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The design and performance of variable-wiggler, free-electron laser (FEL) amplifiers was studied by using a one-
dimensional computer model which incorporated separate sections for design and simulation. Resonant-particle
equations were used in the design phase. The variation of the wiggler parameters was not predetermined (linear,
exponential, etc.) but was carefully tailored to match the electron energy throughout the FEL amplifier. The
simulation section of the model self-consistently tracked the phase-space trajectories of 500 particles for the length of
the amplifier. In this way the designs were tested not only for overall gain and efficiency but also for resistance to
irregularities in laser input power, electron-beam power, electron-beam-energy spread, and wiggler construction.
High-current-density electron beams (electron-beam power & laser-beam power) were found to be essential for stable
and efficient amplifiers. Some designs demonstrated better performance under conditions of nonresonant input
particles. .

I. INTRODUCTION

A free-electron laser (FEL) directly converts
the kinetic energy of a high-quality, relativistic
electron beam into coherent radiation. It has
long been known that this conversion was pos-
sible, ' but it has been shown only. recently that
relativistic FEL amplifiers could be built. " This
paper presents the results of a one-dimensional,
numerical evaluation of several FEL amplifier
designs which incorporate variable-parameter
wiggler magnets. Previous numerical investiga-
tions of the FEL" have studied low-energy, long-
wavelength devices which operate principally in
the collective-interaction or Raman regime. This
work concentrates on higher-energy, shorter-
wavelength FEL amplifiers which operate in the
single-particle or Compton regime. Our designs
are motivated by the possibility that an FEL might
be used as an inertial-confinement-fusion driver.
We are primarily interested in lasers which
exhibit both high single-pass energy extraction
and high efficiency. Our designs do not consider
quasi-cw recirculating systems which typically
extract a small fraction of the electron-beam
energy on each pass through the wiggler. FEL
amplifiers must also function reliably in the
presence of pulse-to-pulse fluctuations in both
the electron beam and the laser oscillator. There-
fore, we have separated our simulation procedure
into two stages. The first stage uses the resonant-
particle approximation to design the FEL amp-
lifier. The second stage then tracks individual
electrons through the amplifier. This procedure
permits us to test FEL performance under non-
ideal conditions and to determine which designs
are most stable under variations in average beam
energy and beam-energy spread.

The design strategy is based on the analysis
of the variable-wiggler FEL given by Kroll ef al. '
and reviewed by Szoke ep al. ' This formulation
views the FEL amplifier as a coherent-electron
decelerator in which the usual longitudinal ac-
celerating field found in LINAC microwave cavities
is replaced by a transverse decelerating field
provided by the laser. The FEL also requires a
spatially transverse, periodic magnetic field in
order to provide the requisite coupling between
the longitudinally directed electrons and the
transverse laser field. In short, in the accelerator
the electrons gain energy from the microwave
radiation while the converse holds true in the FEL
decelerator: The radiation field gains energy
from the electrons.

Section II of this paper reviews the major re-
sults of the decelerator analysis of the FEL
which are used in Sec. III to design FEL amplifiers
and in Sec. IV to simulate their operation.

II. BASIC THEORY

A. Single-particle equations of motion

Electron motion in the FEL is governed by
Lorentz forces; therefore, each electron's tra-
jectory is specified by

d~
m = —e(E+vx B).dt

All variables are defined in Table I. The trans-
verse, static, magnetic field is assumed to have
the form of a sinusoid with a slowly varying amp-
litude and period. It is expressed as

3„= B&z(zos (fz (s)zs);, -
while the plane-polarized laser fields are written
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TABLE I. List of symbols (r subscript refers to the resonant electron).

Ag
B~
b~
C

e
C~

~s
Eg
e»
f(4, v)
f~
fee
+(0„)
I
J

JA mrna

k~
k~
L
m

Pg, f„)

r
8
ZQ

'y

E'p

P
47~

4}p
0

2

equired for bucket

to the laser field

bucket area
wiggler magnetic field amplitude
normalized wiggler field, eB~/(&2mc)
speed of light
electron charge (e & 0)
gain turn-on factor (Eq. 37)
laser electric field magnitude
normalized electric field, eEQ(&2mc~)
longitudinal space-charge field
normalized longitudinal space-charge field, eEgm
electron phase-space distribution func tion
Fourier expansion coefficient of f(f, y)
Fourier expansion coefficient offg, y)
cosg„- (x/2 —g„) sing„
laser intensity
electron-beam current density
trapped electron-beam current density
minimum trapped electron-beam current density r

growth
laser wave number
wiggler wave number
amplifier length
electron rest mass
bucket height
electron-beam power density
electron-beam radius
elec tron velocity
impedance of free space
phenomenological loss coefficient
electron energy in units of electron rest mass
half-width of electron-beam energy distribution
electron-beam hami ttance/w
permittivity of free space
phase of laser field
electron-beam charge density
laser frequency
plasma frequency — ep/m ~Q

synchrotron frequency
relative phase of the electron in the wiggler field

E =E,(z) cosg,y,

B= -B,(z) cosg,z,

(3a)

(3b)

where

g, =k~ -(o,t+p(z). (3c)

A static, longitudinal electric self-field E,(z)z
is also included. Our calculations are one dimen-
sional, since these equations do not permit any
field variations on the zy plane. (The three-
dimensional nature of B„, E„and v can be in-
cluded in a very approximate manner by defining
an equivalent electron energy spread due to trans-
verse effects. ) From Eqs. (l}, (3), (3a), and

(3b}, it can be easily shown that the transverse
velocity (vp} of the electrons is given by

e'E+ sin k„dz + p,

2mk„y
—ecE, , (5)

my~. ck,

Equation (4) is derived by assuming that the
change in the magnetic field is very small during
one magnetic field period. The rate of energy
lost by the electron is simply eE v. This product
has components at frequencies (t„ fk~ -g„
and fk„dz + g„but only the last of these varies
slowly enough to permit a significant net energy
exchange between the electrons and laser field.
Therefore, one can write

gym c
dt

=-eE ~ v
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where v, = c has been assumed in order to derive
the final term of Eq. (5). If one now approximates
z as equal to ct and uses the normalized field
parameters defined in Table I, Eq. (5) may be
rewritten as

over a period in g. This average charge density
is essentially the uniform density at injection
into the FEL, because the particle's axial velocity
changes very little during laser amplification.
Consequently, we have

dy ebb„. /" sin ~ k dz+g, I —e, .
dz k„y

At this point it is convenient to define the phase

$ as

( = f (k +k, )d„s —v(+(, ,

(6)

(7)

p(g) = —& ' lf()I), y)dy,

po =-2 — der, y dy.

(1la)

(lib)

so that Eq. (6}becomes

dy e+a si~ —e, .
dz ky (8)

We wO1 also find it useful to differentiate Eq. (7),
which yields

ks ~b 2esb (es dye=k ——, I+~ -a —— cos(}+(— +—,
dz. 2y' &k„kP, ~k, dz '

(9)
where v', [from Eq. (4)] has been averaged over
a wiggler period (2z/k„} to determine dz/dt from

y and use has been made of the fact that y /2« I.
This indicates that if y, k, and b„are properly
chosen, g may vary quite slowly. It is also clear
that any quantity with frequency gk dz -g, cannot
have a spatial frequency less than k„. This
justifies the elimination of these components
from Eq. (5).

B. Electromagnetic field equations

8 E 1 8 E 1 Sp 1 8J
8 Z C 8t' 40 8Z C 8$

We will make the explicit assumption that the
charge density is periodic in g [Eq. (7)j and take
the distribution function of particles in g -y
space to be f((l), y). We are implicitly assuming
that the beam may be viewed as a large number
of segments of length 2z/(k„+k, ) (2z in g space)
all of which evolve in an identical manner as the
electrons move down the amplifier. We normal-
ize f in terms of the charge density, p„averaged

(10b)

Equations (8) and (9) describe the motion of a
particular electron in the wiggler field, but the
effect of the electron's motion on the laser field
has yet to be determined. The longitudinal electric
self-field and the amplitude and phase of the laser
electric field are determined by the charge and

current distributions in the electron beam as
specified by the wave equation and Poisson's
equation

8 E„1 8 E„Z08J„ (10a)
8 z c' 8t' est

The current density is written as

&((')„.=-~ ff(()v„i, ,)d&i. (12)

The axial current density averaged over a period
in g is given by

dg g, y v, ydy (13a)

dy= f, +g (f„,—cosrafi+ f sinn(1)),Jf (15a)

with

f~ = —cosr—a/i dy dg,
1 f
r y

(15b)

f = — —sinn/

dydee.

1 f
7r y

(15c)

When Eq. (15a) is substituted into Eq. (14) it is
apparent that the only portion of J„that is synchro-
nous with the laser field is the n=1 term in the
series. The synchronous portion of the current
density J, is given by

e'B„. e'EsJ,= " (f„sing, -f„cgo,)s— ' f, sing, .

(16}

If the amplitude and phase of E, vary slowly with

z, we may employ the slowly varying envelope
approximation (SVEA)8 and rewrite Eq. (10a) as

2ks Es costs + -' sings =
~

C8g
(17)

(13b)

in which ( ) indicates an average over all particles
in a period of ((). We next substitute Eq. (4) into
Eq. (12) to obtain

2B e'E
z„(g)= — "Bin Ji ds)l+ „' s'„ml, Jf((, v) —.

(14)

Next expand f(()), y) in a Fourier series as shown
below:
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dE~ e$~
d =W22k„Z"f"

d(I() eZoc (5+„2e,f,
dz 2M2E, ( k„k,

(18a)

(18b)

We make the approximation v, = c in Eq. (13}so
that Eq. (18) may be rewritten as

dEg Zpb
( (

sing

Zob„ I J I cosp ks(2)22

dz v 2k E, y 2y~',

We have used Eqs. (15b) and (15c) to define

(19a)

(19b)

g, y ysin d dy

y
g, yd dy

(20a)

We combine this relation with Eq. (16}and equate
the sine and cosine terms to obtain

ever, the details of the individual electron motion
are of secondary importance. Therefore, we at-
tempt to solve Eqs. (8} and (9}for one average
electron, thus permitting the multivariable func-
tions (sing/y} and (cos(t)/y} in Eqs. (19a) and (19b}
to be replaced by functions of only two variables-
the energy and phase of an "average electron. "
Other authors"' have shown that this is a good
approximation for those electrons with energy
y and phase g which satisfy the following condition:

Iy y,—
I
- &((t, @,)

(e 5 l'@
~[cos(t) + cos(t)„- (v —g - (t)„)sing, j2 @,

(22)

where y„and g„are the energy and phase of the
average electron. Equation (22) was derived by
choosing an average electron with the specific
property that its energy varies in precisely the
manner required to keep its phase nearly constant.
That is,

, y ycos d dy

2
g, y d dy

(20b)

dg„" «Q
dz

where

Q,~=(25,e cos(gt)y'„)' k.

(23a}

(23b)

The longitudinal electric self-field E, obeys
Eq. (10b), which may be replaced by the simple
relation

Ip((t') -pal
(k„+k,)c,

' (21)

This equation is numerically solved using Eq.
(1la), a finite-difference method and periodic
boundary conditions.

The wiggler designs to be described in Sec. III
do not include E„but the simulations described
in Sec. IV do include E, in the equations of motion.
Terms oscillating at the frequency J k dz -(t),
are once again assumed to average out to zero
very quickly. Equations (8), (9), (19a), and (19b)
now describe the one-dimensional motion of any
electron in the specified fields. The self-con-
sistency of these equations may be demonstrated
by using Eq. (19a}and conservation of energy to
recover Eq. (8).

C. Resonant-particle approximation

We are primarily concerned with the solution
of Eqs. (19a), (19b), and (21) for the growth of
the laser field. Unfortunately, in order to deter-
mine f(g, y), the simultaneous solution of 222+3
differential equations (where n is the number of
electrons in the electron beam} is required. How-

An electron with this property is usually called
a resonant electron. Other electrons which satisfy
Eq. (22) will, on the average, track the motion
of the resonant electron. Equation (22) was ob-
tained by linearizing the energy deviation between
the resonant and nonresonant electrons and looking
for conditions under which the nonresonant elec-
tron's motion is trapped about the resonant mo-
tion. This approximation is only accurate when

Iy, -y I/y is small. Space-charge fields are
usually small, ' therefore e, in Eq. (8) was ignored
in deriving Eq. (22). Equation (22) defines a region
in phase space (y, )t)) in which electron orbits are
closed and stable. This region is called a bucket
by accelerator designers, "and we designate with
the label A quantities associated with particles
inside the bucket. We define A~ to be the area
of the phase-space region delimited by Eq. (22),

&*(2,) = Sf4'(2, 2,)42. (24)

This procedure permits us to simplify the
system of Eqs. (8), (9), (19a), and (19b) to the
following set of equations:

eg
dz k y„

sing„, (25)

(26)
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kg Zob„~
~2y h

~d Zpb„J~
dz W2b„E,

(sing) z -eE~,
yr

&co@),
yr

(2Va)

(2Vb)

(where J„ is the current density within the bucket),

(sing}„=A P(g, p„}sing dg,=2
h

(28a)

(cosg)z = P(g, g,)cosg dg.=2 (28b)

III. FEL DESIGN

A successfully designed FEL amplifier must
continuously decelerate a large fraction of the
electron beam. We base our designs on the as-
sumption that this can be accomplished if the
resonant particle is decelerated and simultaneous-
ly the bucket area is kept large. This strategy
is supported by Liouville's theorem which states
that phase-space density remains constant in an

We ignore the electrostatic term (e,) when deriving
the resonant-particle equations because our sim-
ulations (which do include ei) have shown that the
longitudinal field has only a very small effect on
the amplifier's performance. In writing Eqs.
(28a) and (28b), we have assumed that the elec-
trons fill the bucket with uniform phase-space
density and have ignored the variation of y within
the bucket. Both (cosg}„and (sing}„are now
functions of a single variable g„, and may be
readily computed. It should be remembered that
when one assumes that a nonresonant electron
exhibits behavior similar to the resonant electron,
one is ignoring the synchrotron motion of the non-
resonant electron.

Of course, all of the electrons in the electron
beam may not fall in the bucket. The question
then arises as to how to treat: the untrapped elec-
trons. In the resonant-particle approximation,
the untrapped electrons do not contribute to the
laser-field growth and can be ignored. Thus the
laser gain is only proportional to the number of
electrons within the bucket. Equations (25)-(28)
do not need any further corrections.

Equations (25), (26), (27), and (28) serve as
the basis for the FEL designs. The design pro-
cedure is described in Sec. III. A simulation is
later used to test the accuracy of the approxima-
tions made in order to obtain the design equations,
particularly the concept of buckets. Therefore,
the simulation will use Eqs. (8) and (9) for each
electron and simultaneously solve 2n+3 differen-
tial equations.

adiabatic process. As long as the deceleration
is nearly adiabatic, one may expect large trapping
fractions. Therefore, the design problem reduces
to finding a solution to Eqs. (25)-(28) for X (z)
and B (z), which simultaneously satisfies our
two design goals —restricting f„to be between 0
and v/2, and maintaining A~ large.

The resonant-particle motion is specified by
four equations [Eqs. (25), (26), (2Va), and (2Vb)],
and the bucket area is specified by one additional
equation (24). There are seven unknowns (y„, g„
E„y„A„,b, and X„) in these five equations;
consequently, in order to specify a design one
must have two additional constraints. These
constraints are completely arbitrary and must
be chosen by the FEL designer. In addition, a
consistent set of initial conditions must be chosen.
We have considered only a few of the many pos-
sible options. A sixth equation is selected from
the following list:

dk, f

dz'

(constant wiggler period);

(29a)

(29b)

(constant magnetic field amplitude); and

d(b „/b„)
ds

(constant magnetic vector potential); while a
seventh equation is chosen to be either

(29c)

dp„
dz

(stable phase deceleration), or

dA„ = const

(30a)

(30b)

(b ~v)2
8( ) b~(y }

where

(31a)

(31b)

(programed bucket area deceleration).

Option (30b) is practical only when high-current-
density electron beams are used. "

The initial values of y„, X, X„ tt)„are iterative-
ly selected to illustrate FEL scaling and high-
power FEL amplifier performance. The initial
magnetic field is chosen so that dggdz = 0 at z = 0
[Eq. (26)]. The initial laser field is chosen to
make the maximum bucket height equal to half
the maximum energy spread in the electron beam,
that is,
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This condition implies that all our designs assume
that amplifiers will operate with full buckets.
This minimizes the input laser flux required for
a given electron decelerator. A»(z =0) is now

calculated from Eq. (24) and y(z = 0) is set to 0.
We then estimate the required trapped current
by writing

A»(z)
Z(z)» =8 ("

)
. (32)

We impose the additional restriction that J»(z)
~ J»(0), for all z. Actually, this is a conservative
estimate of the bunched current density.

Clearly if one chooses option (30a) (stable phase
deceleration) and an initial g, between 0 and v/2,
the first design goal is satisfied. The second goal
is met if

dAg (33)

If one assumes that dgJdz = 0, Eq. (33) reduces
to

'+ e,—
(
—,"

i
& 0.b de+ d (bl

k dz 'dz &A'
&

(34)

The second term is negative for all of our de-
signs, "and therefore the bucket can only be kept
large if the laser field grows strongly. This can

only be accomplished if the current density is
sufficiently high. Now by utilizing Eqs. (26),
(29a), (30a), and (31), and neglecting terms of
order e,/k„one finds that satisfying Eq. (34)
(at z = 0) requires that

yp'„(ay)4 mca
»mla b b4 Fa( ) sg (35)

This condition may also be expressed as the ratio
between the electron-beam power and the laser-
beam power by writing

4b& 2 ~~+1 (36)

Although Eqs. (35) and (36) were derived for a
constant wiggler period, stable phase decelera-
tion amplifier, similar expressions may be de-
rived for all of the design options. " Note that
both the input laser intensity [Eq. (31)]and the

required minimum current density depend on the

fourth power of the electron-beam energy spread.
This places a premium on quality electron beams.
If one wishes to maintain a growing bucket not

only at z =0, but throughout the decelerator, one

must supply a trapped current density much great-
er than the minimum current density specified
in Eq. (35). Therefore ohe does not expect these
designs to perform well unless J„is much greater
than J„„.For example, one must have J„

~ VJ» „when design option (29a} (constant wiggler
period) is picked to ensure that A» is larger at
the end of the amplifier (25% deceleration) than

it was at the beginning of the amplifier.
It follows from Eqs. (35) and (36) that eventually

the bucket must shrink, because the laser energy
is increasing at the expense of the electron-beam
energy. In order to prevent the loss of electrons
from a full bucket, the laser-beam energy cannot

become larger than & of the trapped electron-beam
energy [for option (29a}, constant wiggler period].
This figure becomes 8 for a design which main-
tains a constant equivalent energy spread from
transverse motion [cf. Eq. (38), below]. Although

a slight improvement on these figures is possible
by designing with option (30b) (programed bucket
area deceleration), there is clearly a maximum

amount of energy which can be extracted from the
electron beam in a controlled (no detrapping)
manner. This limits the efficiency of the FEL
amplifier. If one is willing to allow significant
numbers of electrons to become detrapped, more
energy can be extracted. This remains true even

when design option (30b) (programed bucket area
deceleration) is chosen for designs.

Unfortunately, these design equations assume
that the electron beam is already bunched, while

a realistic FEL amplifier must utilize an un-

bunched beam. This discrepancy has a detrimen-
tal effect on FEL performance. We have allowed

for an initially unbunched beam by replacing
(sing)» and (cosg)» in Eqs. (2Va) and (2Vb) with

C(sing)» and C(cosg}», where we arbitrarily
choose

C = 1 —exp {[y,(z) -y„(0)]C„/4y] .

This allows the bunch to form slowly and partially
compensates for the initial absorption of laser
power by electrons not found within the bucket.
After the resonant particle has been decelerated
by more than a few times the initial energy spread
of the beam, the resonant-particle description
should be more accurate and wiggler design
may proceed accordingly. The addition of the
factor "C" to Eq. (2V) is only a design strategy
used to model bunch formation. This factor is
not included in the simulation described in Sec.
IV.

The design problem is now completely specified,
and one merely has to numerically integrate Eqs.
(25), (26), (27), (28) [(29a), (29b} or (29c)],
and (30a) or (30b) in order to calculate X„(z) and

b„(z) and estimate the FEL amplifier performance

[e,(z)]. Note that this procedure results in a wig-
gler carefully matched to the electron energy
throughout the FEL amplifier and should be dis-
tinguished from designs which arbitrarily select
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Q2 Q
"4(1+b'Jk') (38)

into the beam. Upon examining the design for
the constant b Jk„wiggler we find that the equiv-
alent energy spread (assuming constant r) has
increased 10 times while the bucket area has
increased 80%. Equation (38) can be reexpressed
in terms of the electron-beam emittance as"

(39)

design). These calculations also indicate that the
bucket area has increased by a factor of 2 in 11
meters, and therefore our design goals have been
met. Our one-dimensional arguments lead us
to expect this device to perform well. Unfortunate-
ly, a sinusoidal wiggler field requires that there
also be a transverse variation of the magnetic
field. The transverse field has an effect similar
to that of introducing an additional equivalent
energy spread of magnitude"

100 ~
E

80

60

40

20

0
0 6

z (m)

8 10

FIG. 1. Design and estimated performance of a 385-pm
FEL amplifier of constant magnetic potential (b~/k~) and
stable phase angle.

a wiggler taper (e.g. , exponential or linear).
We have used the procedure described above

to design a high-power, 385-pm FEL amplifier.
We chose y„=15, $„=0.4, 4y=0. 2, X„=8.7 cm,
C„=1.0, and J=100 A/cm' The estim. ated trapped
current density is then 41 A/cm', well above the
minimum required trapped current density of
0.35 A/cm'. An input laser flux of 0.6V MW/cm'
is also required. "

The design resulting from these initial conditions
and options (29c) and (30a) (constant magnetic
vector potential and stable phase deceleration) is
illustrated in Fig. 1. In 11 meters the magnetic
field has increased from 1.7 to 8 kG, while the
wiggler spacing has decreased from the initial
8.7 to 2 cm. The laser field is predicted to reach
over 160 MW/cm' at this point, while y has de-
creased to V (no losses were included in this

If we assume that the electron-beam normalized
emittance (yc) stays constant (the beam radius
shrinks) we find that the equivalent energy spread
still increases more than the bucket area. Severe
detrapping would result. Therefore, although
our one-dimensional model would predict good
performance for this design, two-dimensional
arguments lead us to disregard option (29c)
(constant magnetic vector potential).

The magnetic field profile and expected laser
gain in a constant-period 385-pm FEL amplifier
are illustrated in Fig. 2. The magnetic field de-
creases from 1.7 to 0.17 kG in 13 meters while
the laser field grows to 88 MW/cm' and the aver-
age electron energy decreases to y =10.9. As
Fig. 2c shows, the bucket area is equal to or
greater than the initial bucket area for 95% of
the amplifier while the additional energy spread
due to transverse-field variations [Eqs. (38) and

(39)] has actually decreased. Therefore, this
design is expected to perform well. Unfortunate-
ly, this design only permits one to decelerate
the electrons by 30%. This problem may be
rectified without increasing the effective energy
spread by either increasing the initial electron
energy, or by allowing X to decrease [with a con-
stant b section, option (29b)] only after b has
been reduced below its initial value. The FEL
design resulting from a variation of this second
alternative is illustrated in Fig. 3(a). We choose
options (29a) and (30b) (constant wiggler period,
programed bucket area deceleration), and options
(29b) and (30b) (constant magnetic field, pro-
gramed bucket area deceleration), both with
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FIG. 2. Design and estimated performance of a 385-pm FEL amplifier with a constant period and a stable phase
angle.

dA/dz=0. During the first 5.5 meters, X is
held constant and b„decreases from 1.7 to 1.1
kG. For the next 5.5 meters, X„decreases while
5„ is held constant. As illustrated in Fig. 3(b),
g„ is programed to change in the precise manner
required to keep the bucket area constant. Figure
3(c) illustrates this laser's output power as a func-
tion of amplifier length. Almost 150 N5II'/cm' may
be obtained in 11 meters, almost as much as in
the constant b Jk design but without the added
problems of detrapping due to excessive trans-
verse-field Quctuations. An alternative design
to option (29) which would eliminate the problem
of detrapping due to inhomogeneous transverse-
magnetic fields might be obtained by requiring
4y equivalent to remain constant throughout the

accelerator. The detrimental effects of electron-
beam emittance are similar to those of trans-
verse-magnetic field fluctuations, and therefore
designs which avoid the latter problem also pre-

.vent the former.
The particular design parameters used in these

examples were chosen for two reasons:

(1) They illustrate the important phenomena one
would expect to observe in a high-power, high-
gain FEL amplifier.

(2) They describe a device which can be built
with current technology. Simple scaling con-
siderations allow one to extend these designs to
different laser wavelengths and electron-beam
energies. For example, if J/J„„and b J'k„
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FIG. 3. Design and estimated performance of a 385-pm FKL amplifier with a combination design-constant wiggler
period, programed bucket area and constant magnetic field, programed bucket area.

are held constant, the amplifier length for fixed
I,„,/I„scales as

(40)

One may demonstrate this design scaling with a
250-nm FEL amplifier design comparable to that
shown in Fig. 3 for a doubled wiggler period
(17.4 cm), and a fourfold reduction in energy
spread (dy/y = 0.33%,. C„reduced by a factor of
4 to preserve design scaling). Although Jz is now
V. 27 kA/cm', J'/J „remains unchanged. As pre-
dicted by Eq. (39), the only difference between
Figs. 4 and 3 is a 32-fold increase in length.

These four examples illustrate how one can
rapidly design a tapered-wiggler FEL. One must,
of course, determine if these designs perform as
expected when the resonant-particle approxima-

tions leading to Eqs. (25)+28) and the concept of
buckets are relaxed. This task is performed by
the simulation discussed in Sec. IV.

IV. FEL SIMULATION

The purpose of the FEL simulation described
in this section is fourfold.

(1) To investigate the validity of the bucket ap-
proximatipn to the gain equation (27a).

(2) To study the initial bunching of the electrons
and to evaluate the trapping efficiency of several
different wiggler designs.

(3) To determine the lifetimes of the buckets
or, in other words, to determine if the electrons
can be kept in the bucket for a period long enough
to achieve substantial amplification.

(4) To determine the stability of the FEL amp-
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FIG. 4. Design and estimated performance of a 250-nm FEL amplifier with a combination design-constant wiggler
period, programed bucket area, and a constant magnetic field, programed bucket area. Scaled version of the design
which is illustrated in Fig. 3.

q(z) -y(0)=2t ir.&0
1 I(z) (41)

A high-gain amplifier yields a large h,y which
might lead to self-focusing of the laser beam and
subsequent detrapping. This effect, along with
possible diffraction compensation, has been ig-

lifier designs against input fluctuations in elec-
tron-beam voltage, current, energy spread,
laser oscillator power, and wiggler irregularities.

The simulation has several limitations. Most
important, it is one dimensional. It does not
account for any transverse inhomogeneities in
either the wiggler field or the laser field. " For
example, by using Eqs. (2Va) and (2Vb), we can
estimate the total optical phase change in an FEL
amplifier as

nored. We have only considered a monochromatic
laser field; the disadvantages (and possible advant-
ages) of a multicolor laser field. have been ignored
in the present work. Finally, we will not discuss
the synchrotron instability discussed by Kroll. "
As we stated previously, we have included the ef-
fects of the longitudinal electric self-field that re-
sults from the electron bunching.

Qperation of the FEL amplifier is simulated by
numerical integration of Eqs. (8) and (9) and calcu-
lation of the one-dimensional phase trajectories
(y, P) of 500 electrons as they traverse the pre-
viously designed wigglers. Field growth is simul-
taneously determined from Eqs. (19a) and (19b).

Figure 5 illustrates the results of this process
for the wiggler design illustrated in Fig. 2. Figure
5(a) shows the initial position of the electrons in
phase space. Random loading of the electrons
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FIG. 6. Laser intensity of a 385-pm FEL amplifier of
constant period and stable phase angle predicted by a
one-dimensional simulation of the FEL design shown in

Fig. 2.

would have been more precise, but as our results
are only meant to demonstrate qualitative FEL be-
havior, we have chosen the pattern illustrated.
The phase-space area which we have called a buck-
et is denoted by the solid fish-shaped curve. Fig-
ure 5(b) shows the phase-space position of each
electron after it has traversed the first 1.3 meters
of the wiggler. The electrons are beginning to
bunch in the bucket. Figures 5(c), 5(d), and 5(e)
illustrate that after 3.25, 6.5, and 9.1 meters,
respectively, the electrons do in fact separate into
two distinct groups, one of which is not deceler-
ated, the other of which fills the bucket and de-
celerates. Figure 5(f) illustrates the phase-space
position of the electrons after they have traversed
13 meters of the wiggler. Note that detrapping be-
gan at about y„= 13 and became appreciably worse
as the electrons continued to decelerate.

Figure 6 illustrates the growth of the laser field
which results from the energy lost by the deceler-
ated electrons. If one compares Figs. 6 and 2, one
sees that the simulation predicts a laser gain of
1.5 times larger than that predicted by the design
equations. This can only occur if more electrons
are trapped than was estimated by Eq. (32).

The reason for the excess trapping may be de-
termined by examining which electrons become
trapped as a function of design current density.
Figures V(a)-V(c) replot the initial phase-space
distribution, but those electrons which are still
located within the bucket after y„has been reduced
by 25% are designated in boldface. At low current
densities [Fig. V(a), J'„/J~~. =0.12], the number
and location of the electrons which are trapped is

much less than that predicted by Eq. (26) because
the low current density is incapable of supporting
a field growth sufficient to maintain bucket growth.
However, as the current density increases, the
fraction of electrons trapped increases. One finds
that when J~/J~ =7 [Fig. V(b)], the number of
electrons trapped is slightly less than that pre-
dicted by Eqs. (24) and (32}because the initial
bunching did not effectively capture all the elec-
trons located within the bucket. The overestimate
of electrons captured during the design stage also
leads to an overestimate of the laser field. There-
fore, during the simulation, the bucket must read-
just by increasing its phase angle to one slightly
above the design angle [approximately 0.5 in Fig.
7(b)]. This also leads to a loss of electrons. As
is shown in Fig. 7(c), trapping continues to in-
crease as the current density increases. Further-
more, trapping is stronger for electrons below the
design energy than above. The increased trapping
results from the fact that a strongly growing laser
field enlarges the bucket. The preference for low-
er-energy electrons occurs because the bucket is
decelerating, a circumstance which allows the
low-energy electrons to catch up. The process is
aided by the slight modifications to the resonant-
particle equations introduced into the design equa-
tions with the parameter C,. In fact, for large de-
sign C„(C„&1)the excess trapping is reduced. A

decreased design C„enhances trapping. The net
result is that high current densities promote high

trapping efficiencies. This explains why the laser-
field growth is larger in our simulation than our
designs preducted. As will be shown subsequently,
FEL stability is also enhanced.

The initiation of detrapping at y= 13 in the exam-
ple illustrated by Fig. 6 may be simply explained.
According to Fig. 2(c), the bucket area reaches a
maximum at about 7.5 meters or where y„= 12.9.
This is the point at which the condition expressed
by Eq. (36) is no longer satisfied. The bucket
must shrink. Although the bucket is larger than it
was initially, once it begins to shrink the excess
electrons which were trapped because of the en-
largement of the bucket are lost. Finally, after
13 meters the bucket is back to its original size
[note the varying vertical scale in Figs. 5(a)-5(f)],
and one is left with just those electrons found in
the bucket at z=o.

One can prevent the bucket from shrinking by
switching to a growing bucket design option (30b}
at y„=13. Simulations indicate that when this is
done, detrapping is greatly reduced. The penalty
for this choice is an increase in amplifier length.

A further examination of Fig. 7(c) leads one to
suspect that an initial average electron energy be-
low the design energy will promote better trapping.
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FIG. 7. Phase-space distribution of electrons still trapped (indicated by boldface type) after they have been deceler-
ated by 25@ in a 385-pm FEL amplifier for current density ratios Jz/J& ~=0012, 7, and 120.

This possibility was investigated by plotting the
fraction of electrons trapped in our 385-pm FEL
after 25% deceleration of the resonant electron as
a function of design current for initial electron en-
ergy 1.3% above and 1.3% below the design energy
+&y, and at the resonant energy. The results
are illustrated in Fig. 8. At low current densities
the fraction of electrons still trapped at y„= 11025
is approximately 15%, appreciably less than the
41% estimated by Eq. (32). When the energy is dis-
placed by one-half the bucket height, the fraction
of trapped electrons is reduced by almost 50%
(one-half the bucket height), as one would expect.
As the current density increases, the fraction
trapped increases for both the resonant case and

80 —& ~=

60 —4 &=
CL
CL

S 40—

20,—

0
0.1 10

7XJ
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FIG. 8. Percent of electrons still trapped after 25%
deceleration in a 385-pm FEL amplifier as a function of
both initial conditions and design current density.
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the high-energy case. Fortunately, as the current
density increases further, trapping continues to
increase because of the growth of the bucket.

The behavior of the amplifier when the initial
electron energy is below design specifications is
considerably more complicated. Low-energy elec-
trons initially absorb energy from the radiation
field, which causes the bucket area to shrink. The
higher the current density, the stronger the ab-
sorption and the more the bucket shrinks, further
reducing trapping. However, as Fig. 8 shows, at
yet higher current densities this trend is reversed,
because the field drops so sharply that low-energy
electrons momentarily stop decelerating and come
into synchronism with the wiggler fieM. Low-en-
ergy electrons tend to fill the low-y portion of the
bucket (the bottom half of the potential well), which
results in better trapping than was observed for
the resonant electrons. This is a consequence of
the decelerating bucket. It should be pointed out
that at extremely high current densities, although
space charge is not a problem, the gain is so high
that the approximations leading to Eqs. (8) and (9)
become suspect.

Our simulations have also shown that low-energy
electrons can be trapped at low current densities
if we use FEL designs formulated with reduced
C„. This reduction is similar to the drop in elec-
tric field discussed above, i.e. , it reduces the las-
er gain and electron deceleration, allowing the
bucket and the electrons to achieve synchronism at
some distance down the wiggler. In general, de-

(1) y, =1.013y„
(2) y, =0.987y„
(3) ny=0. 75,
(4) Ey = 1.25,
(5) Io = 0 5 Io i

(8) I,= 2I„
(7) B= %.015B,
(8) B=%.02SS,
(9) J'= 0.32J,

(10) J= 3.2 J'.

Injection values are indicated by a subscript zero,
and design values are indicated by a tilde. All
initial conditions except the current density 4 are
the same as for the design in Fig. 2. Conditions
(7) and (8) were simulated by changing the smooth
magnetic field profiles specified by the design
algorithm into a series of constant magnetic field
steps which remain within the limits specified
above.

The results for several different design current
densities are given in Table II by listing the per-
centage of electrons still trapped after y„has been
decelerated to 75% of its initial value. Also listed

creasing C„ in our designs increases the stability
of the amplifier (i.e. , both resonant and high-ener-
gy electrons are trapped well, and low-energy
electrons are trapped very well). The disadvantage
to reducing C„ is that the laser gain is also re-
duced.

We have attempted to examine the performance
of our 385-pm FEL designs when the operating
parameters are altered slightly from those speci-
fied in the design. Accordingly, we have run our
simulation for the type of design shown in Fig. 2

(i.e. , ~/de =0, dXJds =0) under the following
conditions:

TABLE Q. Performance of nine FEL designs as operating parameters are varied. Each
column is y, particular FEL design. The first two rows give the design current and length
required to reduce y„ from 15 'to 11.25. The remaining rows give results of particle simula-
tion, when one input parameter for each row is altered and show the percentage of input part-
icles still trapped in stable phase at the end of the FEL. (Subscript 0 indicates initial condi-
tions, tilde indicates design conditions. )

FEL design conditions

J (A/cm )
Length (m)

0.1
59

0.32
56

1.0
49

3.2
38

10
27

32
17

100
11

320
7

1000
4

Operating
parameters Percent trapped

Operated as
designed

yp= 1.013yp
yp= 0.987yp
Ay= 0.756'
h,y = 1.254'
Ip= 0.5Ip

Ip 2E'p

B= +0.015B
B= +0.0258
J=0.32J
J= 3.A

15
8
9

19
11

8
20
14
0.4

14
15

15
8
8

20
10

9
20
14
0.4

14
18

16
8
8

22
11

9
21
15
0.8

11
24

19
9
7

29
12
13
24
17
1.5
7

35

27
10

3
38
17
22
31
25
1 ~ 5
6

47

40
15

0
47
29
38
39
39
18

3
54

53
25
54
64
45
49
56
50
52

7
70

67
40
75
75
55
63
73
65
71
27
74

78
65
83
79
68
74
79
77
74
41
76
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in Table II is the length of the amplifier for each
value of the current density. An examination of
this chart quickly reveals that the FEL is an in-
herently stable device. As current densities reach
100 A/cm' (J„' = 41.2 A/cm'), the only real diffi-
culties occur when the electron energy is too high
or the current density is too low. At still higher
current densities, even this problem disappears.
The amplifier's performance at lower current
densities is noticeably degraded when either y,
&y, I, or the magnetic field profile is altered.
These results point to the advantages of high cur-
rent density operation [Eq. (35)] of FEL amplifi-
ers.

Table II also indicates that the FEL amplifier
works well even when the input to the wiggler is
allowed to fluctuate about design values. One
might then be tempted to design for higher current
densities than the apylication requires but operate
at some lower value. This would result in a short-
er FEL amplifier. For example, a 320-A/cm' de-
sign operated at 100 A/cm' achieves 25% decelera-
tion in 7 meters instead of the 11 meters called
for by the 100-A/cm' design (cf. Table II). Only
2 I% of the electrons are trapped, however, which
results in lower efficiency. One might be willing
to sacrifice efficiency for length, but, unfortunate-
ly, this results in a device with greatly reduced
stability. This amplifier does not work at all (no
electrons remaining trapped after 25% decelera-
tion) if the initial electron energy is too low [y(0)
=y(0) —hy], or the energy spread is too large
(hy= 1.25hy). If the energy is tohoigh [y(0) =y(0)
+ Ay], only 15%of the electrons remain trapped.
Once again, one might be willing to sacrifice some
stability if the amplifier can be made shorter.

Finally we note that although Table II was con-
structed for constant-phase-angle deceleration de-
signs, there are circumstances (high current dens-
ity) under which the programed bucket-growth de-
signs perform even better. For example, if we
design an FEL which duplicates Fig. 2 for the first
7.5 meters and then switches to a programed buck-
et-deceleration design to prevent the bucket from
shrinking, we find 61% of the electrons still
trapped after 11.5 meters and a 25% deceleration.
This compares to 53%trapped after 11 meters of
the standard design.

V. CONCLUSIONS

We have examined several different configura-
tions of the FEL amplifier. In all the designs ex-
amined, high current density increased the ampli-
fier efficiency and led to increased stability. We
found that careful bucket control led to higher trap-
ping fractions, but that there was a limit to the
amount of energy which could be extracted from
the electron beam in the tapered-wiggler FEL be-
fore electrons were lost from a full bucket. Gen-
erally, one can trade amplifier gain for increased
stability, but in devices with commercial applica-
tions, this might not be desirable.
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