
PHYSICAL REVIEW A VOLUME 24, NUMBER 3 SEPTEMBER 1981

Wave packets and localized pulses —a dual approach
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It is shown that an interesting duality exists for wave packets and localized pulses as their representations in (R,t)
and (k,co) spaces are compared. A wave packet in (R,t) space has a slowly varying envelope. This corresponds to a
narrow spectrum in (k,co) space. On the other hand, a localized pulse in (R,t) space corresponds to a slowly tapering
spectrum in (k~) space. The analysis of wave-packet propagation is usually carried out by means of ray theory. It is
well known that ray tracing, in spite of its limitations, provides a powerful tool for the analysis of wave-packet
propagation in dispersive, weakly inhomogeneous media. Similarly, it is shown here that localized pulses in
inhomogeneous, weakly dispersive media, can be analyzed, using the concepts of dual-dispersion equation, dual-ray
tracing, and group slowness. Hamilton's equations of geometrical optics are the Euler-Lagrange equations of the
variational form known as Fermat s principle. In an analogous manner the dual Fermat principle is introduced here,
being equivalent to the dual-ray equations. The method proposed here facilitates the analysis of localized pulses in
inhomogeneous, weakly dispersive media. The dual-ray tracing provides a clue to the way in which the spectrum of
a pulse in (k,co) space, hence its shape in (X,t) space, change in the course of propagation.

I. INTRODUCTION AND SUMMARY

Certain structural properties of waves and their
spectra have been known for a long time, in the
context of Fourier transforms. But although
the Fourier transform is a powerful tool, it
cannot properly be used when the constitutive
parameters are described in a mixed form, con-
taining variables belonging to both the original
and the transform spaces. For a restricted
class of problems, namely quasi-plane waves
in dispersive, weakly inhomogeneous media,
ray theory provides an adequate approximation.
The price for using ray theory is the lass of in-
formation regarding wave amplitude and polari-
zation, although intensity can be salvaged, to
some extent. For ray theory we define a space
(x, f;%, &o), essentially (x, t) space in which k, ru

are slowly varying parameters, and a corre-
sponding (k, ~;x, t) space. Their interesting
structural properties prompted the study of the
present dual procedure, in which the roles of
these two spaces are exchanged. Consequently,
as shown subsequently, a consistent dictionary
develops, as in the following examples:

Once the dual structure is clearly defined, the
physical import can be discussed. In essence,
ray tracing describes the transfer of energy in
space, for dispersive, weakly inhomogeneous
media. Dual-ray tracing describes the transfer
of energy for localized pulses in inhomogeneous,
weakly dispersive media. It provides general
information concerning the evolution of the pulse
and its associated spectrum. In this introductory
section we present the fundamental dual structure,
summarize the ray theory, and present (without
proof) the dual concepts. Then the physical impli-
cations are discussed. It is hoped that this mode
of presentation will provide the reader with an
overall view, without the need of going through
the detailed derivations, given later.

A. The fundamental duality

Before any attempt is made to investigate the
physical contents of the problem at hand, the
formalism on which the discussion is based must
be displayed. As an example of a physical model,
consider the Maxwell equations in space (x, t),
in a sourceless and lossless domain, '

v x H a5 jat =0,
Ray Theory

X
t
k

Wave packet
Narrow spectrum
Group velocity
Dispersion equation
F(k, &o;x, t) =0

Fermat principle

Dual-Hay Theory

k

x
t
Dual wave packet
Localized pulse
Group slowness
Dual-dispersion equation
G(x, t; k, ru) = 0

Dual-Fermat principle

V x f+ a B/af =0,

where E =R(x, t), etc. , depend on x, t. The Fourier
transform of (1) is given by

kx g+ &o5=0,

kx g —(o(g=0,

where 8 = S(fc, &u) is the transform of E(x, t), etc.
The two sets (1) and (2) are equivalent through
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where 4, P are dyadics and different symbols are
now used for the fields. Strictly speaking, these

fields, being a function of the mixture k, v, x, t
cannot be properly used in conjunction with either

(1) or (2). However, for a special class of prob-

lems the argument can proceed in a meaningful

way. Let us consider the special case where

0, }I vary slowly in (x, t} (in the sense described

below}, i.e., the medium is assumed to be prac-
tically constant over a distance and a time on

the order of a wavelength, a period, respectively.
This is consistent with defining solutions of (1)
describing locally and instantaneously quasi-

plane waves, of the form

E =f (x, t)e~'*" (4)

etc. The slow variation implies that the ampli-

tudes, e.g., E„are kept constant with respect
to time and space differentiation S/at, S/Sx.

Also, to comply with plane wave theory, 8 satis-

fies

a8/ax =k,
(5)

Consequently, it is now possible to define (3}as
operational expressions in (x, t) space,

the Fourier transformation. As usual, constitutive

relations are necessary to render (1) or (2} deter-

minate. Let us presume that the constitutive

relations are given, by means of a model, or as
experimental data in the form

d=t(k, u);x, t} e,
(3)

b=P(k, u&;x, t) ~ h,

(9)
5=ii(x, t;k, &o} h.

Again, (9) does not in general fit any of the forms

(1) or (2). Let us assume special solutions of

(2), which are analogous to (4) and constitute

spectra of the form

r(k, (d) =So(%, rd)e' ~" "' (10)

etc. , with

Brp/8k=x, By/8&g=-f,

and with a similar stipulation of slow variation
which specifies g, as a constant with respect to

k, co differentiation. In view of (9)-(11), we now

have in (k, ar) space the operational forms

%=t( is/sk, is/s&o;k, ~) X,
(12)

0= p( ia/s-k, ia/s~;k, &o) R.
Substituting (12}into (2) yields

kxk, + &A(x, t;k&o), X0=0,
(13)

kx 8, —urP(x, t;k, &o} X, =0,

which should be compared to (7). Before we can

proceed, the factors k, &o ip (13) must be dealt

with. A step is now taken which will be justified
later on. We differentiate (13) with respect to
&u, exploiting the slow variation of Ro, X„C,P,

with respect to k, ao. Defining the group slowness

In the present study the dual situation is investi-

gated. Let us replace (3}by constitutive relations
in inhomogeneous media which are weakly depen-

dent on k, &, written in the form

d=K(x, t;k, &o} e,

5= e ( is/sx, is/at; x, t) E,

B=p( is/sx, i-s/et;x, f) H,

dk at=~=S 3d& Bx

(13) becomes

(14)

which can be substituted into (1). The definition

of constitutive operators has been considered
before'' Substitution of (4)-(6) in (1) yields

kx H + &A(k, &o;x, t) ED=0,

k && E, —~y(k, ~;x, t) H, =0,

constituting a set of six scalar homogeneous al-
gebraic equations for the unknowns E„HO. The

condition of solubility requires that the deter-
minant of (7) vanishes, yielding a scalar function

F(k, &u;x, t)=0, (8)

referred to as the dispersion equation. This is
the starting point for ray theory.

sxsc, +g. g, =0

SX $0 p. +=0,
(15)

which is a set of six homogeneous equations in

3'.„jfo, prescribing that the determinant of (15)
vanishes. Hence we obtain

G(s, x, f; k, &o) =0, (16)

(17}

and henceforth referred to as the dual-dispersion
equation. The integration of (16) is not always

which in view of iK (14}is still a differential equa-
tion. In order to have the counterpart of F =0
(8), the integral of (16) is considered

G(x, t; k, a&) =0,
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necessary, but in any case, the derivation of the
dual-dispersion equation (17) is much simpler
than a direct solution of the Maxwell equations
(1)

F(ea/ex, ea/at; x, t) =0, (18)

usually referred to as the eikonal equation. Ray
theory is a method for solving (18), hence only
8 in (4) can be found. The intensity EE* can be
derived by using energy conservation arguments,
but information concerning polarization is lost,
in general. In spite of the limitations of ray
theory it is a powerful tool for understanding
the propagation of wave packets in dispersive,
slowly varying inhomogeneous media. , for which
in general the full wave solution is not available.

Inasmuch as (18) is in general a complicated
nonlinear equation, it is transformed into a set
of first-order differential equations which is
easier to integrate. This is the familiar method
of characteristics. Instead of solving E=O (18)
directly, we shall consider dF =0, whose solution
is F=const, and with proper initial conditions
becomes F =0. Expanding dF and dividing through-
out by dtxO, 8F/8&oxO, we obtain

8F/ak dk d&o 8F/ex dx 8F/at
8F/8&v dt dt 8F/ace dt 8F/ev

For reasons discussed later, the group velocity
is defined as

B. Recapitulation of ray theory

The outline given above provides the basis for
both ray theory and dual-ray theory. Ray theory
has been discussed by many authors'~ on various
levels of mathematical rigor and physical appli-
cations. Our aim here is to outline in a straight-
forward way the derivation of Hamilton's equations
of geometric optics. The dual-ray theory will
be considered in the following subsection.

The starting point for ray theory is the disper-
sion Eq. (8). Reinstating the definition (5), this
becomes a differential equation on 8

P(g, t)
a(x, t) = [k dx —(ddt],

Pp Sp, gp)

the phase 8 of the wave (4) can be reconstructed,
hence finally (18) can be considered solved. The
line integral (22) is independent of the integration
path provided'

(22}

8~xk=P
Bx

ek 8M—+~=0
Bt ex

(23}

Note that the first equation (23} is the Snell law
of refraction.

We are now ready to discuss the physical im-
plications of this mathematical model. The solu-
tion of (20), (21) provides paths x(t) on which
the slowly varying k(t), &u(t), characterizing the
wave packet, are known. The direction of the
group velocity is tangential to the path x(t), in-
dicating the direction of energy flow. Hence,
although the detailed structure of the amplitude
is lost, the convergence (or divergence) of rays
indicates the way their intensity grows (or de-
creases).

C. Dual-ray theory

Substituting (11) into (17), it becomes clear
that 6 =0 is a differential equation on y. Its
solution describes the argument of the spectrum
(10) of a localized pulse. Conventional ray theory
is not involved in the detailed description of the
wave packet's envelope [R, in (4)]. At best, the
evolution of I E, I can be inferred from the be-
havior of the rays. Similarly, in (10) the only
assumption is that the power spectrum 8 ~ g»
is very wide, i.e., changing slowly as a function
of k, ~. Dual-ray theory describes the behavior
of (I() in inhomogeneous, meakly dispersive media.
This provides a clue to the way an initially sharp
pulse mill deteriorate in such a medium. Using
the dictionary given above and following the ar-
gument that led to (20) and (21),the dual ray equa--
tions are obtained:

dx aF/ekv=—=-
dt 8F/eu

Substitution of (20) into (19) prescribes

dk 8F/ax
dt 8F/8&v '

(20)

(21)

dk 8G/ex
d(u 8G/at

dx aG/ak
d~ aG/at '

dt 8G/8(o
dw 8G/et '

(24)

d~ aF/at
dt 8F/e~

Thus, the system (20) and (21), satisfying (19), is
tantamount to F=p when proper initial conditions
are applied to the solution. Defining

where the group slowness s has already been de-
fined in (14). More detail will be supplied in a
subsequent section.

We are now in the position to make a few ob-
servations regarding the physics of the problem.
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As opposed to the full wave* solution, and similar
to conventional-ray theory, dual-ray theory is
capable of describing the effects of a specific
medium, but cannot supply the detailed description
of a specific pulse. Knowing G =0 amounts to
having a function t —t(x; k, (d) which for a special
instant t, describes a surface t, = t(x; k, (d) on
which the pulse is found in x space. The weak
dependence on k, m introduces some ambiguity
as to the exact location of the pulse. Although
different spectral components propagate at dif-
ferent slowness value, as long as the dispersion
j.s weak we expect to be able to locate the pulse
within reasonable bounds. The counterpart of
G =0 (1V) is F =0 (8) which for a given fre(luency,
characterizing a wave packet, describes a sur-
face p), = (d(k; x, t) in k space. The pertinent k
is located on this surface. The weak inhomo-
geneity in x, t affects the value of k, {d as pre-
scribed by the ray e(iuations (21). Similarly,
solving the dual-ray e(luations (24) describes
how x, t change for various k, ~, in a given me-
dium. For conventional-ray tracing {20), the
tangent to the ray defines the group velocity,
indicating the direction of energy flow. Simi-
larly, the tangent to k((d} defines the direction
of the group slowness vector, indicating the
direction in which the energy of various spectral
components is moving. Consequently the dual

rays describe the fission of the pulse in x space.
The convergence of the dual rays in the vicinity
of some value v points to the fact that the energy
density for'this spectral part is increasing, i.e.,
t Sp I (10) is peaking. Usually this is associated
with broadening of the pulse in x space. This
is another way of looking at the problem of pulse
fission in x space.

H. DUAL STRUCTURE OF WAVE PACKETS
AND LOCALIZED PULSES

The overview presented above needs more elab-
oration. In particular, we have introduced the
key concepts of group velocity and group slowness
without establishing their physical origin. A

wave packet in homogeneous media is defined

by a superposition of plane waves, of the form

(25) is actually a threefold integration and can
be written as

)(xd)=, f d'). f(X [X])e"*'"'4' . (26)

(d(k) = (dp(k, )+ - ~ (k —k,) .
Substituting (27) into (26) yields

t) e(apxx ((dpt dap p&((1kp). (x& da akpt)
y J y

(28)

displaying, as in (4), the carrier plane wave
and the amplitude (or envelope, or modulation),
represented by the integral (28). The amplitude

remains constant on the path x- vt = const, where

dx 8(() 8F/sk
'=dt ='sea =

()F/() p)
(28)

justifying the definition of the group velocity
(20) for weakly inhomogeneous media.

We are now ready for the definition of the dual
concepts, the dual wave packet and the group
slowness. The counterpart of (25), for inhomo-
geneous nondispersive media, is a spectrum
given in the form

d()(tx)= fd'*did(G) (Pxa"x

where 6(G) signifies that G =0 (1V), corresponding
to t =t(x) is satisfied. Let us consider a local-
ized pulse such that the integrand in (30) is signi-
ficant in the vicinity of a central value x„ to

=t(x,) only. Corresponding to (2V) we now have

t(x) =t, + ~ (x- x,) .
xo

Substituting (31) in (30), we obtain

(31)

&) &ia.ap-((d)p dan(X f) X'))( i(X-0p)x. (La )/aap(d)
L

With t considered to be a parameter, (26) defines
a three-dimensional Fourier transform and

fe '"(a)a is the spectrum of the wave in (luestion.
Assuming a narrow band spectrum, the disper-
sion e(luation. (d{k) can be expanded about a central
value k, keeping only the leading terms

d(xd)= f d'Xdtxd(X)f(X, )x'',{25} (32)

where eventually the infinite range of integration
will be restricted to a narrow band spectrum.
Here 6(F) (in the sense of the Dirac 6 function)
indicates that the pertinent dispersion equation
F(k, (()) =0, [t.e., (8) independent of x, t] is satis-
fied. The method used here is an extension of
a technique given by Stratton. ' It follows that

displaying the same structure as (10). This speci-
fies the spectrum of the localized pulse as a dual-
wave packet, possessing an amplitude which re-
mains constant on the path k- s~ =const, where
s the group slowness, has been defined in (14).
Because of the localized pulse structure in (32),
i.e., small interval of integration, the amplitude
of the dual wave packet tapers off slowly as a



function of fc, &u. This justifies the assumptions
we made on 80 (10).

The present section, is more than an exercise
in Fourier transforms, because the physical
properties are included via the dispersion equa-
tion E(k, ~) =0 [or equivalently ~(k)], and the
dual-dispersion equation G(x, t) = 0 [or equivalently
t(x)]. In (25)-(29) this prescribes values k, &u

which satisfy & =0. Similarly in (30)-(32), for
a given time to the pulse is spread in an interval
x w nx about a central value x„such that G(x,
tg= 0 is satisfied. There is a slight difference
between the two eases which should be mentioned.
Since G = 0 (1V} is the integral of (16), there
exists a constant of integration which permits
an arbitrary choice for the initial location of
the pulse.

IH. THE DUAI DISPERSION EQUATION AND RAY
TRACING

A. Theory

The manner in which the group slowness concept
appears as the counterpart of the group velocity
suggests that ray tracing as well has its analog.
This is the dual-ray tracing theory. It describes
the propagation of localized pulses in inhomo-
geneous we»&y dispersive media. Dual-ray
theory, like conventional ray theory, rather than
dealing with specific signals, describes the effects
induced by the medium at hand. A cursory out-
line has been given above, and necessary addi-
tional detail is supplied here.

Starting with the constitutive relations (9) and
assuming solutions of the form (10), with prop-
erties (ll) and slow variation of the amplitude,
the operational forms (12}are obtained. This
yields (13) which still contains the rapidly varying
factors k, ~, which must be properly eliminated.
The argument presented in the former section
for inhomogeneous nondispersive media led to
the concept of group slowness %=et/Bx, and
described the amplitude of the dual-wave packet
as constant on the line k- s(d = const in k space.
This corresponds to s =dk/du&. These results are
adopted for inhomogeneous weakly dispersive
media, justifying the use of (14) in (13). Finally
this leads to the definition of the dual-dispersion
equation (1V). The transition to (24} is now de.-
rived in more detail.

Reinstating (11) in G =0 (1V) yields the analog
of (18):

G(ep/Bk, —ey/Bu); k, (o) =0, (33)

whose solution is sought. Following the same
line of argument as for the conventional ray-
tracing theory, the counterpart of (19) is obtained

P(R fd)

y(k, (o) = (x dk- td(u),
Po(i:0 Mo)

and stipulating the uniqueness conditions

8=xx=0
&k

ex et—+~=0
8(t) ek

(35)

(36)

(ll) is satisfied. Hence y can be reconstructed
and (33) can be considered solved. By inspection
of (23) and (36) it is noticed that (8/ek) x x =0
prescribes a dual Snell law of refraction for the
dual rays in % space.

B. Examples

The solution of (20) and (21), or (24) can be
conveniently obtained using numerical methods
{e.g., the Runge-Kutta method'). Even though
the present study is theoretical, a few simple
examples are presented to highlight the new
method and its physical import. In (15) let us
consider' an isotropic, inhomogeneous, and non-
dispersive medium, such that p =p, =const and
& =e(x, t}, where p„a are scalars. Consequently,
(16) is derived in the form

G =det{sx sxi- qp I) =0,

where I is the idemfactor dyadic. For transverse
one&imensional fields (3V) reduces to

(3V)

s=—=+ [a,~(x, t}]'~'.
dx (38)

The simplicity of (38) is somewhat misleading
since for the full wave solution (1) with arbitrary
t(x, t) usually leads to complicated differential
equations. It is due to the present method of de-
fining localized pulses that (38) is obtained in
this simple form. Clearly, for a large variety
of cases (38) should be easily integrated, yielding
the dual&ispersion equation (1V). For example,
consider

e(x, t) =a,(1+ax)2 „

in the domain & & 0 with e an arbitrary real para-
meter. The integration yields

G =4 et+4+x+ —x =0~ c=(pro)

BG/ex dx dt BG/ek dk BG/e~
BG/Bt d&o d&o BG/Bt d&o BG/et

whose solution, with proper initial conditions,
satisfies (33). Using (14) in (34) prescribes (24)
as the set of dual-ray equations equivalent to (33).
Similarly to (22) rp(k, &o) is represented as a line
integral
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Again, the pulse mill slom domn to the velocity
of propagation of the material wave. The prac-
tical implementation of the phenomenon might
be very complicated but the may it has been de-
rived from a simple example demonstrates the
potential of the new method.

For the above examples (24) is trivial, dt/dkv
=0, dx/d&o =0 simply indicating the absence of
dispersion effects. Weak dispersion mill be in-
troduced by modifying (39}to the form

e =c,(1+ax)'(I+ P(o)',

where p is a small real constant. Accordingly,

6 =v et+a(I+ ax/2)(I+ Pro},

and (24) prescribe

=+ Px(1+ ax/2)/c,dt

(44)

(45)

displaying the change of t as a function of m along
the dual ray defined by (24):

s =—=~ (1+ax)(l+ P(o)/c .8k
8QP

(46

Integrating (46) yields the equation of the dual ray

and for x=0 at t =0 the constant & vanishes. From
(38) and (40) it is clear that the pulse slows down
as the dielectric constant increases. An inter-
esting example is provided by the case of a "ma-
terial wave", where a change in the dielectric
parameter is propagating through the medium
mith a velocity u, according to

s =—=+-f(x-ut) .dt
dx c (41)

A simple instructive example is provided by f
=U(x-ut), where U is a unit step function with
its discontinuity at x =ut. As long as the localized
pulse is in the region x&ut its location is governed
by 6 =@+ et =0, i.e., it is not affected by discon-
tinuities in regions not occupied by the pulse.
The effects introduced by gradients in & can be
studied in terms of the example f= 1+[a(x-ut)]'.
At x=ut the pulse moves according to x+ et =0,
but Rs soon Rs lt 18Rves this dielectric mell s
increases and the pulse is slowed domn. Even-
tually it mill move with the velocity m of the ma-
terial mave. A simpler case of the above class
is provided by a linear function f=1+a(x-ut)
with Q & Oy x ~~ Qtq Rnd 'only ProPagation ln the Posi-
tive x direction is considered. For this case me
solve the differential equation et'+ out =1+O.x.
The homogeneous solution is t =Ae ' " ', the
parhcular solution is t=@/u+B, &,B=const, hence
for x large enough, such that the exponential is
negligible, me have

6 =x- ut+ const =0.

k =+ (1+ax)(o(1+ Pa)/2)/c .
For a given location x, (45) prescribes that t,
the time when the pulse exists there, ls propor-
tional to P~. Hence different spectral components
propagate at different slowness rates [as demon-
strated by (46) as well]. For large x, (45) shows
that the time effect grows, displaying the fission
of the pulse as it propagates in the medium. The
effect ean be decreased by having smaller P, but
even in a homogeneous medium defined by a =0
the effect mill persist. Finally, a somewhat
oversimplified example mill be considered for
demonstrating the construction Rnd evaluation
of dual rays. Consider a homogeneous disper-
sive medium whose dual-dispersion equation
is given by

t" =x x-[c{k)]t'=0,
(46)

c(k) =c(1+y.k'), y&0,

where c=(y,,a,) '~' andy is small enough such
that yk «1 for the range of k' considered here,
otherwise the assumption of weak dispersion is
violated. From (24) we have

x
d(o t [c(k)]' ~P '

4x 2tc+k
d

=
-(„-) 2tyfi.

The central position of the pulse is given by values
x, t satisfying (46) for some mean value of 0'.
According to (49), t =const, and x is affected by
the dual-ray tracing. Let us cheek a fem values
of % presumably existing in the spatial spectrum
of the pulse at time t. From the approximate
expressions in (49) it is clear that the dual ray
starting with an initial value k mhich is parallel
to x mill be a straight line. For an initial k
oblique with respect to the initial xthe incremen-
tal dk/d&o, dx/d&o change the directions of k and
x such that they gradually move towards some
common direction. It follows that the rays (i.e.,
the segments dk put end to end) diverge less as ~
increases. This demonstrates the may fission
of the pulse takes place as various spectral com-
ponents move in different directions. The conver-
gence of the dual rays a1so suggests that the ampli-
tudes b,(R, u&} (10} increase as &u increase. More
eonerete examples require machine computation.

IV. THE DUAI FERMAT PRINCIPLE

The restricted Fermat principle for time-inde-
pendent media is stated U1 many textbooks on
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optics and electromagnetic theory (see, for ex-
ample, Jones' ). Verbally stated, it says that
the travel time of wave packets between two
fixed points in space is stationary (maximum,
minimum, or inflection}. The generalized form,
applicable to time varying media as well, has
been given by Synge, ' in variational form

pP
k dx- &dt =0,

&a
(so)

where P, (x„t,),P, (x, t,) are fixed endpoints.
Since k, &, x, t are interrelated through the dis-
persion equation (8), the integrand (50) inust be
augmented, using a Lagrange multiplier function

5
~

k ~ —~ +X(v')E(k, w;x, t))dr- 0
"~~ (- dx dt

d& d&

(51)

where & is an integration parameter. Of course,
the addition of F =0 into (51) does not change the
value of the integrand, but derivatives are af-
fected. The associated Euler- Lagrange equations
of (51}are obtained as

dx
(

)8F dk
( )8F

dr 8k ' d7 8x

dt 8F d+ 8F= x(r), = -z(T)—.
d~ 8~ ' d~ 8t

(s2)

Again, division by d&u/dO yields (24) and d&o/dG
=A(8G/st) itself is not material for the dual-ray
tracing procedure, although it would be desirable
to have some physical interpretation for it. It

Dividing by dt/dT we obtain the Hamilton equa-
tions (20) and (21) without additional assumptions.
The remaining equation dt/dr = X(8F/8&@) is not
relevant to ray tracing although its physical in-
terpretation is of considerable interest, as
shown later.

Exploiting the formal resemblance of (20), (21),
and (24), suggests that (24) too be derivable from
a variational principle. Using the dictionary de-
veloped above, we obtain

dk d(d
5 i

x.—t &+A(A)G(x, t;k, )) d0=0,

(53)

where (kP„v,), P~(k~, tu, ) are fixed endpoints.
The Euler-Lagrange equations of (53) are then
given by

= -A(a), =A(fl)
(s4)

=A(a), = -A(a)

—=(1 —v v/c ) ~

dt y' (s7)

where v is the group velocity of the wave phcket.
This is motivated by the observation that for fixed
dt in (57), dT will be minimum for maximum v.
The idea that the wave packet moves with maximum
velocity conf orms with the minimum travel time con-
cept in the restricted Fermat principle. Aplausible
interpretation of (50) follows in a consistent way.
Writing the integrand (50) in the form

dt-[((o-k v}y] dv = adT, -
ydv' (ss)

is therefore natural to call (53) the dual-Fermat
principle. This formal construct needs now
physical interpretation. For that, we turn back
to the restricted Fermat principle for time-inde-
pendent media, which can be formally stated as

Zy ~k.dx=0. (ss)

For this case (21) prescribes a fixed frequency.
Dividing (55) by to yields k/(o in the integrand,
which is the reciprocal of the phase velocity.
Consequently (k/~) dx=dt has the dimension of
time and (55) is equivalent to 5[f(b) —t(a)] =0,
conforming with the verbal statement at the be-
ginning of this section. Corresponding to (55) we
have for frequency independent media

ky

5 J x dk=0. (ss)
4,

For this case (24) prescribes t= const along the
dual ray, hence (56} can be written as 5 f x/t dk
=5 I d&v= 0 or 5[to(b) —&o(a)] =0. Thus the (re-
stricted) dual-Fermat principle prescribes a
stationary frequency difference between two points
on the dual ray. To understand this in a more
physical way, consider two adjacent points. For
fixed &k=k~ -k, and stationary value of »=~,
—~, this means that the slowness function s
=df/d&o is stationary. For minimum 4&v this
means that the pulse moves at the highest possible
speed (subject to G = 0). This conforms with the
original idea of the Fermat principle, prescribing
a minimum travel time.

The interpretation of (51), hence also (53) is
much more difficult. Consider (51) first. Since
the time interval t(b) —f(a) in (50) is fixed we
have to look for another quantity to replace the
stationary travel time of the restricted Fermat
principle. Censor" proposed the interpretation
that in general the proper time" (in the relativis-
tic sense) is stationary. For an observer at-
tached to the wave packet the proper time T is
related to laboratory time t by
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the quantity in brackets is recognized as the rela-
tivistic transformation formula for the frequency,
hence in the proper frame we have G. This quan-
tity will be minimized as v is increased. Bl.mi-
larly, the generalized dual-Fermat principle (53)
can be interpreted in a way which links it with
the restricted form (56). Here again (53) pre-
scribes fixed endpoints such that ~(b) —&u(a)

=const, and therefore we have to look for a dif-
ferent quantity which is stationary on the dual
ray. Motivated by (57), we now define

dg
d & y'
u= s/(s ~ s) i

(59)

r I

5 x dk —td&o =5 [(x ~ s —t)y]dQ, (6O)

where dA is the element of proper frequency for
an observer attached to the localized pulse. To
understand the physical justification for (59) we

recall that (57) describes the relativistic time
dilatation phenomenon. This is derived by dif-
ferentiating the time transformation formula
t=y(r+v x'/c') holding v ~ x' fixed, where x' is
the position vector in the proper frame. Similarly,
differentiating the frequency transformation
formula (u=y(Q+f' u) with k'.u=const yields
(59). We now rewrite the generalized dual-Fer-
mat principle in the form

and further modify the integrand to obtain

s [(x—ut)y)dA=s x'dQ=x' dk', (6l)

where x' is the position vector and dk' is the ele-
ment of k' for an observer attached to the localized
pul'se. This representation conforms with (56),
hence we can finally state that along the dual rays
the proper frequency is stationary. Again, from
(59) this means that the pulse moves at the highest
speed to minimize the travel time.

V. CONCLUSIONS

Propagation of localized pulses in inhomogen-
eous weakly dispersive media is discussed, using
Maxwell's equations of the electromagnetic field
as a concrete physical model. It is shown that a
duality exists between the present case and con-
ventional ray tracing in dispersive weakly inhomo-
geneous media. The analysis leads to the defini-
tion of dual-ray theory, the group slowness con-
cept, the dual-Fermat principle, etc. At each
stage of the discussion the formal analogy helps
in choosing the correct definitions and relations,
and helps in understanding the physical import
of the new concepts. Some simple examples are
given, however, for specific applications machine
computations are necessary. The present dis-
cussion is confined to linear lossless systems.
The implications for lossy and nonlinear media
will be considered in the future.
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