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We review and extend the theory of instabilities in absorptive optical bistability for ring cavities containing

homogeneously broadened two-level media. The instabilities occur in the high-transmission branch and result in

either a precipitation to the low-transmission branch or in pulsed multimode operation. Two numerical approaches
are used to predict operation away from the simple mean-field limit. First, an iterative method is used to solve the

general field eigenvalue equation for cavity modes with frequencies displaced from the input frequency. This work

shows that the instability region decreases in size as the mirror transmission increases. These calculations are

confirmed by the second numerical technique, consisting of direct integrations of the coupled Maxwell-Bloch

equations. This second approach also provides time histories of the instability evolutions, and divides the instability

range into a precipitation regime and a self-pulsing regime. The results are discussed in terms of first- and second-

order phase transitions, and agree with the analytical results obtained within the dressed-mode description of optical

bistability. They show that when the incident field is adiabatically decreased along the high-transmission branch, the

spiking behavior always appears abruptly. By further decreasing the incident intensity, the self-pulsing disappears

either continuously if the system remains in the high-transmission branch, or discontinuously if the system

precipitates to the low-transmission branch. Connection is made with induced probe gain known in the saturation

spectroscopy of absorbers Iuninverted media), in which population pulsations transfer energy from a saturating wave

to the probe waves. The very close relationship with multimode operation in homogeneously broadened

unidirectional ring lasers is also established.

I. INTRODUCTION

Some recent papers' 4 have developed the exact
semiclassical treatment of absorptive optical bi-
stability' for two-level systems in a ring cavity.
In this problem, a cw input field of suitable am-
plitude is tuned to the atomic line center and to
a cavity eigenfrequency, and leads to a transmitted
field having three possible amplitudes, two of
which are stable. The ls,rger stable amplitude
corresponds to bleaching of the saturable ab-
sorber, the smaller to nearly linear absorption.
The analysis of Hefs. 1-4 takes propagation ef-
fects into account, that is, the internal-field am-
plitude can vary along the cavity axis. The main
result of these papers is that appropriately in-
tense input fields produce instabilities in the high-
transmission branch. Specifically in contrast to
the cw input field, the transmitted field can show
a time-varying, pulsing behavior. 3 This suggests
that the bistable absorber could be used to con-
vert cw light into pulseg light. The stability
analysis of' Hefs. 2 and 3 uses the Maxwell-Bloch
equations to study the possible buildup of field
modes other than the principal centrally tuned
one. Explicit instability conditions were obtained
subject to two assumptions: (1) only the centraiiy

tuned modes could saturate the medium, and (2)
the "mean-field limit" is valid, that is,

eL «1, T«1,
with C = nl/2T constant, where 7 is the mirror
transmittivity, o, is the linear absorption coeffi-
cient, and I. is the length of the absorber. The
instability conditions showed that modes close to
detuned cavity eigenfrequencies could build up.

In limit (1), the dynamics of the system are
governed by the modes of the cavity. In particular,
the mode that is resonant with the incident field
plays a dominant role. Under ordinary conditions
and apart possibly from initial transients of dura-
tion on the order of the cavity buildup time, the
electric field, as well as the polarization and in-
version fields, are practically uniform in space. '8
Optical bistability is then correctly described by
the mean-field theory, in which propagation ef-
fects are neglected and only the resonant mode is
considered. '8

The instabilities in absorptive optical bistability
can be expressed in terms of the differential gain
Ce
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Here V is the dimensionless indgced polarization
in quadrature with the fieM (V of the Bloch vector
fj', V, and W'components}, and Er is the trans-
mitted electric-field amplitude. For stability,
the losses must exceed this gain, i.e.,

1+RC
d )0.dV

comparison with the state equation'

where E~ is the input-fieM amplitude, reveals
that the stability condition is the same as that
for a positive slope dE, /dE„. Instability results
for a negative slope.

References 2 and 3 have shown that under spe-
cial conditions still satisfying (I}, the off-reso-
nant modes of the cavity may play an important
role. This occurs whenever at least one of them
sees gain, that is, the —dV/dEr at that side-
mode frequency exceeds the corresponding losses.
Hence as for the single-mode instability described
above, this multimode instability corresponds to
a negative slope of E, vs E~, but evaluated at the
side-mode frequency. The steady state is then
unstable and the system begins to emit pulses. a

Under suitable conditions, this sequence of pulses
becomes periodic and of infinite duration. This
undamped spiking behavior is called "self-pulsing"
because it is not the consequence of an external
manipulation, but rather is spontaneously induced
by the self-organization of the system. ' In the
self-pulsing regime, the purely passive optical-
bistable system works as a novel type of laser
without population inversion. The nonlinear atom-
field interaction transfers energy from the inci-
dent light to the side modes, and the cavity feed-
back allows these modes to grow, leading to the
spiking behavior. This is closely related to the
multimode operation that occurs in the homo-
geneously broadened unidirectional ring laser
beyond t, he second threshold. 'O' " From a practi-
cal viewpoint, the present system provides an
all-optical device capable of transforming cw
light into pulsed light. Such a transformation has
been predicted and observed by Me@all'2 using a
hybrid system that feeds part of the transmitted
light back into the cavity via a nonlinear electro-
optical device. The physics of Me+all's device
is quite different fxom that considered here.
Another instability discussed by Ikeda"' "and
seen in a hybrid system by Gibbs et ul. ' occurs
when the differential equation eigenvalues are
negative, but the difference equation defining the
boundary conditions is'neverthelessl unstable.
Ikeda did not predict this kind of instability to oc-
cur in the purely absorptive-bistability case con-

sidered in the present paper, but the subject re-
mains one of active research. In particular, it is
interesting to note that a multimode gain instability
with more than three modes could have a quasi-
periodic character with some chaotic behavior
much like that of a five-mode nonmode-locked,
i.e., free-running, laser.

The present paper reviews the basic theory'
and discusses the results of two kinds of numeri-
cal calculations that illustrate the range and
nature of the instability. First we solve the field
eigenvalues of Ref. 2 numericaQy, allowing the
centrally tuned mode amplitude to vary in space.
We show that the range of instability (versus in-
put field} decreases as T and oL increase, and
ultimately disappears altogether. The largest
instability occurs in the mean-field limit. How-
ever, we note that the range of the bistability it-
self decreases as T increases, and our data re-
veal that the ratio of the instability range to the
bistability range increases as T increases.
Secondly we integrate the coupled Maxwell-Bloch
equations to observe the time development of the
instability for various combinations of param-
eters. These numerical integrations yield the
same instability regimes as those from the
eigenvalue analysis. In addition, they allow us
to explore the nonlinearities that lead to self-
pulsing or precipitation. In particular, we show
that the transition from steady state to self-
pulsing is of first order on the "lower" boundary
of the instability region and of second order on
the "upper" boundary. This has been confirmed
analytically in the framework of a dressed-mode
theory. @ '8 In practice, this means that if we
decrease the incident intensity along the high-
transmission branch, the self-pulsing always
appears abruptly. By further decreasing the in-
cident intensity, the self-pulsing disappears con-
tinuously or discontinuously according to whether
the system remains in. the high-transmission
branch or precipitates to the lower-transmission
branch. %e have determined numerically the
parts of the instability region leading to self-
pulsing and to precipitation. Although chaotic
behavior'3 is possible in principle, we have not
found any evidence of it in our model.

This paper is organized as foOows. In Sec. II,
we review the Maxwell-Bloch equations used to
describe the atom-field interaction with boundary
conditions appropriate for a ring cavity. The
main features of the steady-state solutions' are
recalled. The linear stability analysis of the sta-
tionary solutions is performed in Sec. III. As
shown in He f. 2, this analysis leads to an exact
eigenvalue equation. In order to give a self-con-
tained description of self-pulsing, the explicit
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mean-field solution3 is reviewed in Sec. IV. Sec-
tion V discusses properties of the eigenvalues in
the mean-field limit that do not remain valid in the
general case. The results of the numerical inte-
gration of the exact eigenvalue equation are given
in Sec. VI. The results of the Maxwell-Bloch inte-
grations are presented in Sec. VII, showing the
exact instability region, the self-pulsing and pre-
cipitation domains, and the self-pulsing behavior.
Section VIII discusses the first- and second-order
character of the transition from steady-state to
the self-pulsing regime. We conclude with Sec.
IK, which relates self-pulsing in optical bista-
bility to that in ring lasers and to induced side-
mode (probe) gain occuring in extracavity inter-
actions such as in saturation spectroscopy.
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=
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II. MAXWELL-BLOCH EQUATIONS
AND THEIR STATIONARY STATES

We consider a ring cavity of total length Z
=2(L+I) (Fig. 1}. Mirrors 3 and 4 are assumed
to have 100% reflectivity Ta.nd R (with T+R= 1)
are the intensity transmittivity and reflectivity of
mirrors 1 and R. An absorber of length L and
volume V', and consisting of N two-level atoms,
is placed in the cavity. This atomic system is
driven by an incident electric field E, of frequency

We assume that (i) the atomic system is
homogeneously broadened, (ii) the transition fre-
quency of the atoms is equal to a&0 (i.e., no atomic
detuning), and (iii) the length Z of the cavity is
equal to an integer number of wavelengths (i.e.,
no cavity mistuning). That is, we consider pure-
ly absorptive optical bistability (OB). The dy-
namics of the system is ruled by the Maxwell-
Bloch equations (MBE)

—=-—EP--y(l (2c)

p. is the modulus of the dipole moment of the
atoms, g is a coupling constant given by

g =4vto&p/ V', (4)

V' is the volume of the medium, N is the number
of active atoms, and y, , y„are the inverses of the
population-difference (T&) and dipole (T2) decay
times, respectively. The boundary condition ap-
propriate for a ring cavity is'

E(0, t) = ~TE/+ RE(L, t ht}-, (5)

where t2t = (2- L)/c is the time taken by the light
to propagate from mirror 2 to mirror 1. The
second term in Eq. (5) describes the feedback
contribution, which is an essential ingredient for
bistability. The transmitted and reflected fields
E~ and E„are given by

Er(t) = ~TE(L, t),
E„(t)=~R [Er(t —At) —E~] .

(6a)

(6b)

We take E, real and positive for definiteness.
Thus, all the fields in Eqs. (2) can be consistently
taken to be real. The stationary solution of Kqs.
(2) with boundary condition (5} has been analytical-
ly obtained in Ref. 1. It yields the state equation
relating the incident and transmitted fields. This
relation simplifies drastically in the mean-field
limit (1). Introducing for convenience the nor-
malized incident and transmitted field amplitudes
g andx:

uE.
K(y y T)1/2 g(y y T)1/2

we obtain'

(6)

where P(z, t) is the macroscopic polarization field
(in terms of the Bloch vector V discussed in the
introduction, P=NpV/2ly, ), 4(z, t) is one half
the difference in population between the lower and

upper level, and E(z, t) is the slowly varying en-
velope of the electric field $(z, t):

$(z, t) =E(z, t) exp —i&u,
~

t — —+c.c.(

4L

FIG. 1. Unidirectional ring cavity. EI, Ez, and E~
are the incident, transmitted, and reQected fields,
respectively.

where &= oL/2T, and a=}/gN/2ftcy, . As is well
known, ' "one finds a bistable response for C & 4
(Fig. 2). The exact analytical solution for OB
given in Ref. 1 for 'the absorptive case has been
generalized to the dispersive case (i.e., nonzero
atomic and cavity detuning) in Refs. 4, 13, and
RO. The most general exact solution, including
inhomogeneous broadening (with Lorentzian
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a mean fiel
b 'T=0 ~ 1

T 0.2
d T 0.3
e T-O. 5

Eqs. (11b) and (11c) yield

F„( )
2 y, 1+E„'(z)

and

N 1
I~(z —

2 I~F2 ( ),
while Eq. (11a) givesdF„F„

dz 1+F~&

where

o = pgN/2kcy,

(13)

(15)
I hl

5 Y

FIG. 2. Transmitted field x~Ez as a function of the
incident field y ~El for C = 20 and (a) in the mean-field
limit (1), (b) for eL=4, T=0.1, (c) for eL=S, T=0.2,
(d) for eL=12, T=0.3, and (e) for @X=20, T=0.5.

I I

atomic line shape), is given in Ref. 21. A
standing-wave formula similar to (8) was given in
Ref. 22, which described the monostable problem
of a laser with injected signal.

III. STABILITY ANALYSIS: GENERAL TREATMENT
(REF. 2)

A stationary solution is physically meaningful
only if it is stable. Thus, it is necessary to per-
form a stability analysis of the system. Our ap-
proach is standard and is based on the lineariza-
tion of Eqs. (2) around the stationary solution. It
is convenient to introduce the dimensionless elec-
tric field

5F(z, t) = F(z, t) —F„(g),
6P(z, t) =P(z, t) —P „(z),
M (z, t) =& (z, t) —A „(z).

(16)

Substituting Eqs. (16) into Eqs. (11}and keeping
only the terms linear in the deviations, we obtain
the linearized equations

BeF BeF qg
at (17a)

= (r, y„)'~'(F„(g)6m+A„(z)6E] —r,6P,

(1Vb)

„=-(y, r„)'~'[F„(g)6P+ P„(g)6F] y„6a. —

(17c}

is the linear absorption coefficient. %e now intro-
duce small deviations from the stationary values

p, E(z, t)E(z, t) =g( '),
YL YN

so that, with Eqs. (7) and (6a)

F(L, t) =x(t).

(9)

(10}

Using the boundary condition Eq. (12) and taking
into account that E„(z) itself obeys Eq. (12), we
obtain the following boundary condition for
6E(g, t):

Equations (2) and (5) read then

BE BF pg—+C—=-
1/2 PsBt Bz K(y, y(, )'t'

BP

(1la)

(lib)

6E(0, t) =R6F(L, t - 5, t) .
We seek solutions of Eq. (1V) of the form

6F,(z, t) = 6F~(g) exp(Xt) + c.c. ,

6P„(y, t) = 6P„(z)exp(Xt) + c.c. ,

6& (z, t) = 66„(z)exp(Xt) + c.c.

(18)

(19)

and

3t
=- (rirI) ~ FP-rii &- 2) (11c) We substitute Eqs. (19) into Eqs. (17) and elimi-

nate 6P, (z) and 64„(g). With Eq. (13) we then ob-
tain

E(0, t}= Ty + RF(L, t bt) . - (12)

Let us call E„(z), P„(g), and 4„(z) a given
stationary solution of Eqs. (11). At steady state,

d5F, a I'(A. , E„(z))+- 6E~,dz c
where

(20)
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yi[1 + F» (z)1 + ~
I+F't (z)(~+y. }(~+ri()+r.riiF» (z}'

(21)

Hence Eqs. (19) and (20) give

5F„(z, t)

~exp —0. dz'r ~, F„z'
0

(27} composed of the cavity running modes (c/
8)2wn damped by mirror losses. Since E(z, t) is
the slowly varying envelope of the electric field
[see Eq. (3)], n =0 corresponds to the resonant
mode. In general, the exact eigenvalue equation
can be solved numerically by using an iterative
procedure (see Sec. VI). However, as is usually
the case in optical bistability the problem drasti-
cally simplifies in the mean-field limit (1), which
we consider in the next section.

+X t- — +c.c. (22)

With the boundary condition (18}we find the equa-
tion for A, :

1=Rexp —a dz 1" X, E„z )-
0

(23)

where we have used the definition at = (g- L)/c.
The eigenvalue equation (23) is in turn equivalent
to'

C C Gc
A. = —2win —+—lnR —— dz I'(A. , F„(z)}, (24)

0

IV. STABILITY ANALYSIS: MEAN-FIELD LIMIT
(REFS. 2 AND 3)

In the mean-field limit, the stationary field
F„(z)becomes uniform in space and Eq. (10) re-
duces to

F„(z)=x. (28)

Hence substituting Eq. (28) into Eq. (24) and using
Eqs. (21) and (26) and the definition C= aL/2T, we
obtain

n=0, +1,+2, . . . .
The structure of Eq. (24) can be simply under-
stood by considering the empty cavity case, i.e.,
a =0. Equation (24) reduces then to

X'+ c2X2+ C,X+ C0 =0,
where

n„=2 cwn/g, n=0, +1, . . .
and

(29}

(30)

c c 1
X=- 2'min ———lng g 1 —T (26) C2=k+ yL+ y}i+SQn y

k =cT/Z. (26)

Substituting Eq. (25) into Eq. (22) for a =0, we
obtain

5F,(z, f) = const exp —2win t ——
~c]

P'

zx exp —k t- — +c.c.c
le

(27)

Hence the deviation from the stationary state
5F(z, f) is a superposition of elementary solutions

Note that —(c/L} ln(1 —T ) ' is the cavity damping
constant, which for T «1 reduces to the usual ex-
pression

c& ——k(y~+ y„) +y~y„(1+x }+ &
+ (y~+ y„)ia„,

2Cky

(31)1-x2
'O=ky. wi 1+x +2C 2 +yarn(I+x )ion ~1+x2

For n=0, we recover the cubic equation discussed
in Ref. 23 in the framework of the mean-field
theory of OB. For no 0, Eq. (29) gives the eigen-
values X for the off-resonance modes. We label
these eigenvalues with two indices: the index n,
referring to the nth running mode and an index j
= 1,2, 3. For a given n, A„& are the three solutions
of Eq. (29). Consistently with the mean-field limit,
these solutions must be calculated to first order
in T. One easily obtains (remember that k~ T)

1+x' (y, —in„)(y„—in„) +y, y„x' (32a)

n2s rt3 2 b. + yH + [(r. xt)' —4y.yHx—] 0 + 0(T ) . (32b)

The stationary solution is stable if and only if Re)
&
~0 for all n and j. As we see from Eq. (32), for small

T one always has Rek„» Reh„~ &0. Hence the stability is determined by A„&. Neglecting terms O(T ), we
have

Rek„, 2Cyg yg(1 x )[ygy„(1+x ) Q»]+ Q»(y~+yg} (33)
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Note, in particular, that for n=0

(34}

R& 0, S+R /20 0

where

( y
2 (' y

2

(35)

where dy/dx is calculated from the state equation
(8). Hence, all the stationary states lying on the
part of the curve x =x(y) with negative slope are
unstable because the resonant mode n=0 is un-
stable (Rek„& 0}. Let us now consider the part
of the curve x=x(y) with positive slope. In this
region, the resonant mode is always stable, but
some off- resonance modes can become unstable.
The instability condition ReA„&) 0 gives a biquad-
ratic equation for ~„. The discussion of this
equation leads to the following conclusion. The
stationary state is unstable when the following two
conditions are simultaneously satisfied:

C ~20

Stoble
= ——UnNoble

0-—

mX

FIG. 3. Stable and unstable steady states in the hys-
teresis cycle of transmitted vs incident field. Mean-
field limit (1), C=20, y~=y„=y. The points on the
dashed-line part with positive slope are unstable only if
at least one of the discrete values n„=2~nc/g (n = 0,
al, '. . . ) lies within the range a~(x}&~a)&a~(x) (see
text and Fig. 4).

2
—2r. riix 3rii+4r. rii+„-(3ri —rii) r. p-2 2 2

and

(36)

10

~=r,i(3r.x —rii) ——r. (r. +rex )2

x (37)

provided at least one of the discrete values a„
lies in the interval a~ &

~ a„~ &a, where

1 8+vR (38)

Note that since A. „=A„, the modes become un-
stable in pairs. We now limit our discussion to
the case y, =y„=y, which leads to somewhat
simpler algebra. The conditions (35) reduce then
to

C2-4~2~ 0,
x'- (C+1)+ (C'- 4x')'~' O.

(39}

The analysis of Eq. (39) is simple and leads to the
following picture, which is iIIustrated in Fig. 3.
For C&2(1+vY) the points on the high-trans-
mission branch such that x & C/2 are unstable pro-
vided that at least one of the discrete values o„
lies in the range a (x) & )a„~&a (x), where
(cf Fig. 4).

a (x) =r[x —C —1% (C —4x } ~ ]

(40)

Note that a (x) is always strictly smaller than
the Rabi frequency of the transmitted field

0
6i

I

Xm

FIG. 4. e~ and 0.~ as functions of x, defining the
instability region. We have assumed the mean-field
limit, and y~=y„=y [(Eq. 40)). The dotted line indicates
the Rabi frequency of the transmitted field in units of y.
For y~=y„, this line is given bye [see Eq. (7)J.
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i.e., the frequency of the unstable modes never
differs from the frequency of the incident field by
an amount larger than the Rabi frequency A~
Note also that since 2 (1+~2) & 4, one can get
instability only when there is a hysteresis cycle.
This is no longer true in the case of dispersive
OB, where one can obtain an instability also with-
out bistability. '4 This indicates that the disper-
sive case may be more suitable than the absorp-
tive one for observing self-pulsing.

Returning to the absorptive case, we remark
that the picture changes very little for the case
y„=2y, ; one finds then that instabilities occur for
x c C/2. 12 instead of x & C/2. (Note also that for
X„«X„e.g. , for heavily pressure broadened
systems one never finds instability since no gain

is induced. )
The same problem has also been considered in

a Fabry-Perot cavity. "'8 Reference 25 solves
the eigenvalue problem for a cavity filled with
medium and predicts that the threshold for the
onset of an instability is raised very substantially.
Reference 26 considers the effects of various pos-
sible cavity fill factors and predicts no instability
for the filled cavity case. Perhaps the discrep-
ancy is due to the use of a truncated spatial
Fourier series in Ref. 25, or to the assumption of
Ref. 26 that the real part of the eigenvalues and
the side-mode gain are proportional (cf. Sec. IX).
Reference 26 also shows that a cavity containing
medium only in the ends is subject to instabilities
similar to those in the unidirectional ring case,
while placement of medium only in the middle has
no gain instability. These results are easily under-
stood in terms of multimode spatial-hole burning.

V. COMPARISON OF THE EXACT AND THE MEAN- FIELD EIGENVALUE EQUATION

In the following, we measure the time in units of L/c. Accordingly we use the quantities

L 2', L
Ng=ggL/c a'= a. —= —,y'=y-,"c 8 ' c' (41)

etc. From (33) we have for y, =y„=y:

TL( 2C n' " a''
Reg, =-

~

1+, (1-x') 1+x'- ~ +2 ~1+x' y' y'

Furthermore, Eq. (40) reads

a', = '[x' —C —1+ (C'- 4x')'/'] '/'

1+F2- ~ +4 ~ (42)

(43)

From (42} and (43) we note the following properties:
(1) Rek„', depends on a„' and y' only in the ratio n„'/y'.
(2) a' and n~ are independent of g, L, and T (for C fixed).
(3) a' and n' ], are proportional to y' (for C fixed).
(4) If one plots Reh„'[ vs y' for n,' fixed, the values of y' such that Reh„'& ——0 are proportional to n. In fact,

the condition n' & o„' & o' is equivalent to

2'— g (y +27T— (44)

where according to property (3) y'/a' is independent of y'.
Let us now consider the exact eigenvalues. They are solutions of the exact eigenvalue equation (24),

which for y, =y„=y reduces to

I —F *'( (&L) + Wily'
(l ~ [1+Ei ((1)][(1„',/1 +s)'+ 1~ ((L'l] )'

where

g=z/L.

(45)

(46}

The property (1}is clearly no longer true. In order to find n' and a' . , let us consider n„' as a con-
tinuous variable and set Reh„& ——0, i.e., A„&

——iv, with v real. By substituting this position into Eq. (45}
and equating real and imaginary parts, we obtain

1 —F12( (fL)+ iv/y'
[ + (( 1L)]][((' /'1+ll~+F (L()])'„ (47a)
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FIG. 7. Real part of the adjacent mode eigenvalue
as a function of yL/c for x= 6. (a) Exact for T = 0.1

obtained from Eq. (45) and {b) mean-field result for
ii

«1 Ãq. (42)j.

FIG. 9. Stable and unstable steady states in the
h steresis cycle of transmitted vs incident light forys res'
~=0.1. x;, x~, and x™are used to define (R.

Note the sharp minima of these curves, which are
absent in the corresponding mean-field-limit
curves obtained from Eq. (42) as shown in Fig. 7.

From curves of the type shown in Fig. 7, one
obtains the instability regions of the mode n& for
T=0.1 to be compared with those for the mean-
field limit shown in Fig. 4. The exact instability

g)
Y 8—

region is obtained by finding the range of n', /y'
characterized by ReA, «& 0 for each value of x.
Figure 8 plots the results. Figure 9 reproduces
the steady-state curve x(y) for T=0.1 as given
in Fig. 2, here with the unstable part of the high-
transmission branch indicated by a dotted line.
The exact instability region of n, /y' for T=0.1
is also obtained in Sec. VH by numerically solving
the Maxwell- Bloch equations. The agreement be-
tween that calculation and Fig. 8 is excellent.

Figures 10, 11, and 12 are analogous to Fig. 6,
but for T=0.2, 0.3, and 0.5. In this connection it
is interesting to consider the variation of the in-
stability-bistability ratio 6t=(x, —x )/(x-x ) as

LRe-
C

0.02

yL

.C

-0.02

-0.04

0
5 6 7 8

X

9 10 11

FIG. 8. . Numerically determined instability region for
T=0.1, C=g0, 2/L=5, and y~=y„=y. The shaded part
indicates the region where both ni and 0.2 (and some-
times other modes) are unstable. The curve (b) shows
for comparison the instability region in the mean-field
limit as given in Fig. 4.

D.

III

I

0.2 0.3 0.4

FIG. 10. Same as Fig. 6, but with T=0.2.
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FIG. 11. Same as Fig. 6, but with T=0.3, (a) @=8,
(b) 7, and (c) 6.

a function of T. One finds st= 0.3 for T «1 (mean-
field limit), (R=0.35, 0.42, and 0.52 for T=0.1,
0.2, and 0.3, respectively. Hence increasing T
reduces the range of instability, but it reduces the
range of optical bistability even faster. This sug-
gests the possibility that instabilities may exist
in the absence of bistability. It is difficult to
check this possibility because of numerical anoma-
lies for T ~0.5.

Figure 13 is similar to Fig. 6, but plots Re%,2f
rather than ReV«vs y' for fixed x and T =0.1.
Note that the values of y' occurring for ReA2q
=0 and Re%.&&

——0 are not strictly proportional to
the mode index n, as one expects in the mean-
field limit of Eq. (44). This point is discussed
analytically in Sec. IV. Figure 14 (with y= 1)
carries this point further by graphing ReA„'& vs
o„' for fixed x, T=O.i. comparison with the

same curves except for y'=0. 2 reveals differ-
ences in the peaks, valleys, and zero-crossing
points of up to several percent. Note that in Fig.
14, ReA„&——0 for x = 5.58 and u„=0 (resonant
mode) in agreement with Fig. 5.

By iteratively solving the exact eigenvalue equa-
tion (24), we see that the real part of the eigen-
value X„'& has the structure

c 1
Re%„'& G(F„,a„)——' l——n (48)

where G has been calculated numerically as de-
scribed in Sec. V. The mean-field value of 6
follows immediately from Eq. (33). The second
term on the rhs of Eq. (48) represents the cavity

FIG. 13. Real part of the eigenvalue 12& corresponding
to the mode e2 [exact as obtained from Eq. (45)] as a
function of yI/c for T=0.1, (a) x=9, (b) 8, (c) 7, and

(d) 6.
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FIG. 12. Same as Fig. 6, but for T= 0.5, (a) x= 8 and
(b) @=7.

FIG. 14. Real part of the eigenvalue A„& as a function
of e„(treated as a continuous variable) as obtained from
the exact equation (45) for T= 0.1, yL/c= 1. (a) &=9,
(b) @~8, (c) x=7, and (d) x=6.
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VII. NUMERICAL ANALYSIS OF THE TIME-
DEPENDENT MAXWELL-BLOCH EQUATIONS

The observation that certain eigenvalues may
become positive is in itself insufficient to deter-
mine the general time development of the system.
For this we integrate the exact coupled Maxwell-
Bloch equations (11) numerically.

As shown in Ref. 3, the existence of unstable
steady states in the high-transmission branch
(see Fig. 3) can lead to two different types of be-
havior, depending upon the precise values of the
parameters. In the first case the system pre-
cipitates to the (stable) stationary state on the
low-transmission branch corresponding to the
incident field y [see Fig. 15, part (2)]. The
second and more interesting possibility is that
the system evolves to a time periodic state (limit
cycle). The transmitted light consists then of an
undamped regular sequence of pulses [self-pulsing,
see Fig. 15, part (1)]. There is a Priori a third
possibility, namely, the system evolves to a

x (tax

0.2

x (t)-x

0.5

x= B.15

~ 3.BCXq

1'

0':
-0.2

-0.4

I 0 =
15000

-0.5

-1.0-
(2)

I
I

1500 tc
L

low-transmission
branch

FIG. 15. Envelope of the difference x(t) —x between
the transmitted field and its stationary value for two
cases in which the stationary state in the high-trans-
mission branch is unstable. T=0.1, C=20, 2 =5L, and

pJ pi) p The time is in units of L/c .

losses. The G term results from the induced
polarization of the medium and gives gain when

positive, loss when negative. For Re%„'&& 0, the
gain exceeds the loss, so that the nth mode is
amplified and the single-mode operation is un-
stable. In this situation, our system behaves as
a novel type of laser that works without population
inversion. Part of the resonant mode's (mode 0}
energy is transferr'ed through the nonlinear re-
sponse to the side modes, giving them gain. As
in the usual laser problem, spontaneous emission
provides the initial impetus to side-mode buildup.
This is the origin of the multimode, self-pulsing
behavior of our system. The buildup is compli-
cated by the fact that the system may be near a
phase transition. We now consider the time de-
velopment of this buildup by integrating the coupled
Maxwell-Bloch equations in time.

chaotic situation in which it exhibits a completely
irregular sequence of pulses. Until now, we have
not found any evidence for this type of behavior.
Examples of chaotic behavior in OB have recently
been reported. ' ' However, they occur in dis-
persive cases and quite far from the mean-field
limit. Note that in Fig. 15, we have drawn only
the enveloPe of the transmitted light x(t), which
actually oscillates with a frequency roughly equal
to the difference 2nc/2 between the adjacent un-

stable-mode frequency and the resonant-mode
frequency. The numerical analysis of the insta-
bility has been performed via a direct solution of
the Maxwell-Bloch equations (ll), using a Runge-
Kutta algorithm. "

We limit our discussion mostly to the set of pa-
rameters C =20, T=0.1, nL=4, and 2/L=5.
Although this value of the mirror transmission is
too high to fulfill the mean-field conditions (I),
this choice is guided by the need to keep the com-
puter time within reasonable limits. Note that as
the mean-field limit (1) is approached, the time
taken by the bistable system to reach a limit cycle
increases significantly. For this limit we could
use the multimode ring laser theory of Ref. 27,
appropriately modified for the injected signal
boundary conditions and change in sign of the
linear gain coefficient or the new propagation
equations, equivalent for the lVIaxwell-Bloch equa-
tions in the mean-field limit (1}, derived by one of
us (Ref. 28, Sec. 3).

A. Instability region

Section VI has determined the region of insta-
bility (Fig. 8) by iterating the exact eigenvalue
equation (45). Here we have used an alternative
approach based on direct integrations of the Max-
well-Bloch equations. We have determined the
range of parameters (driving field and cavity
length) for which the mode adjacent to the resonant
mode becomes unstable. (In the following, we
label this mode by its difference in frequency o&
=2wc/S with respect to the resonant mode. ) Our
numerical analysis proceeds along the following
lines: We first calculate the stationary solution
F„(z) in the high-transmission branch for a given
value of the driving field y. We then choose the
initial conditions for the Maxwell-Bloch equations
such that (a) the deviation 5F from the stationary
value F„(z) is initially small (b) the vector

P

is initially the eigenstate of the linearized prob-
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lem (17}corresponding to the eigenvalue xf f (or
more precisely the approximate expression of
this eigenstate obtained in the mean-field limit).
This guarantees that only the adjacent mode o&
is initially excited. The first stage of the time
evolution is then ruled by the linearized equations
(17). Hence in the initial stage the deviation of
the transmitted field from its stationary value
x(t}—x is either exponentially damped or grows
exponentially depending upon whether a

&
is stable

or unstable. The whole instability region is then
obtained by scanning the driving field y and the
parameter o,/y =2'/5Ly. The instability region
obtained by this numerical technique coincides
exactly with that obtained by the eigenvalue analy-
sis of Sec. VI. The shaded part of Fig. 8 is the
region where not only the adjacent mode e&, but
also the next mode n, is unstable. This is quite
obvious, since when n,/y lies in that shaded re-
gion, then a2/y =2ag/y also falls within the in-
stability region. Similarly, when e& lies even
further down in the instability region, the next
modes e3, e4, etc. , become successively un-
stable.

B. Precipitation region

Q)
Y 8

6—
(b}

0
5 6 7

X

e)

9 &0

Once the instability region is determined, the
question remains as to what kind of dynamics is
associated with the existence of unstable modes.
As already mentioned, we have found that, de-
pending upon the driving field y and n&/y, the sys-
tem either reaches a limit cycle or precipitates
down to the low-transmission branch. In Fig. 16,
we show the domains of the instability region
leading to one or the other of these possibilities.
They were determined by directly solving the
Maxwell-Bloch equations (11). We first note that
the lower part of the instability region, i.e., the
region where the mode o, is also unstable, is
entirely contained within the precipitation domain.
We have numerically investigated several points
in this region. To make sure that the type of dy-
namics is independent of the initial conditions,
we have considered three possibilities: (1) only
the mode n, is initially excited, (2) only the mode
n, is initially excited, and (3) both modes are
initially excited. In all cases we have obtained
precipitation (the precipitation time depends, how-
ever, on the initial condition).

C. Self-pulsing region

In the remainder of this section, we limit our
discussion to the limit cycle (self-pulsing) region,
which is the most interesting one, at least from
the point of view of device applications. Supposing
that one moves into the self-pulsing domain from

FIG. 16. Subdivision of the instability region (Fig. 8)
into self-pulsing and precipitation regimes. The lines
(a)-(e) are discussed in connection with Figs. 19 and
20.

somewhere within the precipitation region, one
may first ask what happens when one crosses the
boundary between them. We have found that this
transition is characterized by the fact that near
the boundary, the approach to the limit cycle is
extremely slow, and the envelope of x(t) exhibits
a large number of slow oscillations (Fig. 17). As
one goes further into the self-pulsing region (say,
along a horizontal line in Fig. 16), these pulsa-
tions become less pronounced, and the approach
to a limit cycle becomes increasingly faster.
Eventually, the pulsations disappear altogether.

Let us now describe the main features of the
self-pulsing behavior. As already mentioned, the
frequency of the oscillations is roughly equal to
a&, with a deviation from this value proportional
to T, i.e. , of the order of 10/p. The mean value
x of the oscillations is always lower than the un-
stable steady-state value. This may be inter-
preted as due to a kind of attraction exerted by
the stable steady state. Intuitively, one may
argue that it is applied by the resonant mode,
which is the only excited one when the system is
at steady state. One expects the attraction to be
larger, the smaller the difference n, between the
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FIG. 17. Envelope of the difference x(t) —x between the transmitted field and its stationary value for x= 6, 0.|/y= 5.5,
T=0.1, C=20, 2 =GL, and y~=y„=y. Time is given in units of L/c.

frequency of the unstable mode and that of the
resonant mode. This is consistent with the fact
that x - x increases when n, decreases. When o.

&

becomes small enough, the attraction of the low-
transmission steady state becomes overwhelming
and the system precipitates. This intuitively ex-
plains the position of the precipitation region.

Figure 18 shows the profile of the field F(z, t)
inside the sample for eight different times within
one period of oscillations, when the limit cycle
has been reached. To a first approximation, the
curves in Fig. 18 may be fitted by the expression

E(z, t) =x+A cos[CLa&(t z/v) + Q-p], (49)

where A and Lan = a& are the half-amplitude and
the frequency of the oscillations, respectively,
and Pp is a phase which depends on the initial con-
ditions. The propagation velocity v turns out to be
somewhat smaller than the light velocity. From
Eq. (5) we see then that the (nonslowly varying)
electric field behaves roughly as

S(z, t) = g cos[~ p(t- z/c)]

+ a (cos[((dp + Q|)(t z/c) + Pp ]
+ cos[(&op —oi)(t —z/c) —Pp]), (50)

where we have introduced some obvious symbols
and have taken into account that v = c and 4~ = a&.
Hence, when the adjacent modes n=+1 are un-
stable, part of the incident light is transferred
from the resonant mode, of frequency &&, to the
adjacent modes, of frequencies ~, ~ a&. This gives
rise to the undamped pulsing behavior (50).

Equations (50) shows that in the self-pulsing re-
gime the dominant contributions to the field come
from the resonant mode and the adjacent modes.
More generally, when the system is in the insta-
bility region, the dynamics involves a competition
between the resonant mode and the unstable
modes: When the unstable modes prevail, the
system approaches the undamped spiking regime;
when the resonant mode dominates the dynamics,
the system precipitates to the low- transmission
branch.

10 VIII. ORDER OF THE PHASE TRANSITIONS

a 6

4
LU

2
0

FIG. 18. Field propagation inside the absorber in the
self-pulsing regime. Vfe have taken y~=pii y, T= 0.1,
C=20, ~=GL, x=7.4, and e&/y=5. 5. (1) t=1400, (2)
t=1400.7, (3) t=1401.4, (4) t=1402.1, (5) t=1402.8, (6)
t=1403.5, (7) t=1404.2, and (8) t=1404.9 (in units of
L/c).

We now address the question of the character of
the transition from the steady-state regime to the
self-pulsing regime, when we cross the boundary
of the instability region. For definiteness, let us
consider first the following situation. We start
from some value of the incident field y larger
than y„' (Fig. 2) such that the system is at steady
state in the high-transmission branch. We then
slowly decrease the incident field and penetrate
into the instability region. If all other parameters
are kept fixed, this corresponds to moving from
right to left along horizontal lines in Fig. 16.
Figure 19(a) illustrates what happens when we
move along the line (a). When the point (x, ogy)
penetrates from the right into the instability re-
gion, the self-pulsing behavior appears abruptly:
The oscillations immediately have a finite ampli-
tude, and the difference x- x is finite. Hence,
when crossing the right boundary of the instability
region the system exhibits a first-order-like phase
transition from a stationary to a self-pulsing be-
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havior. When y (i.e., x) is decreased, the ampli-
tude of the oscillations (as well as the difference
x- x) decreases until the oscillations vanish con-
tinuously at the left boundary of the instability re-
gion. The system is back again in a stable sta-
tionary state on the high-transmission branch.
Hence crossing the left boundary one finds a
second-orderlike phase transition from self-
pulsing to stationary behavior. If y further de-
creased below the lower-bistability threshold y
=y„' (Fig. 2), the system jumps to the low-trans-
mission branch as usual.

Let us now follow the system along (b) in Fig.
16. The.results are summarized in Fig. 19(b).
When we cross the left boundary everything hap-

FIG. 19. Variation of the half-amplitude of the pulses
(full line) and of x-x (mean value of the oscillations
minus stationary value, broken line) along the horizontal
lines (a) (0.~/y=8) and (b) (cz&/y=5. 5) of Fig. 8.

pens as in the previous case (first-order phase
transition). However, before arriving at the
left boundary, the system reaches the precipita-
tion region and jumps "prematurely" to the low-
transmission branch. Finally, in the case c, the
system precipitates as soon as it enters the in-
stability region. In this case one has no appear-
ance of self-pulsing and the presence of the in-
stability only leads to a net reduction of the
hysteresis cycle.

For completeness, we now present results ob-
tained when moving along a vertical line in Fig.
16. This would correspond in practice to keeping
y constant and varying 0.&. This can be achieved
by changing the total length 8 of the ring cavity.
Figures 20(a) and 20(b) show the results of this
procedure for two different values of y, corre-
sponding to the vertical lines (d) and (e) in Fig.
16. Again, one finds a first-order phase transi-
tion when crossing the lower (i.e., right) bounda-
ry of the instability region and a second-order
transition when crossing the upper (i.e., left)
boundary.

Since in a numerical analysis one only considers
a discrete set of points, the question arises as to
with what certainty one can assert the order of the
transition. We have analyzed a considerable
number of points in the vicinity of the transition,
so that our confidence in the numerical results is
very high. Furthermore, we have recently given
an analytical treatment of self-pulsing which con-
firms the validity of our conclusions. It is based
on Haken's theory of phase transitions in systems
far from thermal equilibrium" which we have
generalized and applied to QB. 8 In this approach
one derives from the Maxwell-Bloch equations an
approximate, closed equation for the time evolu-
tion of.the amplitude R(t) of the unstable mode,
which acts as the order parameter in this prob-
lem. This equation has the form

~ dVR=——
dR '

where
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FIG. 20. Same as Fig. 19, but along the vertical lines in Figs. 8(d) (x= 7.7) and 8(e) (~=9).
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V(R) = —(Rek&, )R'/2 + aR4+ bR'.

a and 5 are complicated functions of the driving
field x and of the system parameters. V plays
the role of a generalized free energy. The non-
trivial minimum of V gives directly the half-
amplitude A of the oscillations [see Eq. (49)].
This method works only in the mean-field limit
(1). For C =20 and T=0.01, the agreement be-
tween analytical and numerical data is satisfactory
only when the amplitude of the oscillations is
sensibly smaller than the stationary intensity. '
A substantial improvement is obtained in Ref. 18,
where the adiabatic elimination is performed
exactly, thereby obtaining a description that
works in the whole instability region. One finds
a first-order transition at the lower (right) boun-
dary of the instability region (which for T=0.01
practically coincides with the mean-field insta-
bility region given in Fig. 4) and a second-order
transition at the upper (left) boundary. Since
there is no reason to believe that a drastic change
should occur between T= 1 and 10 /p, we consider
this result as an independent check of the numeri-
cal results presented here.

K. DISCUSSION

We have shown that self-pulsing in absorptive
optical bistability is due to the onset of instabili-
ties in the side modes of the cavity. These insta-
bilities arise because the nonlinear medium trans-
fers energy from the large centrally tuned mode
to the side modes which then grow at the expense
of the large mode. If the central mode neverthe-
less dominates, the system precipitates down to
the lower-transmission branch, leading to a net
reduction of the size of the hysteresis cycle. Al-
ternatively, the side modes grow and the system
reaches a limit cycle characterized by a periodic
transmitted field. For this case, the bistable sys-
tem acts as a cw to pulsed-light converter.

The gain phenomenon has been discussed theo-
retically+ and experimentally38' ' for two or
more modes interacting outside a cavity. There
the side modes called probes are introduced ex-
plicitly, rather than building up from spontaneous
emission. In the saturation spectroscopy inter-
pretation @ the probe wave derives gain from the
saturator wave (mode 0 in our present context)
via a parametric interaction resulting from in-
duced population pulsations. Alternatively, the
Hamiltonian including the saturator wave can be
diagonalized, yielding levels split by the dynamic
Stark effect. With either interpretation, field
modes passing through such a saturated absorber
experience gain for appropriate combinations of
detuning, decay constants, etc.

Apart from a proportionality constant, the
mean-field-limit value of (48) (Ref. 35) reduces
to the AM three-mode formula (13) of Ref. 34 in
the case of resonant saturator tuning. Specifically
two probes occur since in the cavity two sym-
metrically placed side modes are involved. The
gain that either one experiences is enhanced by
the presence of the other, even though neither
side mode is assumed to saturate the medium.
This surprising result occurs because the side
modes act together with the saturator in gener-
ating population pulsations, which, in turn, scat-
ter saturator energy into both the side modes.
Reference 33 has discussed a gain formula that
reduces to the mean-field value of Eq. (48) in some
detail, and generalizes the calculation to various
degrees of inhomogeneous broadening. The gain
phenomenon decreases in magnitude as the inhomo-
geneous broadening is increased.

In the present problem, the modes interact in a
cavity. This differs in important ways from inter-
action outside a cavity. The side modes build up in
a self-consistent way from spontaneous emission,
subject to mode pulling and cavity loss considera-
tions familiar in laser theory. As such their di-
rection, frequency, and amplitude are chosen by
the cavity boundary conditions, the absorber and
the input wave, rather than directly by the experi-
menter. This fact is particularly relevant as one
departs from the mean-field limit where the
cavity and extracavity gain formulas coincide.
Specifically, as propagation effects become im-
portant, the cavity eigenvalue depends in critical
ways on the mirror transmission coefficient T,
which is absent in the extracavity case. It is a
nonzero T that causes the internal field to be a
function of position and hence to saturate the medi-
um in a nonuniform wy, y. As such the side-mode
gain is induced by a spatially varying saturator
field determined by tQe input-field amplitude and
the cavity boundary conditions, and can differ sig-
nificantly from the gains induced by the constant
saturator fields assumed in saturation spectros-
copy.

As discussed in Ref. 33, inhomogeneous broad-
ening reduces the side-mode gain. References
25 and 26 show that standing waves (e.g. , two-
mirror cavity) also reduce the effect, and, as
shown in the present paper, increased mirror
transmissions reduce the instability. This leads
us to the conclusion that the most pronounced
instabilities occur for the homogeneously broad-
ened, unidirectional ring cavity with low mirror
losses. The basic feature characteristic of the
other systems is that the primary mode does not
saturate all atoms uniformly. Such "averaged"
saturation tends to wash out, or at least reduce,
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both the size of the hysteresis region and the
magnitude of the instabilities.

It is interesting to note that Risken and Num-
medal" (see also Ref. 11) predicted multimode
operation in a homogeneously broadened, uni-
directional ring laser by integrating the coupled
Maxwell- Bloch equations. For inverted popula-
tions in homogeneously broadened media, one
might expect single-mode operation to dominate.
But for appropriate cavity lengths, population
pulsations enter to reduce the mode competition,
allowing multimode operation to occur. This
phenomenon is closely related to the present in-
stability in optical bistability, and corresponds
to mode spacings that yield absorption, rather
than gain, in our absorber formulas. For the
inverted medium, that absorption turns to gain,
which reduces the mode competition.

Let us now return to the mean-field-limit
equation (1). Assuming equal decay constants
for~simplicity, we obtain the self-pulsing insta-
bility for C & 2(1 + ~), as discussed in Sec. III.

Since 2(1+~)& 4, we see that the instability
only occurs when there is a hysteresis cycle. As
we have seen in Secs. IV and V, this may not be
true when mirror losses become significant.
Reference 24 shows that it is no longer true in
the case of dispersive OB. This reference also
shows that the cavity and extracavity gains differ
for dispersive OB even in the mean-field limit.
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