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Crossover function for the critical viscosity of a classical fluid
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A closed-form approximant is proposed for the crossover function which connects the asymptotic critical behavior

of the viscosity of a fluid with the normal behavior of the viscosity away from the critical point. The expression is

used to represent the' critical viscosity enhancement near the gas-liquid critical point of fluids as a function of

temperature and density.

I. INTRODUCTION

The shear viscosity of classical fluids diverges
weakly at the critical point. In order to represent
the behavior of the viscosity q in the critical re-
gion, it is decomposed into a critical viscosity
enhancement aq induced by the critical fluctua-
tions, and a normal or bare viscosity q in the
absence of critical fluctuations

where ( is the correlation length. The critical
exponent x„ is predicted to be universal, i.e. , the
same for fluids near the gas-liquid critical point
and for fluid mixtures near the critical mixing
point. The equations of Kawasaki and of Perl and
Ferrell imply ~„=8/15w'= 0.054. Various authors
have attempted to obtain a refined theoretical
estimate for this exponent. ' ' The theoretical
value currently adopted is

gq = 0.065. (1.3)

This value is obtained when the renormalization-
group equations for critical dynamics, as well
as the mode-coupling equations for critical dy-
namics, are expanded up to second order in
& = 4-d, where d is the dimensionality of the sys-
tem. "' The exponent g„ is related to the dynamic
scaling exponent z = 3+x„which characterizes

The normal viscosity q is obtained empirically
by extrapolating the behavior of the viscosity out-
side the critical region into the critical region.
Kawasaki' and Perl and Ferrell' derived an equa-
tion for the critical viscosity enhancement yielding
a logarithmic divergence. Subsequent refined
analyses of the theoretical equations governing
critical dynamics have indicated that b, q, in fact,
diverges as a power law with a small exponent'.

the asymptotic behavior of the decay rate of
the order-parameter fluctuations. ' Recent bght
scattering experiments in a binary liquid very close
to the critical point appear to yield excellent
agreement with the theoretical prediction (1.3).'

Because small gradients in temperature and
pressure induce large gradients in density, it is
difficult to measure the viscosity very close to
the critical point. This difficulty becomes par-
ticularly severe in gases near the gas-liquid criti-
cal point. Hence, the question arises whether
the actual experimental viscosity data are close
enough to the critical point for the predicted pow-
er-law behavior to be valid. An examination of
the equations for critical dynamics" indicates
that in the derivation of the powex-law behavior

(1.3) one assumes the critical point to be approach-
ed sufficiently close so that the viscosity is domi-
nated by its critical part, i.e., Ag» q. This con-
dition is never satisfied for experimental viscosity
data. To alleviate this difficulty it is commonly
assumed that the viscosity anomaly is a multipli-
cative anomaly. ""Thus rather than Aq, it is
assumed that the viscosity ratio q/q diverges with
the predicted power-law behaviox

(1.4)

where Q, is an effective wave number which deter-
mines the amplitude of the power law. Indeed,
when. one fits experimental viscosity data of binary
liquids near the critical mixing point to (1.4),
good agreement with the theoretical exponent val-
ues g~ —0.065 is often found.

The situation is more complicated when one
wants to interpret experimental viscosity data of
fluids near the gas-liquid critical point. Here,
the experimentally observed critical viscosity
enhancement is small and restricted to a small
temperature range. When experimental viscosity
data near the gas-liquid critical point are fitted
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to (1.4) with both Q, and x„as adjustable para-
meters, it is our experience that the exponent g„
tends to be slightly smaller than the value x„
= 0.065 found for binary-liquid mixtures. In retro-
spect, this tendency is also noted in the exponent
values quoted by Lee" and indicates, in our opin-
ion, that the asymptotic range is not fully ap-
proached by the experimental data. To obtain
a satisfactory representation of the actual experi-
mental data, one needs a crossover function that
incorporates the predicted asymptotic power-law
behavior at the critical point and that reduces to the
normal viscosity behavior away from the critical
point. For this purpose Basu and co-workers
introduced the empirical equation'

in(q/q) = x„ ln(Q, ))e (Q,&
—1), (1.5)

where e(x) is the Heaviside step function such
that e(x) = 1 for x & 1 and e (x) = 0 for x& 1. How-

ever, an empirical step function does not do just-
ice to the smooth onset of the critical viscosity
enhancement observed in reality.

A first attempt to solve this problem was made

by Oxtoby and Gelbart who obtained a crossover
function by integrating numerically the mode-
coupling equation for the critical viscosity en-
hancement. " However, it turns out that the cross-
over implied by their solution is too slow and it

does not yield a satisfactory representation of
the experimental viscosity data as demonstrated
in Sec. IV.

It is the purpose of this paper to present an im-
proved crossover function for the critical viscosi-
ty. Moreover, it will be obtained in closed math-
ematical form so that it can be easily used in the
analysis of experimental viscosity data. The criti-
cal viscosity enhancement can be expressed for-
mally in terms of an integral over the wave-num-
ber-dependent decay rate of the order-parameter
fluctuations. In evaluating this integral we treat
the effect of the noncritical contribution to the
decay rate as indicateil by Qxtoby and Gelbart, '
while retaining the Debye cutoff at large wave
numbers introduced by Perl and Ferrell. ' Using
an approximate expression for the critical part
of the decay rate, we derive in Sec. II a scaling
function for the critical viscosity enhancement.
Modifying this solution slightly, so as to ensure
consistency with the theoretically predicted asymp-
totic power-law behavior, we propose an explicit
crossover function for the critical viscosity in
Sec. III. In Sec. IV we show how the crossover
function can be used to obtain a satisfactory rep-
resentation af the experimental critical viscosity
enhancement of a fluid near the gas-liquid critical
point as a function of temperature and density.

II. CRITICAL VISCOSITY ENHANCEMENT AND ORDER-PARAMETER FLUCTUATIONS

According to the mode-coupling theory of critical dynamics, the dominant contribution to the critical
viscosity enhancement is given by an integral of the form'

k~T 1 ~ 2. 2 . 2
- (1 1 ' 1

'9=
2h (2v) q 4X q X(l Ql („( ) ((k () ~( ) ~((g ()

~ (2.1)

Here k~ is the Boltzmann constant, 1' the abso-
lute temperature, 8 and P the polar and azimuthal
angle af the wave vector q in a coordinate system
with the polar axis in the direction of k, X(q) the
wave-number -dependent susceptibility which is
the Fourier transform of the order-parameter
correlation function, and I'(q) the decay rate of
the order-parameter fluctuations with wave num-
ber q. Introducing the Ornstein-Zernike approxi-
mation

(2.2)

and taking the hydrodynamic limit k- 0, we obtain
from (2.1)

I

which is precisely the decoupled-mode formula
derived earlier by Perl and Ferrell for the criti-
cal viscosity enhancement. '

For binary liquids near the critical mixing
point, I'=Dq /X, where D is the binary-diffusion
coefficient; for fluids near the gas-liquid critical
point, I'=Xq'/C~, where A. is the thermal conduc-
tivity and C~ the isobaric heat capacity per unit
volume. In view of the intended applications, we

adopt in this paper the thermodynamic variables
appropriate for the gas-liquid critical region.
In analogy to (1.1), the thermal conductivity X

is also decomposed into a critical thermal con-
ductivity enhancement ~A. and a normal thermal
conductivity X,"

hq=, &q sin'8 cos'e sin'P~2' 3 i1+q'$') 1 q
'

(2.3)

(2.4)

As a consequence, one can distinguish in the decay
rate I', a critical contribution Al and a normal
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contribution r:
r=~r+r

with

(2.5)

Aq'= c,(q)= c,(0)"'«) (2.6)

where C~(0) is the isobaric heat capacity per unit
volume in the thermodynamic limit q- 0. The
term r represents the normal critical slowing
down of the fluctuations as predicted by Van Hove
in the absence of a critical thermal conductivity
enhancement. "

The critical decay rate b, r in turn is given by
a mode-coupling integral' or a decoupled-mode
integral" over the wave-number-dependent vis-
cosity q(q}. Hence, to deduce hg the two inte-
grals have to be solved simultaneously which re-
quires a cumbersome numerical procedure. In
the first approximation one commonly neglects
the effect of the critical viscosity enhancement
on the decay rate r in (2.3). In this approxima-

yOn16w 19~20

r+ eg
C ~C C C 40 'P=P

lim qc =

J0 Pc

(2.12)

where T„p„P„g„andX, refer to the values
of 7, p, P, g, and% at the critical point.

To obtain an explicit expression for 4g, we
substitute (2.10) into (2.3), integrate over the
polar and azimuthal angles and obtain

8 ag ( q2~2 2

tive to that of the critical thermal conductivity,
on the decay rate of the order-parameter fluctua, -
tions. It is a slowly varying function of tempera-
ture and density and related to the parameter Qp

of Qxtoby and Gelbart" by qc $ = w/2a, . To deter-
mine the limiting value of qz at the critical point,
we note that C~(0} diverges as Tp '(BP/sT}~}((0},
where p is the density, P the pressure, and
X(0) = p(ap/BP)r. At the critical isochore y(0)P /p2

=r'l(T —T,)/T, l
~ and 5= g, l(T —T, )/T, l

", where

y = 2p in the bernstein-Zernike approximation con-
sidered here. Thus

~r = e q2A, (q (},
6wy}]

(2.7)
I+q'('+qc ((I+q'(')" '

where

Z,(x) = —,
' [1+x'+ (x' —x '}arctanx], (2.8)

is commonly referred to as the Kawasaki func-
tion. With (2.5}, (2.6), and (2.7} the integral (2.3)
for the critical viscosity enhancement can then
be calculated numerically. For our purpose we
prefer to rewrite the critical decay rate in the
form

&r = q'(I+q']'}'/'c(q ().
6xg)

(2.9)

Here c (x) is a dynamical scaling function intro-
duced by Ferrell"; it is a function of order unity
which varies from c(0) =1 in the hydrodynamic
regime to c(~) = Sw/8 in the critical regime. As
noted by Perl and Ferrell, the dominant contri-
butions from 6r to hg correspond to q$& 1. Thus
to obtain a closed-form expression for hg, we
replace c(q]} in (2.9) by its asymptotic value
Sw/8 for all q f,. In this approximation the decay
rate r can be written in the form

with

(I+q'h'}" +
kT2 2 2)

16'~ qc& )

k~T C~(0}

(2.10)

(2.11)

The wave number q~ measures the importance
of the bare thermal conductivity coefficient, rela-

where

with

8
15 2

sin4$ dg
qc

p 1 +qg ( cosg

(2.18)

(2.16}

pc= r cac(1osq f+') c'/', (2.17)

The integral in (2.16) can be evaluated by elemen-
tary techniques and we obtain

1
& =~» sinSgc — sin2gc+, ), [1-~4(qc])2]si~cc( ' (qc5 '

.61 —-'(qc 5}'lt}c—l(qc ()'- ll'~'&(~)],(qc8'
(2.18)

(2.13)

where q~ is a fina. l cutoff introduced by Perl and
Ferrell. ' Its presence reflects the physical fact
that the critical viscosity enhancement is induced
by the long-range fluctuations and is only correctly
described by (2.13}for wave numbers substantially
larger than those corresponding to the microscopic
structure of the fluid.

To evaluate (2.13}, we introduce an integration
variable g defined as

seep = (1+q'(')'/', (2.14)

so that
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where the function L(w} is given by

1+gyln, . for 0c~+1
L(N/) =

2arctanIwI, for qc&&1

with

(2.19)

qc) +1 2
(2.20)

We find it convenient to introduce a dimension-
less correlation length q, ], where q, is an effec-
tive wave number defined as

1 1 1
+gg) (2.21}

and prefer to consider the function H = P(q, ), qo /qc )
as a function of q, ( and of the ratio qo/qc.
In the extreme critical region qe(» 1 and the func-
tion H has the asymptotic behavior

lim If =In(2q, g}-s„
Q pg~ 00

(2.22)

ep5-1 ' '
qe$+I (2.24)
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FIG. 1. Plot of the function H(q()$, q~/qz) as a function
of qadi for various values of qo/qo, namely, qz/qo = 0, 1,

The dashed curve represents the limiting behavior
ln(Q0$ ) with Q()=2qoe ~ . The crosses represent values
obtained numerically in the limit qz/qz =~ as discussed
in the text.

indicated by the dashed line in Fig. 1. The limit
considered by Oxtoby and Gelbart" corresponds
to qo/qc-~. In this limit q, (=qc] and (2.18)
reduces to

H(q, g, ) = ——+,
I
1+—q, $ I

4 1 ( 3m'

(q.8'
& 4

.I

——I(qA)'- lI "L(~)
I

1 (g
(q.(}' i2 '

)

(2.23)

with

This function is represented by the curve marked
~ in Fig. 1. In this limit our function is an ap-
proximant to the crossover function proposed in
numerical form by Oxtoby and Gelbart; the crosses
in Fig. 1 indicate the values that are obtained
numerically from (2.3) in the limit qo-~ when
one uses (2.7) instead of (2.9) in the expression
for 6 I'. Our crossover function has the advantage
of having a closed mathematical form and is,
therefore, more convenient in the representation
of experimental viscosity data.

The limit qn/qc - 0 corresponds to the case in
which the effect of the background decay rate on
the viscosity is neglected, as was done by Perl
and FerrelL' In this limit q, $ =qo g and we obtain

~(1+q'&'}"'+«+1'
Z(q, (, 0) = lnI

III. PROPOSED CROSSOVER FUNCTION

From (1.1) and (2.15) it follows that the viscosity
in the critical region is given by

~ =1+ 8
15'H (3.1)

In the extreme critical region, (3.1}implies a
logarithmic divergence originally derived by Kawa-
saki' and Perl and Ferrell. ' However, as noted
in the introduction, a more refined analysis"
as well as experimental evidence" "indicates
that the viscosity g diverges asymptotically as
a power law (1.3). To make our approximant con-

q'5'
(I +q2]2)1/2 3(1 +q2]2)3/2 ' (

This function is indicated in Fig. 1 by the curve
marked 0. The curves marked ~ and 0 form the
limiting cases of a family Of curves obtained by
varying the ratio qo/qc. For arbitrary qo/qc one
has to use (2.17) and (2.18) to calculate H as a
function of q,]. For qn/qc =1 the result is rep-
resented in Fig. 1 by the curve marked 1. Physi-
cally one must expect qo/qc to be finite. This is
the reason why the Oxtoby-Gelbart limit qo/qc -~
overestimates the range of the critical viscosity
enhancement.

We also considered the effect of introducing
a cutoff wave number q~ in the mode-coupling
integral for the decay rate 1. As a first estimate,
such a cutoff yields a term of about (AsTq'/16iI(}
x (I +q']')/2qo to be subtracted from (2.7) or (2.9).
In this approximation we can combine this term
with the background contribution in (2.10) by re-
interpreting q~. Since in this paper q~ is not cal-
culated theoretically, but deduced from the back-
ground data estimated experimentally, it does
not modify the procedure presented here.
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sistent with the asymptotic power-law divergence,
we treat the right-hand side of (3.1}as the first
two terms of the expansion of an exponential func-
tion, so that

g = exp(x~). (3.2)

Q =2q,e 'i'=0. 53q, . (3.3)

In the limit $-0, the function H vanishes as
-', (qc $)(qn()' so that q/yi approaches unity. In
the Oxtoby-Gelbart limit q~-~, H vanishes as
3vqc)/16 which leads to a much slower decay af
the critical viscosity enhancement.

The appraximant (3.2} relates the critical vis-
cosity ratio q/y) to the correlation length with
two system-dependent parameters, namely, q~
and q~. These parameters are slowly varying
functions of density and temperature which we
treat as constants, q~ being identified with its
critical value given by (2.12). Thus Eq. (3.2) with
(2.12}and (2.18}allows us to represent the critical
viscosity enhancement in terms of the correlation
length, the equation of state, and the normal vis-
cosity and thermal conductivity in the absence
of critical fluctuations, leaving q~ as the only
adjustable parameter.

Here we have identified 8/15m' as the first apprax-
imation to the critical exponent x„. Equation (3.2)
is our proposed crossover function. From (2.22)
it follows that {3.2) diverges in the limit (
as g/q = {Qo)}"n, where the constant Q, in (1.4}
is identified with

n=n. (T)+nlP 92P 93P + 9~P' (4.2)

where q,(T) is the viscosity in the low-density
limit. The values of q, (T) for N, have been tabu-
lated by Hanley and Ely, "while the coefficients

(4.1)

while the amplitude $p can be estimated from the
equation of state by applying the principle of two-
scale-factor universality. For further details
the reader is referred to a previous review. "

Critical region parameters, needed to calculate
qc from (2.10) are listed in Table I, together with
the appropriate literature sources. Equations
(3.2) and (4.1}enable us to relate the critical vis-
cosity ratio g/yi to the equation of state with qn
as the only adjustable parameter. Equations that
reproduce the experimental compressibilities
with adequate accuracy in a range of tempera-
tures and densities approximately equal to the
range where a critical viscosity enhancement is
observed can be found elsewhere. "

As a first example, we consider the viscosity
of nitrogen near the critical point, as measured
by Zozulya and Blagoi. " The experimental data
were obtained as a function of density at a large
number of temperatures close to 7,. Data along
some representative isotherms are shown in Fig.
2. The normal viscosity g can be deduced from
the data at 135 K, where the critical viscosity
enhancement has disappeared completely. For
this purpose we use an empirical representation
of the form

IV. APPLICATION

As an application we reconsider the critical
viscosity enhancement observed for nitrogen and
steam which we previously analyzed in terms of
the more primitive equation (1.5}, using both Q,
and x„as adjustable parameters. '~ " Instead,
we now impose the value g„=0.065 as predicted
theoretically" and confirmed by light scattering
measurements for a binary liquid very close to
the critical point. '

In order to analyze the experimental viscosity
data in terms of (3.2), we need to know the corre-
lation length as a function of both temperature
and density. In principle, this correlation length
can be determined experimentally from light
scattering measurements. However, adequate
sets of correlation length data covering the experi-
mental range of temperatures and densities are
currently not available. In the absence of such
information, we estimate the correlation length
from an approximate relationship with the com-
pressibility

Nitrogen

oK'
P,= 3.398 MPab

=0.168 NPa K
BP gb

p-p

0 075c

6 pc

g= 18.0 x10-6 Paso

7,= 0.0343 Wm-' K-"

qc =19 ~

qD'=12 A.

Steam

Tc= 647.03 K

P~= 22.03 Mpa~

gK= 0.268 MPa K ~

~~ @=Pc

1 '= 0.0750

],=1.3 A'

c 39.6 x10 Pa s"

9Wm- K

q-, '=16 A

q~'=11 L

~ Reference 14.
b Reference 22.' Reference 21.

Reference 23.' Reference 24.

Reference 15.
~ Reference 25.
"Reference 26.

Reference 27.

TABLE I. Critical region parameters for nitrogen
and steam.
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FIG. 2. Viscosity of nitrogen as a function of density
at various temperatures close to T~. The data points
are those obtained by Zozulya and Blagoi (Ref. 23) and
the curves represent the values calculated from the
crossover function proposed in this paper.

q» q» q» q4 can be determined from a fit to the
data af Zozulya and Blagoi at 135 K. We thus ob-
tain q, = —0.0098x 10 ' Pa s m'/kg, t), =+0.2430
x10 ' Pas(m'/kg)', t), = —0.5551x10"Pas(m'/
kg)', and ti, =+0.6336x10 "Pas (m'/kg)', valid
in the range 200 & p & 450 kg/m' considered here.
From the behavior of the viscosity outside the
critical region, it is known that the temperature
dependence of the coefficients g„g„g„g4can
be neglected in the small temperature range con-
sidered here. For a few experimental tempera-
tures, Zozulya and Blagoi tabulated Ag rather
than g; these values were reconverted into values
of ti with the use of (1.1) and (4.2).

In Fig. 3 we have plotted ti/ti as a function of (
on a double logarithmic scale. The solid curve
represents the crossover function (3.2) with qc'= 19
A as deduced from the information in Table I
and with q~'=12 A. For comparison we also in-
dicate with the dashed curve the calculated be-
havior in the Oxtoby-Gelbart limit q~'= 0. We

conclude that introduction of a finite cutoff leads
to a significant improvement in the representation
of the experimental data.

As a second example, we consider the viscosity
of steam near the critical point. The experimental
data for the kinematic viscosity ti/p, obtained
by Rivkin and co-workers as a function of pressure
and temperature, "' were converted into values
for g as a function of density and temperature
by Basu et al. '"" Data obtained along five super-
critical isotherms are shown in Fig. 4. In Fig. 5
we show the corresponding values of ti/ti as a
function of g on a double logarithmic scale. For
this purpose we used for g a global equation of
the form

0—

IO

I

l02

$(IO m)

0 126.60 K
v )27.00K

FIG. 3. Log-log plot of g/g as a function of g for ni-
trogen. The solid curve represents the crossover func-
tion with qn = 12 A and the dashed curve represents the
crossover function in the Oxtoby-Gelbart limit q & = O.

ri=tic(T) exp p g g a,&(T
' —1)t(p —1) ~, (4.3)

f~o f=o ].,

with parameter values determined by Watson
et al. ' The solid curve in Fig. 5 represents the
crossover function (3.2) with qot = 16 A as deduced
from the information in Table I and with q~' = 1l A.
The corresponding function with q~'= 0 is again
indicated by the dashed curve.

V. CONCLUSION

We have formulated a crossover function for
the critical viscosity which on the one hand re-
duces asymptotically to the power-law behavior

50

45

O
cL 40
O

35

I

250

I

I I I

300 350

Density, kg/m

l

400 450

FIG. 4. Viscosity of steam as a function of density
at various temperatures near T~. The data points in-
dicate the values deduced from the data of Rivkin and
co-workers (Ref. 26) and the curves represent the values
calculated from the crossover function proposed in this
paper.
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O.IO

Ig

g- 0.05
C

0
20 50

g(io m)

100 200

FIG. 5. Log-log plotof g/g as a functionof $ for steam.
The solid curve represents the crossover function with

qn =11A and the dashed curve represents the crossover
function in the Oxtoby-Gelbart limit qz =0.

of a finite Debye wave-number cutoff q~. Intro-
duction of this finite cutoff leads to a significant
improvement in the representation of experimental
viscosity data near the critical point. In principle,
the method could be refined by allowing for pos-
sible variations of q~ and q~ with temperature
and density. However, in the absence of further
theoretical information concerning q~, and in
view of the still limited accuracy of the experi-
mental data for the critical viscosity enhancement,
such refinements do not seem warranted at this
time.
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