has the
advantage of being very simple, but it violates the
obvious symmetry of C~ and it yields a too rapid
initial decay of J(t)'

The large discrepancy between the theoretical
results and the MD data at F=0.5 may, infact, re-
fl.ect the insufficient accuracy of the effective-
field approximation used in the present work to
compute the C~. The calculation of 1",„for in-

TABLE II. The reduced electrical conductivity o*=g/&& and electron self-diffusion constant
B*~Dat'st&@& calculated without (a) snd with (b) electron symmetry effects included. MD refers
to the molecular-dynamics simulation results.

g* (MD)
(a)

cT~ (theory)
(&) (b)

D2 (MO) .

(a) (b)

D* (theory)
(&) (b)

0.4
1
1

0.5
0.5
2

3.6
2.15
1.1

2.55
1.5

3.13
1.57
1.12

3.10
1.45
1.27

12.3
7.2
1.23

5.1
1.11

12.4
7.0
1.31

5.7
4.85
1.05
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stance, involves the difference CQCex2-Coe,'C,'ee;

even if the effective-field approximationyields
reliable results for the three correlation func-
tions taken separately, their combination in I'yg

might very well be much more sensitive to ap-
proximations.

In Fig. 2 we illustrate the time dependence of
the memory function M&(t) (full curve) in the state
r, = 1, I' = 2. It is seen that M&(t) exhibits a rapid
initial decay followed by a long-lived oscillatory
part. These oscillations reflect the coupling to
the charge-density fluctuations. In the same figure
we also show the contributions to M&(t) from (p/
p, ) I",', (dashed curve) and from the coupling to
the energy fluctuations, i.e. , the time dependence
of —(p/p, )[I'~(z)]'/[z+ I'Qa~z(z)] (dots). Since it
takes some time to build up a diffusion current,
this latter part starts rather late, but once it
has built up, it decays slowly. The relative con-
tributions of I,'Q(z =0) and PQQ(z = 0) are given in
Table III, and these values should be compared
to the weak-coupling results 1",'Q'(z = 0) = —0.95
I"„' (z = 0) and I'Qeeo (z = 0) = 1.86I",,(z = 0). For the
state r,=1, I'=2 we find 0=1.57' ", i.e. , the
factor 1.93, valid for weak coupling, has decreased
significantly with increasing I'. For the other
two states, corresponding to I'= 0.5, the oscilla-
tions in Mz(t) are less pronounced. The contrib-
ution from the energy fluctuations develops a very
long-lived negative plateau and this increases the
relative importance of this term.

In Fig. 3 we show an example of the real and
imaginary parts of the ac conductivity obtained
from the theoretical (full and dashed curves) and
MD (dots and squares) results for Z(t) [cf. Eq.
(2.7)]. The oscillations in the MD results are
most probably due to numerical truncation errors
and statistical uncertainties.

The results for the electrical conductivity ob-
tained when electron symmetry effects are included
are also summarized in 'Tables II and III, and in
Fig. 4. 'The theoretical values for 0 are not dras-
tically changed upon inclusion of the symmetry
term (1.5) in the effective potential, in agreement
with the MD data, but'the various matrix elements

0.2—

0.1—

/ WW r~~
~+W

~
~0

-0.1—

-0.2
0

I

10
I

20

FIG. 2. Normalized memory function M&(t)/Mz(t = 0)
versus time for r~=.1, 7=2. The full curve represents
the total memory function, the dashed curve is the
contribution from (p/~) Iii (t), end the dotted curve
shows the time dependence of —(p/~) lPfg(z)) /
tz+ re(z)).

C. Electron selfMiffusion in the hydrogen plasma

Our results for the electron velocity ACF are
shown in Figs. 5 (without electron symmetry ef-

are affected rather strongly. 'The large increase
in the area of I'+ will reduce the importance of
the coupling to the energy fluctuations. The rea-
son for this behavior is that the additional repul-
sion between electrons, due to the Pauli principle,
will reduce the electron diffusion, and thereby
the electric diffusion current. However, at the
same time, the stronger repulsion between elec-
trons will tend to decrease the number of elec-
trons around any given proton; the system be-
comes then effectively more polarized, whereby
charge fluctuations are enhanced. The resulting
contribution to o is increased and partly compen-
sates the reduction of the coupling to the energy
fluctuations. In fact, in the most degenerate case
(r, = 1, I' = 2), this latter effect dominates the
former, leading to a slight increase in 0.

TABLE GI. Relative contribution of the coupling to the energy fluctuations, to the areas of the memory functions for
the conductivity and self-motion in the hydrogen plasma. (a) and (b) refer again to calculations without and with elec-
tron symmetry effects included.

~tQ(z )/ ff(e ) IpQ(z )~f1(v ) fQ(e )/wf(z ) QQ(z o)/lit(z o)

(&) (b) (a) (b) (a) (b) (a) (b)

0.4 0.5
1 0.5
1 2

-0.93
-0.90
-0.84

-0.88
-0.87
-0.83

2.00 4.69
1.87 2.51
1.95 2.93

-0.64
-0.67
-0.61

-0.39
-0.55
-0.43

1.62 1.79
1.55 1.59
1.67 1.92



SELF-DIFFUSION, CONDUCTIVITY, AND LONG-WAVELENGTH. . . 1555
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2 1.0i

1.0&

3

0
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3
0 1 CV

N

0Lg
0.5

I

0—
0

I
~ Opia 0 Oe

0.2 0.4

FIG. 3. Real lg'(co)] and imaginary fg" (co)j parts of
the ac conductivity g(z=-iv)) vs co of a hydrogen
plasma for y~= 1, I'= 0.5. The full and dashed curves
are g '(cu) and g "(co), respectively, based on our theory,
while the dots and squares represent the simulation
data (Refs. 3 and 4) for g '(cu) and ~"(cu). g'(~) and
g"(u) are in units of cu&2.

fects) and 6 (including electron symmetry effects)
for the same states as above. The agreement with
the MD results (dots) is nearly perfect, and the
values of the diffusion constant D„ listed in Table
II, agree within a few percent with the MD values.
The time dependence of Z, (t) is rather simple,
compared to the complex behavior of J(t), and is
rather accurately represented by an exponential
function. ' In Fig. 7 we show the time dependence

0
0 10 20

e

30

1.0&

FIG. 5. Electron velocity ACF, Z2(t), versus time
in the hydrogen plasma without electron symmetry
effects and for, from top to bottom, y =0.4, 1=0.5;
&~=1, I'=0.5, and &~=1, I'=2. The full curves display
our theoretical results and the dots the simulation data
(Refs. 3 and 4).

1.0-"

N

~ ~ ~ ~ ~ ~ ~

0.5

=0
0

20 60
I

100

FIG. 4. J(t) for the -hydrogen plasma versus t, for
r =1, I'= 0.5, and I'=2, whenelectronsymmetryeffects
are included in the effective pair potential; the full
curve represents the theoretical results, and the dots
the simulation data.

0
0 10 20 30

Q

FIG. 6. Same as Fig. 5, but with electron symmetry
effects included, and for y~=1, I'=0.5, and 2.

I
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0.05—

1.0

~ ~ ~
~ ~ ~

-0.05—

10

FIG. 7. Normalized memory function M2(t)/M2(0)
(full curve) versus time for r,=1, I =2 for a hydrogen
plasma without electron symmetry effects. The dashed
curve shows I' fi (t) and the dotted curve shows the time
dependence of —[ I'iQ (z)j /fz+ QQQ(z)j.

1.0

N
N

M
CV

ca 0
1.0

0.1

D. Long-wavelength limit of the dynamical charge
structure factor

The function J(z) contains all the information on
the dynamical charge structure factor

1
S»(ktc)= —ReCzz(k, z = i&c)- (5.2)

of M, (t) for r, =1, I'=2 (without electron sym-
metry effects). The oscillating tail reflects again
the coupling of the single-particle motion to the
charge-density fluctuations in the medium. The
dashed curve shows the contribution from I'yy and
the dotted curve, the contribution corresponding
to —[I",o (z )]'/[z + I'&gz )]. The overall qualitative
behavior is similar to that found for Mz(t) above.
The relative contributions to the area of M, (t}
from 1

yQ RIld FQQ are also given in Table III, and
should be compared to the weak-coupling results
derived in Sec. IV, I",o(z = 0}= —0.75I'„'(z = 0) and
I"' (z = 0)= 1.37I",', (z = 0).

A possible reason why our theory works much
better for Z, (t} than for Z(f) is that the matrix
elements in Eqs. (3.22)-(3.24) involve essentially
the combination C'„'„(kf)Czz(kt), with )t, v = 0,
and 4. Since the effective-field approximation
yields rather accurate results for Czz, ~ our
calculation of 1 gg FyQ and FQQ is probably more
accurate than the corresponding elements for the
conductivity, which involves differences of cor-
relation functions,

The effect on the diffusion constant upon in-
cluding symmetry effects is rather large, as
seen from Table II, and leads to a reduction of
D, due to the increase of the electron-electron
collision rate. 'The various matrix elements are
also affected, but the qualitative time dependence
of M2(t} is similar to that shown in Fig. 7.

0
0

FIG. 8. Lims 0 (krak ) Szz(k, u) vs &o for a hydro-
gen plasma and the states, from top to bottom, r, =0.4,
I'=0.5, r, =1, I =0.5, and y, =1, I =2. The vertical
scale is logarithmic and in units of co&2 and co is in units
of (dp2~ (dp.

in the limit k 0. Using Eqs. (2.20), (2.24), and
the "perfect screening" condition

k
lim ~a Szz(k) = 1

0

we arrive at the desired result

k~~ z+M, (z)
k z ' z + tc'+zM (z)

(5.3)

(5.4)

It follows from Eqs. (5.3) and (5.4) that the long
wavelength charge fluctuation spectrum Szz(0, td)

exhibits two conjugate peaks around a(d&. 'The

damping of the plasma oscillations is determined
by the memory function M~, which also introduces
a slight frequency shift relative to the plasma
frequency co~."'" In Fig. 8 we show the theoretical
results for lime, (ktse'k')S»(k, to) when no electron
symmetry effects are included in the effective po-
tential. As expected the dominant feature is a
very sharp resonance shifted slightly above co~.
'This shift is largest for r, =1, I'=2, where it
reaches 4%, while for the less strongly coupled
states it is only of the order of 1%. The inclusion
of electron symmetry effects has a negligible
effect on the spectra.

A sizable shift of the plasma frequency, due
to interspecies collisions (resistivity) had already
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been established in Ref. 4 on the basis of a simpl. e
memory function analysis" and a prescription for
the relaxation times due to Lovesey. " This re-
sulted in much larger frequency shifts than those
predicted here. The origin of this increased shift
can be traced back to the fact that the Lovesey
model underestimates the dc conductivity o' by
more than a factor of 2. This finding confirms
the failure of the Lovesey prescription in the 1imit
k 0, where it also yields an infinite viscosity,
whereas it describes the charge fluctuations very
well for intermediate and large wave numbers. '

1.0

1.0

1.0

E. Results for the carbon plasma

In order to investigate the Z dependence of our
results, we have also made some calculations
for a carbon plasma (Z = 6}. The results for J(t)
are shown in Fig. 9. Since the higher valence
of the ions leads to a stronger attraction of the
electrons, the plasma is locally more neutral and
the conductivity is reduced. From Eq. (4.8}.we
find that inthe weak-coupling limit 0 = 2.82m"'
for Z = 6, i.e. , the relative importance of the
coupling to energy fluctuations is increased, but
at the same time o"'-1/Z and the total effect
is a reduction of 0, practically by a factor ~~

compared to the conductivity of the hydrogen
plasma. For the electron diffusion we find from
(4.12a} that D, = 2.5&D,"'. The enhanced ion-elec-
tron attraction reduces the relative importance
of electron-electron collisions and as a result
the factor ZW in (4.12b} dominates over 1. The
total effect is to reduce the electron diffusion
constant by approximately a factor of 2 compared
with the hydrogen plasma. The results for Z,(t)
are shown in Fig. 10, and the values of o and D,
are listed in 'Tabel IV. It should be noted that
the two last states in Table IV have a temperature

1.0

1.0

1 Q

0.5

0
0 10 20 30

FIG. 10. g2 (t) versus time for the carbon plasma and
the same states as in Fig. 10.

lower than the ionization temperature (T~ 5.7
x 10' K) for an isolated carbon atom. At high
density (r, & 1) screening reduces the Coulomb
attraction and the ionization energy for a dense
C plasma is lower. However, some recombina-
tion may occur for those states, and this cannot
be described in purely classical terms.

VI. DISCUSSION

'The present microscopic theory for the calcula-
tion of the electric current and velocity ACF's
in a strongly coupled ion-electron plasma yields
results in overall satisfactory agreement with
the MD simulation data. 'The remaining discrep-
ancies between the theoretical and simulation re-
sults for J(t) are most likely due to the input val-
ues for the dynamical density correlation func-

—0

TABLE IV, Theoretical results for the carbon plas-
ma, based on the potential model including electron
symmetry effects.

10 30
0

50

FIG. 9. J(t) versus time for the carbon plasma and
the three states, from top to bottom, r~= 0.4, I =0.1,
0.2, and 0.5.

r~ I' n (cm 3) T (K) cg& (sec ~) ~* g)&

8.02 x10 1.36 11.54
2.83 x1Oii 1.24 32.72
2.83 x10 ~ 0.74 9.85
2.83 x10 0.48 2.69

0.2 0.2 2.01 x10 7.9 x106
04 01 252 x 10 79 x10
0.4 0.2 2.52 x10 ~ 3.95 x106
0.4 0.5 2.52 x10 1.58 x106
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tions, which are based on the effective-field ap-
proximation. Another origin of the remaining
discrepancy could be the possible importance
of other nonlinear couplings for intermdeiate 1
values. Additional couplings to energy fluctuations
will, for instance, occur through close collisions
between particles. The inclusion of such effects
requires an even more elaborate microscopic
heory

The fundamental assumption in this a6 well as
previous""' work is that in a weakly degenerate
(or semiclassical) plasma, quantum effects,
which come into play only for particle separations
r~X, can be reasonably well accounted for by
using a set of effective pair potentials in the frame-
work of classical statistical mechanics. More-
over, these effective potentials are chosen to be
identical to their low-density limit. "' At present
the consequences of this basic assumption can
only be tested by examining the sensitivity of
various correlation functions to variations of
the effective potentials. For that reason we have
systematically carried out our calculations for
two potential models, one without and one including
el.ectron symmetry effects embodied in the Pauli
repulsion term (1.5). A comparison of both sets
of results shows that the long wavelength collec-
tive motions [reflected in the functions J(t) or
Szz(k= 0, u&)j are hardly affected by details of the
short-range part of the effective potentials, while
the single-particle motion, and in particular D„
j.s much more sensitive to changes in these ef-
fective potentials.

ACKNOWLEDGMENTS

The interest and collaboration of Mare Baus
in the early stages of this work has been very
stimulating and helpful. L.S. acknowledges the
support of the Commissariat a 2'Energie Atomique
through the grant of a Joliot-Curie fellowship.
J.P.H. is indebted to B.J. Alder and H.E. DeWitt

for their hospitality at the Lawrence Livermore
Laboratory, where part of this work was initiated.
J.P.H. and E.L.P. acknowledge the support of
NATO Research Grant 1890. This work was
performed under the auspices of the U.S. Depart-
ment of Energy and by the Lawrence Livermore
National Laboratory under Contract No. W-7405-
Eng.-48.

APPENDIX A

Here we give some details of the derivation of
(3.7) starting from (3.5). In order to preserve
the initial value of 1 ~ we extract the initial value
of G, denoted by G, by using the identity

G=GG 2C=GG 'G.

Except for the initial value our approximations
should preserve the detailed balance condition
(3.3) which reflects the microscopic reversibility
inherent in G,

G(12; 34t) = G(34; 12 —t) . (A2)

An approximation for G which satisfies both con-
ditions, and which will be empl. oyed here, is"

G= ~(GG22'Gv+ GDGv2G) . (A3)

Inserting (A3) into (3.5) we obtain the combination
GVV and VVC, which can be expressed in terms
of the static pair and triple distribution functions.
Since the latter is not known we make the additional
approximation"

I f44G" '" (12; 34)v, v" (r, —r, )
C2

= ——g fd45"'" (12;34)V, 4" (r, —r,),
02

(A4}

and analogously for VVC, in (A4) c~ denotes the
partial direct correla'tion function. Inserting
(A3) with (A4} into (3.5) gives (3.7}.

APPENDIX B

In this appendix we give additional details concerning the calculation of the correlation functions needed
in the mode-coupling expressions for the memory functions. We recall that our starting point is the ef-
fective-field approximation embodied in Eq. (3.17). In this approximation the correlation functions C~„
are expressed in terms of their self-parts and the static structure factors. The self-correlation functions
can be expanded as follows:

C„"gkf}=n,(SQP„(t))exp[-ik r„(t)jexp[ik. r„(0)jH„'(5„(0)))

di, ' ' ' dt„(ff„(p„(t))k 'p„(t,) k p„(t„)H„(p„(0))).
(-zk&"

(Bl)n1 (m) 0
'

0
To obtain a closed expression for C~ we make use of the "Gaussian approximation" whereby each statis-
tical average in Eq. (Bl) is approximated by all possible pairings of the momentum variables. Conse-
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quently, all dynamics in this approximation is given in terms of the velocity AC F Z, (f).
Taking i(, = v=0 in Eq. (3.17}we obtain

(B2)Ccc(kz)+ [zc,(kz) —1]Q(ngs, ,)'I'c"'(k)C', )~(kz) =Cc~c(kz)S~(k),
Cg

where we have used the continuity equation to express Cc; in terms of C~Mand B~~c(k)=S~(k)5„,. From Eq.
(Bl}we obtain the familiar expression for the self-density ACF:

k2
C;;(k, t)=ezk( —

k
dt (t —t')'d(t )),. '

I p
(B3)

This expression is then inserted into Eq. (B2) which is a matrix equation for the three unknown functions
C~,Cpp=C~, and Cpp.

In a similar manner we obtain equations for the matrix elements C~ in the form

Ce(kz) ~ [zC;;(kz) —l]g (e e, )'t'z (k)C"'"(kz)=C (lz)ll
1

where, from Eq. (Bl) (Ref. 31):

(
C;;(k, t) = —

6 p
~

dttz, (tt)) C;;(kt) .
6 Pm,

The corresponding functions C~« follow directly from the symmetry relation

C~dc(k, t) =C;',(k, t),

(B4)

(BS)

which is a direct consequence of the definition (2.8) and can also be verified from Eq. (3.17). For C«we
find

Cd~d(kz)+zcdd;(kz) Q (n,n, )' 'c '(k)c~k (kz)= C;;(kz)5n, t
Cg

with"

(B6)

c,",(k )=f[z,(f)]'-Q [z,(f)~ df z.(f )( +Q
& ) (

df z, (f ) [
c"(kf) (B7)

(B8}

The other correlation functions appearing in the mode-coupling expressions can, as a consequence of the
Gaussian approximation, now be expressed in terms of C«and C4~4., we find

Ccz(kt}= v 6 k*k C„(kt),

and

C~(kt)= v 6 kd)PCdd(kt)+ M6(35q —k'k )[Z,(t)]Mcc(kt)5n, z (Be)

C~q(kt}=6(k')'k kZcdd(kt)+ [5~q+5~,5z, —6(k')'k kN] [Z,(t)]~
lm

—[k k'+5 P'k'+5 Pk'+5 (k')'-4(S'}2k k']

(y2 (
x(,(t}] dt Z, (f )) C„(kt)5

m
(B10)

'This set of equations yields all of the required correlation functions in terms of the velocity AC F's. We
now have to solve the matrix equations (B2), (B4), and (B6). Actually, we only need the functions C~km and

C,", from Eq. (B4) and C,", from Eq. (B6} in order to calculate the matrix elements I",o' and I'om~o.
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Chalmers University of Technology, S41296 Goteborg,
Sweden.
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