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Two-photon laser-induced radiative collisions
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We present a semiclassical treatment of two-photon laser-induced radiative collisions. We treat the two-
photon-one-collision and two-photon-two-collision cases. We find a new intensity-induced collisional shift which
makes the two-photon line shape highly sensitive to the intensity, and may make the line shape symmetric.

During the last few years considerable theoreti-
cal and experimental efforts have been devoted to
describing absorption or stimulated emission
resonances that are only present during collisions
of excited atoms with ground-state atoms of
another element (radiative collision). In a, radia-
tive collision the initially excited atom, having
excitation energy e, returns to its ground state
and leaves the second atom in an excited state of
excitation energy nearly equal to e+ h~. Large

0
cross sections (i.e. , several A') are predicted'
and were measured at power levels -10' W/cm'
in cases where no excitation transfer occurs in
the absence of the laser field. Although the possi-
bility of laser-induced multiphoton radiative colli-
sions has been previously suggested, ' it is only re-
cently that an experimental effort has dealt with it. '
During the collision of Ba and Tl ground-state
atoms, two photons are absorbed which result in
the simultaneous excitation of both atoms.

In this paper we examine the theoretical aspect
of two-photon induced radiative collisions using
a semiclassical approach. We find that when all
the radiative interactions take place with only one
of the atoms, the process can be transformed to
an equivalent form of a single-photon radiative
process except for an ac Stark shift and the intro-
duction of an effective two-photon coupling in
place of the single-photon coupling. The line shape
has an extended red wing as is encountered in a
single-photon radiative collision. 4' However, in
the case where both atoms couple to the electro-
magnetic field, we find that the process proceeds
via a two-collision process and hence, the above
simple substitution does not hold. The overall
radiative collision coupling is proportional to the
product of an effective two-photon coupling and

an effective two-collision coupling. In addition
to ac Stark shifts, we find that a new intensity-
induced collisional shif t is introduced. This induced
shif t is interesting since it makes the line shape high-
ly sensitive to the laser intensity. Moreover, it
may cancel a major part of the collisional shifts
and hence, cause the two-photon line shape to
exhibit symmetry for a certain intensity while
the absence of this shift will in general result
in an extended tail. .

We consider the collision of atoms A and B in
their ground states in the presence of the radia-
tion field ~=8, cos~t which does not resonate
with any of the transitions in either atom. We
are interested in the process where both atoms
emerge from the interaction excited, In describ-
ing the process, we treat the motion of the nuclei
classically; moreover, we assume that the domi-
nant contribution comes from large internuclear
separation where electronic overlap is negligible.
Hence, we represent the system with a product
of atomic states, and write

A A

H=H„+H~+ V~ —p.„. (I)
A,

where H„and H~ are the electronic Hamiltonians
of isolated atoms A and B, V~(t} is the atom-
atom interaction, and the other terms are the
laser field-atom interaction terms in the dipole-
classical field approximation. We will treat the
magnetic number degeneracy by treating the atom-
atom interactidh in the rotating atom approxima-
tion where V~ matrix elements are evaluated by
assuming the transition moments are always
aligned along the line joining the nuclei.

Consider the first case where only one atom in-
teracts with the field. The state vector of the sys-
tem is taken to be of the form (see Fig. 1}

I

( Q(t)) = a,(t}(Oa) (Ob) + a, (t}(la) (Ob)exp(i&a, t}+a,(t) (2a) (Ob) exp[i(s&, + &u, }t]+a, (t}(la) ( Ib)exp[i (u&, + &o,)t] .

In the process the initial state (Oa) (Ob) is vir-
tually excited by the electromagnetic field to the
state (la) (Ob), which in turn is virtually excited

(2)
I

by the electromagnetic field to the state (2a) (Ob).
Finally, a collisional transfer from (2a) I Ob) to
Ila)(lb) nearly converses the overall energy for
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where. &,= u, —u, ~, = m, —~, &,'= co, —ru„p, „
is the matrix element of the dipole moment p, „of
atom 4 in units of I, and V, is the matrix ele-
ment ((la((lb V~, (2a) (Ob)/8'.

We take (&, , (&, (, and (&,'(large enough such
that ni~'&i~ED n2'~&2~ED ~o~~V2 and (~x
+ &, (

~ g»E, . These conditions also imply that
da, /dt «&„da,/dt «&„&„hence, we can inte-
grate the equation for a, by parts and keep only
the leading term. The resulting expression for
a, is then substituted in the rest of the equations.
Integrating the resulting equation for a2 by parts,
keeping the lowest-order term, and substituting
back gives

+1A
and

" +i (b,'E', + b,'E', )a, = zc+OV, exp(i t)t}

o.
atom A' Ob

atom B

' + i&,V,'a, =i cg2oV, exp(- i bt)a, ,

FIG. 1. A partial energy-level diagram of the two-
photon-one-collision interaction.

the transition. Thus, substituting Eqs. (1}and

(2} in the time-dependent Schrodinger equation
gives the following equations for the time-depen-
dent coefficients in the rotating-wave approxima-
tion:

Qo" =ip»E, exp(id. ,t)a, ,

where b,' and c,' are functions of the various de-
tunings, and & +1+&2+ &p is the detuning from
exact resonance. These two equations are iden-
tical to those of single-photon radiative colli-
sions, ' except for the two-photon coupling CpEp
and the Stark shifts. In the weak-field limit,
these two equations reduce to ap = 1 and

da, .(~V'
dt

dg 1% 0
' =i p»E, exp(-in, t)a, +i p,„E,exp(ia, t)a, ,

„' =ipse„E,exp(-ia, t}a,+i V,exp(i not)a„2~ P

' =i' exp(-i&,'t)a, ,dt 2

=i p+„p+„E2V~+[a,,(n, + a,)) 'exp( ibt) . (3-)

In the dipole-dipole interaction Vf =hp»p»/R'
where R'(t}=p'+ V't', p is the impact parameter,
and V is the relative speed of the atoms. When

Ep changes very little over the time of collision,
Eq. (3) gives

t 2

(a,( ).('=4a'E,' R '(t) cos( [CR-'(t)+ b] dt
(

dt
p p

where a'=)I'p, ', „t)',„p'»[n, (n, +6,)] ' and C=k'p', „p,.',s/n, .
Consider now the second case where both atoms interact with the radiation field. The state vector of

the system is taken to be of the form (see Fig. 2)

P(t) = (Oa) (Ob)ao(t)+ (Oa) (lb) exp(i&u, t)a, (t)+ (la) (Ob) exp(i&@,t)a, (t}

+ ( 2a) ( Ob) exp[i(e, + co,)t]a,' (t ) + ( la) ( lb) exp[i(ru, + co,)t] a, (t) .

(4)

In the process, the initial state (Oa) (Ob) is virtual-
ly excited by the electromagnetic field to the state
(Oa) (lb). A virtual collision then transfers the
excitation from (Oa)(lb) to the state ( la) (Ob)

which in turn gets virtually excited by the electro-

magnetic field to (2a) (Ob). Finally, a collisional
transfer from (2a) (Ob) to (la) (lb) nearly con-
serves the overall energy for the transition. Thus
the time-dependent Schrodinger equation gives in
the rotating-wave approximation:
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'+iS,a, = C,E,' Vss: V,*exp( i-bt) a, ,

(d1

1A

Pa
atom A

pb
atom B

FIG. 2. A partial energy-level diagram of the two-
photon-two-collision interaction.

where S,= b, E', +b, E',V', + b, E', V'„S,= b,V'„5
+ +2 +0 +p is the detuning from exact reso-

nance, and the coefficients b, and c,. depend on the

various detunings and the dipole-moment matrix
elements. This effective two-state system is
similar to the single-photon process except that

an effective two-photon coupling replaces the

single-photon coupling, and an effective two-col-
lision coupling replaces the single collision
coupling, and except for some additional shifts.
The additional shifts are the ordinary ac Stark
shifts (b,E',) and new novel intensity-induced col-
lisional shifts (b, E,'V', + b, E,'V,'). These induced

shifts can be used to control the overall shift
between the initial and final states making the

line shape highly dependent on the intensity. In

fact, one can conceive of a situation where most
of the shift cancels out. In this paper we will
consider the weak-field case to explain the effects
of these shifts, and leave the strong-field case for
a later study. In the weak-field limit, the pro-
cess is described by the following equations:,

'= ip, sEoexp(i &,'t)a, ,

' =i ps» Eo exp( ia,'t)ao+i -V, exp(-i besot)a„

' =iV;exp(i ts,'t)a, +i p»Eoexp(i &,t)a,',

' =i p,*+,exp( . in, t)a, +-i V,exp( i&ot)a, ,-

„'+iaoEoo(V', /iso)ao= 0,
dt

da .)r'V''+i~ ' a =ia E'V*V*e ' '
dt l~ g 3 4 0 l

0

where

ao= p ssln8+o

a4= u»Wo~(. ns(no —ns}(~s+ no —'4~ '

(6)

(7)

daq' =i V fexp(iAot)a, ',
where

I+1= (a)3 —Gay +0 = (d3 —4)ly

a=~a ~s no=~o —~os

0 +1 M Vl and +1+ +2 +0 V 1+A2 2'. We

keep the shift proportional to E,'V', in Eqs. (6) and

(7} since even in the weak-field limit, this shift

may be of the same order as V', /no. When E,
changes very little over the time of collision, Eqs.

(6) and (7) give

~»=«b I~s. I»&I&, u»=(la(~. „,(2a)/ft,

V, = (Ob ((la (V (Oa) (Ib)/g,

ee 2

(a,(~)('=4a,'E', V*, V*,cosSdt
0

where

(8)

V, = (Ia ((lb (V~s (Ob) (2a)/ft.

We take g*, E,«(t,'(, V, = «(Z,'(, &,„E «(~ (

V."(&o (, (&s - &:I
= (~, I

- V„and eliminate
a„a„and a,' sequentially by integrating their
equations by parts. The resulting equations have

the form

" +iS,a, = C,E,'V, V, exp(ibt}a,

t
S = (C'R-o - 6)dt,

0

2 2 2 1 2 2 2 2 I 1
u'2/ V'~ +0 ~ +O~p~lg+lg+0

In the dipole-dipole interaction Eq. (8) becomes

2

ls, ( )I'=4Is'I*z', f R ssssst'
0

where
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We now discuss the line shape of the process.
The absorption cross section g is calculated from
the integration of ~a, (~)~' over the impact para-
meters. A thermal average of the cross section
0 then yields an absorption rate. For large C
or Q', all impact parameters can be integrated
over because the frequency shift becomes large
for R values s15 A, and there is no change in a,
at R values where overlap is important and devi-
ations from straight line trajectory occur. In
fact, a universal line shape exists for the two-
photon-one-collision case in analogy with the
one-photon-one-collision case. ' This line shape
is given by the thermally average cross section,
o = ~'E.'IC

I "(»T/i ) ''Z(x-) where T is the ab-
solute temperature, p, is the reduced mass,
x=G~C~' '(2kT/p, ) '/'5, G is the sign of C, and J
is a function which essentially gives the line shape.
The line shape is asymmetric with an extended
red or blue tail corresponding to t" =+1 and G = —1,
respectively. A universal line shape also exists
for the two-photon-two-collision case: It has a
similar expression to the one-collision case ex-
cept that J takes on a different function because
the coupling involves R ' rather than R '.

In the case where C = C' is large, the contribu-
tion from the two-collision case is smaller than
the contribution from the one-collision case. This
is because the radiative collision coupling in the
latter is smaller than that of the former by V, /n, o.
Although at small impact parameters this factor
becomes larger, the dephasing factor cuts off
contributions from this region more severely.

At some intensities, however, C' can become
very small even in the weak-field limit. For
example, taking p,„/iL,„=0.1 and n,'/n„= 0.1,
then C'=0 for g,'sEO/[n, ,'(n, o-s,')] '=10 '. The
situation where C' is very small suggests a large

coupling coefficient in the absence of any dephas-
ing effect for all internuclear separations. g & 4 A.
This could lead to extremely large cross sections
for the process. Moreover, because of the ab-
sence of the shift, the line shape is expected to
be symmetric. However, because of the detuning
at small R, orbiting phenomena play a significant
role. An estimate of the magnitude of the cross
section at the peak of the resonance can be deter-
mined from Eq. (9) by taking C' = 0 and 5 = 0. In
this case [a,(~)['=1 5vn".E',/(p"V') Alo. wer
limit on the estimate can be found by calculating
the contribution from impact parameters where
orbiting is not important; that is,

o'2& 2xpdp g ~ =3m n' E Vp
~c

Taking p, =4 g, V = 5x10' cm/sec. , g,„=0.4 a.u. ,
0,» =4 a.u. , I» =4 a."., P,s Eo/[A, (AO-A,')]=10-',

&0 2500 cm ' and g, = 1000 cm ' then

o, & 0.6 A'. The cross section at the peak of the
two-photon-one-collision case is estimated to be
8v~'E,'(V'p,')-', where p, is the Weiskoff radius.
The ratio of the cross section of the one-collision
to the two-collision case is -I'p, ,' p,'(gPp,') '.
Taking 6,= 5000 cm ', then h'y, ,'„~ms/A, = 1.2
x10 ~ J cm', po= 13 A, and the ratio is 10'.
Therefore, the one-collision contribution is negli-
gible compared to the two-collision contribution.
The line shape in this case is symmetric.

The fact that the cross section of the two-colli-
sion case is larger than 0.6 A' makes the process
measurable. We will, however, analyze the
strong-field case in a later work. The strong-
field case allows more choices of a system for
experimentation.
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