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Charge transfer in S'++H collisions at ev collision energies
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Ab initio molecular-orbital methods are utilized to obtain potential&nergy curves and coupling-matrix elements to
assess the cross section for the charge transfer S'+{'P)+ H{1s)-»S+ + H+ at electron-volt collision energies. Results
of quantal, coupled-channel calculations confirm the indications from the positions of the potential-energy curves

that the cross section is quite small —less than about 10 "cm' at 1 eV.

I. INTRODUCTION

Renewed interest in atomic, charge-transfer
collisions has arisen because of their importance
in plasma fusion devices and in astrophysical plas-
mas. The relevant energies —typically &100 eV
in the laboratory and s 1 eV in astrophysics —are
sufficiently different that individual investigations
rarely, if ever, provide data for both areas of
application. At the low energies of astrophysical
relevance, essentially no experimental data are
available. Because of the cosmic abundance of
hydrogen, charge-transfer collisions involving
atomic hydrogen tend to be of primary importance
in astrophysics. However, the reactivity of atom-
ic hydrogen increases the experimental difficul-
ties. Efforts to satisfy astrophysical needs have
therefore been primarily theoretical in nature.

For collisions involving hydrogen atoms and ions
that are three or more times ionized, there ord-
inarily are a large number of exoergic final states
and the transition probability to at least one will
be so large that an appreciable total cross section
will result. For singly and doubly charged ions,
only a few final states are energetically allowed.
Total cross sections can then be small and are
particularly sensitive to the specific properties
of the system in question. Furthermore, in astro-
physical environments the charge transfer with
hydrogen can be a major neutralization process
for heavier ions even when the cross section is,
re1.atively small because of the intrinsic slowness
of competing processes (especially, radiative
captures) .

Optical radiation from low ionization states of
sulfur atoms —the abundance of which is influenced

2+
by the S + H charge transfer —is observed and
utilized as a diagonistic in various astrophysical
contexts. ' The research here presents a molec-
ular-orbital study of the relevant potential-energy
curves (Sec. III) and of the matrix elements (Sec.
IV) that characterize the charge-transfer colli-
sion in the 8 +H system at low energies. Our
purpose in carrying out this research was to an-
swer the qualitative question of whether or not the

S -H charge-transfer reaction could be an im-
portant neutralization mechanism for S in astro-
physical conditions. This permitted us to use
simplifying approximations which give results of
sufficient accuracy to answer the qualitative ques-
tion, but which should not be uncritically used in
detailed modeling. Basic elements in the des-
cription of charge transfer at low energies are
presented in Sec. II. A discussion of the expected
magnitude for the cross section at energies of
1-j.o eV—the energies that are likely to be of
primary astrophysical importance —is then given
in Sec. V.

II. FORMULATION OF THE CHARGE-TRANSFER
PROBLEM

For low-energy (i.e. , electron-volt) collisions,
the large difference between the velocities of the
nuclei and of the electrons is utilized in the usual
manner to effect a separation between the nuclear
and electronic properties,

S'(R;r) =—Q E,(R)$,(r),

where 4'(R;r) is the total wave function, E,(R) is
the nuclear wave function associated with the elec-
tronic state i, and the Q, (r) are the electronic
wave functions of the various states. The inter-
nuclear separation is designated by R, and r
represents, col,lectively, the positions of the elec-
trons. The close-coupled scattering equations
that describe charge transfer in the body-fixed
frame are then, in atomic units,

[T„+U«+I(L+ I)/2pB —E]E,&B)

In the above,
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where p is the reduced nuclear mass, L is the
angular momentum quantum number for nuclear
motion, E is the total energy of the system, jL'„
is the electronic angular momentum operator
along the y' axis (primed coordinates are the
body-fixed, electronic coordinates with z' along
the internuclear axis), h, is the electronic Hamil-
tonian, and

U~g=(&c I&.I &s&.

As presented in Eq. (2), the various nuclear
states E,(R) are connected by three different types
of off-diagonal matrix elements. In actual cal-
culations, the basis functions Q, usually are chosen
so that either the U, & (i oj) are zero (the "adiabat-
ic b"asis) or the matrix elements of d/dR are zero
(the "diabatic" basis). The former set of states
are the eigenfunctions of the electronic Hamil-
tonian and are the well-known Born-Oppenheimer
states of the quasimolecule. In the adiabatic,
basis, the matrix element of d/dR causes trans-

itions between states of the same molecular sym-
metry whereas the matrix element of iL'„couples
states of different molecular symmetry. In the
diabatic basis, states of the same molecular sym-
metry are coupled by the off-diagonal elements
of the electronic Hamiltonian. States of different
symmetry are again connected by iL„. It is, of
course, possible in principle to transform be-
tween the two basis sets. '

An approximate, analytic solution to Eq. (2)
for the case when two states can be isolated and

when the transition is between states of the same
molecular symmetry (as is ordinarily the case
at low energies) is due to Landau {1932)and &suer
(1932). The Landau-Zener solution frequently
is of satisfactory accuracy' and in any case pro-
vides valuable guidance fop finding the states of
primary importance. A close pseudocrossing in
the adiabatic basis is usually required for an

appreciable cross section in low-energy colli-
sions.

III. POTENTIAL-ENERGY CURVES FOR THE SH~ SYSTEM

In the 8 (Ss Sp P)+H-8 +H charge transfer, only two states of 8 +H [8 (Sp D)+H and 8 (Sp P)
+ H J are predicted to have pseudocrossings at internuclear separations greater than Saa, based on the

Coulomb approximation for the potential-energy curves in the final state. Previous experience indicates
that crossings inside of this distance are unlikely to be favorable at electron volt energies. Both final
states are spin doublets so that the quartet coupling of the initial state can be ignored. Furthermore,
since only Z and II projections of the electronic angular momentum are possible in the initial state and

we are neglecting angular coupling, the & projection of the 8 (Sp D)+H state will also be ignored. Thus,

only the Z and 0 states of the SH system will be considered.
The wave functions that represent the relevant states of the SH system must asymptotically reduce to

those of the separated atoms, and therefore must contain equivalent 3p electrons on the sulfur ion. The
asymptotic forms of these wave functions are (only open-shell orbitals are displayed explicitly)

(1) 8 '(Sp P) +H(lz 8): (2«ys - z«y+ sy«)/W, P,
(2) 8 (SP' 'P)+H': (z««+zyyg/W, 'P,

(3) 8'(Sp D) + H': (2«yz -z«@+zy«)/46, (3)

(4) 8 '(SP P) + H(1z '8): (2z«s —sz«+ s«zg/W, P,
(5) 8'(SP P) + H: («yy + «zz)/~, 2P,

(6) 8 {Sp D) +H: («yy —«zz)/W, D,

where the convention

CN4z4„- det(4~(1)4z(2)4„(3)
~

along with 4 (spin up) and 4 (spin down) are util-
ized. The spatial orbitals are labeled in terms
of their transformation properties under rota-
tions. Because the basis functions used in the
available computer codes for molecular quantum
mechanics are expressed in terms of Cartesian
spherical harmonica, the angular parts of the

orbitals are also in terms of Cartesian rather
than the usual spherical harmonics. Orbitals
x, y, and z correspond to the equivalent 3p elec-
trons centered on the sulfur nucleus whereas the
s orbital is a 1s orbital centered on hydrogen nu-
celus. The z axis is taken to lie along the inter-
nuclear axis.

In order to display the molecular symmetry of
the wave functions, we wi11 express the orbitals
in terms of their molecular symmetriea rather
than their atomic aymmetriea. The atomic x
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and y orbitals have w molecular symmetry, where-
as the z and s orbitals have e molecular sym-
metry. As the internuclear separation decreases,
the orbitals asymptotically labeled as s or z
can only be characterized as e orbitals and will
in general contain both s and s Gaussian-type
basis functions (GTF s). When expressed in
terms of orbitals with molecular symmetry, the
wave functions take the following forms:

(1) (2,w w(r, ,o-,w w+ o, „w w)/W6,

(2) ( ger, w +o2w w„)/W, Z',

(2) (2w,w„o2 —o,w,w„+o,w„w,)/W,

(4) (202wgo3 o2o3w @+ogwgo3)/ll 6~

(5) (w,w„w„+w„o282)/v 2, 'Il,

(6) (w,w„w, w,o,o,-)/v 2, 'Il.

2g

2g (4)

Asymptotically, the 02, 03, m'„, and w„orbitals be-
come the z, s, x, and y orbitals, respectively,
whereas the oq orbital becomes the sulfur 3s
orbital.

It should be noted that as a result of symmetry
considerations the matrix elements relevant here
for charge transfer —those of the electronic Ham-
iltonian h, and of the d/dR operator in the approx-
imation that angular coupling can be ignored-
can immediately be seen to vanish between cer- .

tain pairs of states. These operators are nonzero
only between states of the same parity and of the
same projected angular momentum. Thus, states
1 and 3 and the set of states 4 through 6 can be
treated separately. State 2 can be neglected.

A. The Z states

Examination of the wave functions for states 1
and 3 shows that they differ only in having differ-
ent 0 orbitals. This immediately suggests that
the lower state can be found using a Hartree-Fock
approach and that the upper state can then be con-
structed using one of the virtual orbitals from the
lower state calculation. The orbitals are ex-
panded in terms of GTF's. Those GTF's centered
on the sulfur nucleus are based on the (14s10p)
basis set of Huzinaga and Arnaus. The outer
three GTF's of the s type were replaced by an
equivalent set with more evenly distributed ex-
ponents. In addition, two diffuse s-type functions
and one diffuse p-type function were added to the
basis set along with a set of d-type polarization
functions having exponents of 0.54. On the basis
of trial calculations for S, the resulting
(16sllpld) sulfur basis set was contracted to an
(lls7pld) set. The more diffuse GTF's were left
uncontracted so that the basis set would be suf-
ficiently flexible at large internuclear separa-

tipns to describe the system accurately. For the
Hls orbital, a 4s set' was used; for the H2p or-
bital a 3P set was utilized.

Restricted Hartree-Fock (RHF) calculations
were performed for state 1 at 18 internuclear
separations. The energy of state 3 at these sep-
arations was obtained by using the virtual or-
bitals. Results of this calculation are given in
Table I and Fig. 1.

The calculated, asymptotic energy difference
between the two states is 0.278 hartrees or 5.1%
less than the experimental value of 0.293 hartrees.
Were the Coulomb repulsion in the final state to
dominate the behavior of the system up to the
pseudocrossing, the predicted internuclear sep-
aration of the pseudocrossing would be 3.6ap.

8. The 1I states

1. General

TABLE I. SH2': Z potential-energy curves.

R (pp) State 3 (H) State 1 (H) hE (H)

99.00
10.00
8.00
7.50
7.00
6.50
6.20
5.70
5.20
4.95
4.70
4.45
4.20
3.95
3.70
3.45
3.00
2.75

-397.0657
-396.9761
-396.9519
-396.9440
-396.9352
-396.9254
-396.9191
-396.9086
-396.8991
-396.8955
-396.8930
-396.8914
-396.8906
-396.8900
-396.8888
-396.8862

396.8720
-396.8540

-396.7980
-396.7983
-396.7987
-396.7987
-396.7984
-396.7975
—396.7964
-396.7929
-396.7846
-396.7766
-396.7639
-396.7453
-396.7200
-396.6874
-396.6464
-396.5957
-396.4743
-396.3873

0.2677
0.1778
0.1531
0.1453
0.1367
0.1279
0.1.227
0.1157
0.1145
0.1110
0.1291
0.1461
0.1706
0.2026
0.2424
0.2905
0.3977
0.4700

There are three states of 'II symmetry to be
considered. Unfortunately, no technique as simple
as the virtual orbital approach used for the Z
states exists for obtaining the energies and wave
functions of the upper two states from that of the
lower state. The relevant three wave functions
cannot be obtained from one another by the simple
replacement of a single spatial orbital without
altering the spin coupling. Another difficulty is
revealed by examining wave functions 5 and 6
[see Eqs. (4)]. In order for them to asymptotical-
ly have the appropriate atomic symmetry, the
coefficients of the w„w„F„and m„02o2 factors must
have equal magnitudes. However, each of these
factors is separately a valid II molecular con-
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figuration and there is no reason to assume that
the coefficients of these two configurations in the
wave functions of the two lower states should be
of equal magnitude at finite internuclear separa-
tions. A simple Hartree-Fock approach, in which
these coefficients must be specified as input, will
then clearly be inadequate. A more sophisticated
type of self-consistent field approach, the multi-
configuration self-consistent-field - method, in
which the coefficients of several configurations
are variationally optimized simultaneously with
the relevant orbitals, is possible. However, it
optimizes only the II state of lowest energy. This
difficulty in obtaining the wave functions for sev-
eral states of the same symmetry is inherent in
a Hartree-Fock approach because it is based on a
variational procedure that gives the lowest energy
wave function for a specified spatial and spin
symmetry.

As is well known, the configuration-interaction
(CI) method can provide approximations to several
states of a given symmetry. It was thus decided
to utilize the CI approach to obtain the wave func-
tions and potential energy curves for the II
states.

The major inadequacy in an RHF treatment of
the SH system is the impossibility of describing
the two lower states at finite internuclear sep-
arations by 0 configurations that retain their
asymptotic form. In a first approximation, this
can be remedied by performing a CI calculation
including only the three II type configurations
-(3&,v,o3- &,v„o,- o,s,&,)/W, s„v„v„, and s,&,o, .
However, this simple approach neglects the facts
that the optimum orbitals for the three different
states will not be identical. That is, a set of
orbitals capable of describing the lower state
well is likely to describe the upper states poorly
and vice versa.

39700 I I I I I I I I I I I I

2 3 4 5 6 7 8
INTE RNUCLEAR SEPARATION (oo i

FIG. 1. The calculated 2g adiabatic potential-energy
curves for the SH ' system.

Orbital corrections can be included by adding
configurations that allow for orbital mixing and
distortion to the three already mentioned. The
problem then becomes one of deciding what types
of configurations are needed to accurately and
equivalently represent all three states.

The initial steps in the selection process are
based on physical considerations. A set of oc-
cupied and virtual orbitals from the Z calcula-
tion is already at hand. Since the asymptotic
forms of the corresponding pairs of Z and II
states (i.e. , states I and 4, and 3 and 6) rep-
resent atomic states differing only in magnetic
quantum number, the occupied orbitals found in
the Z calculation should be asymptotically ac-
curate for the corresponding II states. These
orbitals should also be asymptotically good for
state 5 since it differs from state 6 only in the
way of the sulfur 3P orbitals are coupled together.
Furthermore, the orbitals inside the 3s shell
should be quite similar for both the Z and II
states at all of the internuclear separations of
interest. Their forms are determined largely
by the field of the sulfur nucleus and of the other
electrons inside the 3s shell, and are relatively
insensitive to the shape of the outer orbitals.

Incontrast, theformsof the(Ty Q2 03 7l and 7I,
orbitals can be expected to change significantly
in going from the Z to the II case. Certain or-
bitals are sensitive to the location of the pseudo-
crossing (i.e. , the o2 and oq orbitals) and the
pseudocrossing for the Z system occurs at a
different internuclear separation from that ex-
pected for the II system. Even neglecting the
shift in the position of the pseudocrossing, the
optimum orbitals for the E case should differ
from those of the II case because of the differ-
ent nature of the charge transfer in the two states.
Charge transfer in the Z system corresponds
to a simple one-electron replacement process,
whereas in the II state it is likely to result from
a combination of orbital changes and configuration
mixing. Orthogonality constraints between or-
bitals of the same symmetry type indicate that
the 0& orbital may be the next most affected orbi-
tal, depending on the extent to which the e2 and
03 orbitals that are optimal for the II case in-
corporate the 0~ orbital from the Z case. Un-
like the 0 orbitals, the w orbitals are not directly
involved in the Z pseudocrossing. Hence the
optimum m orbitals will probably change least in
going from the Z to the II system.

Although the optimum orbitals for the 'g and
'II systems will differ, to a large extent the 'p
orbitals span the energetically favorable regions.
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Thus most of the required change in orbital shape
can be accounted for in a CI calculation by includ-
ing those configurations of 'Q symmetry generated
by making all possible valence orbital substitu-
tions in the three configurations noted above. This
set of 18 configurations, listed in Table II, allows
for mixing between the valence orbitals and also
includes so-called "degeneracy" configurations
obtained by replacing orbitals of one symmetry
type by orbitals of another symmetry type with
similar energies (e.g. , op,o,&y,v, g,g,v„v,v, ).
The inclusion of the "degeneracy" configurations
should result in wave functions and energies that
are somewhat more accurate than those obtained
by RHF calculations.

A CI calculation including the 18 configurations
mentioned above permits the selection of those
configurations which are most important in the
description pf the 'll states. An important, or
dominant, configuration is defined for this purpose
as one that has a coefficient greater than or equal
to 0.3 at one or more of the internuclear separa-
tions at which the CI calculations were performed
(to reduce the computational labor, the number of
points at which the CI calculations were carried
out is less than the number for the RHF calcula-
tion of the 'g- state). The five configurations that
meet this importance criterion (see Table II) ac-
count for the bulk of the orbital distortion.

To this point, the possibility of orbital adjustments
involving the space spanned by the virtual orbitals
has been neglected because these adjustments are
expected to be quite small relative to those re-
sulting from mixing of the valence orbitals. How-
ever, they must be included in some manner to

TABLE II. SH2' valence-orbital substitution configu-
rations.

(1) fTPio2g2&.'
(2) o.)gism„7( 7)„

(3) oggi (g 27r„@38')
(4) oP«o2&. g382)'
(5) O.2g2m'p~m „
(6) 7' y(g i n'„&28

(7) 7f~m„(gym g282)
(8) x„Tt'~ (o.2r~o38f) 8q and 82 are doublet spin functions:
(9) 7ty+y(+2+/ +382) 8f (2++P +P+ Pn + )l~~

(10) o2 a2(op&„g38~) 82 = (n Pu —Pno.')/~2.
o2O 2(&i+x&382)

(12) 03(T3(gf 7l O28f)
(13) o3o3(o f & +282)
(14) ~„~„(o,~„g38,)
(15) n„n'~(ggn„o. 382)
(16) g,o,o3g37r„'
(17) g2g 2g 3g 3~
(18) op(r3m x„7f„

~ These are the five most important configurations.

obtain an accurate wave function.
In order to incorporate into our CI wave function

those parts of the orbital corrections that are due
to the virtual orbitals, we also include single-
excitation configurations (SEC) in the CI calcula-
tion. In the SEC, pne pf the 0, ~ ~ ~ g, prbitals in a
dominant configuration is replaced by a virtual
orbital. This approach is similar in spirit to one
used by Schwenzer et al. , to obtain RHF quality
wave function for several states of the same sym-
metry. In their calculation, each state was well
represented by a single configuration. Thus a
good quality wave function for each state consisted
of the dominant single configuration plus small
"first-order" corrections corresponding to mixing
between the occupied orbitals in the dominant con-
figuration and the set of unoccupied, or virtual,
orbitals. These wave functions were obtained by
carrying out a CI calculation that included the
dominant configurations plus the symmetry-
restricted, single -excitation configurations
(SRSEC) associated with each of the dominant con-
figurations. The SRSEC, defined by Yarkony et
g). ,

" represent first-order variations of the par-
ent configuration due to small variations in the
orbitals that are constrained to satisfy the symme-
try and equivalence restriction imposed on an RHF
wave function. Thus, Schwenzer et g)."were able
to obtain RHF-type wave functions from a CI cal-
culation.

In adapting the foregoing technique to the calcu-
lation of the 'II states, we include the SEC from
the five dominant configurations (see Table II)
that correspond to: (i) v, —g„and v, - o inconfig-
urations 2 and 4; (ii) v, - v, „in configurations
1, 2, 4, and 16; (iii) v'- v'v„ in configuration 2;
and (iv) o, —g, in configurations 1-4 and 16 (the
SEC corresponding to 0,-0„in configuration 1 and
to o'-. g„ in configuration 16 are linear combina-
tions of those in group 1). These SEC are then
included in a CI calculation with the 18 configura-
tions needed to describe the mixing between the
0 g y 0 2 0 3, w„, and m,

orbital

s�.
The re suiting wave

functions then allow for mixing between the p, ~ ~ ~ p„
orbitals and also include the first-order correc-
tions to the o, ~ ~ ~ g, orbitals in the five dominant
configurations (see Table III).

3. Calculational details

Because of computational limitations, it was npt
possible to include the single-excitation configura-
tions corresponding to mixing with all of the vir-
tual orbitals. Accordingly, at each point CI calcu-
lations were performed in which the 18 g, -g, mix-
ing configurations were included with the SEC
corresponding either to all of the z„and z„ type



l336 R. B. CHRISTENSEN AND W. D. WATSON

TABLE III. SH ' valence-orbital substitution configurations. The first 18 configurations are
those presented in Table II. The remainder are given here.

Configuration
numbers

(rf(rf ((rv7txO38f)

ofo.f(0 7r 0382)

o.fo.f ((r27t'x 0„82)

(rfO.f (7rx7rx+ 7ry7ty) 7txv/V 2

(rf(rf [(m'x7r„—&P„)7r + (7t'„7r —7rPJ7t„„]/~2
o fo.f (7rx71 y7ryv8 f)
(rfo f (a27r o.38f)
o.fo.f ((r2m' o382)

(0vox 0 20 f (r2 + (rf7' 02(rvo 2)/W2

((rv+x+y(rf (r3+ 2(rf (r2+x &~3+ (rv&2(r3(rf +x
+ (rf 2(r3(rvrrx (rv7rx (r3(rf(r2 (rf7rx(r3(rv(r2)/12

((rv(r2(r3(rf +x+ (r 1(r2(r3(rv~x+ (rv+x (r3(rf (r2 + (rf +x (r3(rv(r2) /
(rf 0 f&~3(J3

((rf(rv~x(r3(r3+ (rv(r f ~x(r3(r3)/~

19-34

35-50

51-54

55-66

Ã-74

75-82

91-105

107-110
111-118

virtuals or to all of the p-type virtuals, excepting
the highest energy 0-type virtua). Trial calcula-
tions showed that this exception had no noticeable
effect on the final energies and wave functions.
From the resulting wave functions, the virtuals
were ranked in descending order of importance by
examining the sum of the squares of the coeffi-
cients for the different configurations containing
each of the various virtuals. If the ordering re-
sulting from the three different states differed,
the order chosen was that of the state in which the

SEC of the orbitals in question were most impor-
tant.

It was desirable to include as many 0-type vir-
tuals as possible since they are expected to suffer
the most distortion. Thus no more m„- and w, -type
virtuals were included than was necessary. Exam-
ination of these wave functions at the different in-
ternuclear separations showed that four p„and g,
virtuals were sufficient to describe the bulk of the
first-order corrections to z symmetry orbitals.
It was then possible to use eight o-type virtuals to
describe the first-order corrections to the o sym-
metry orbitals. Hence, at each point the SEC cor-
responding to mixing between the (r, ~ ~ ~ 7r„valence
orbitals, the eight most important w virtuals (four
v„and four v„), and the eight most important &r

virtuals are included.
Success with the above approach depends upon

having good wave functions in lowest order. The
sum of the squares of the coefficients for the five
configurations from which the SEC are generated
has a minimum of 0.877 (occurring in the second
lowest 'll state at R =2.75a,), and is about 0.96

when averaged over the computed points. Most of
the rest of each wave function is accounted for by
the remainder of the 18 0, ~ ~ ~ 7r, mixing configura-
tions. The coefficients of the SEC are 0.08 or
less. These results tend to indicate that the first-
order treatment of the corrections is adequate.

As a further test, CI calculations were per-
formed using orbitals obtained from HHF calcula-
tions of the upper 'Q state at internuclear separa-
tions of 3.95g, and 99',. Because these orbitals
are significantly different from those obtained in
the HHF calculation of the 'Z ground state, any
inadequacy in the treatment of the orbital adjust-
ment should be evident in the form of significant
differences in the energies of the corresponding
states. Even more important from the standpoint
of the charge-transfer problem are the energy
separations between the initial (upper) state and
the two lower states.

The same selection procedures described pre-
viously were applied to the configurations which
where constructed from the 'II orbitals. In addi-
tion, the SEC corresponding to the least important
of the five dominant configurations were included
even though the coefficient of this configuration

.was less than 0.3 at 3.95~0 and 99go. This was
done for consistency since these configurations
were included in the CI calculations which used
the g orbitals. Although the coefficients of cor-
responding configurations in the wave functions
are quite different, as expected, the five dominant
configurations are the same for both sets of cal-
culations.

The results of the CI calculations based on the
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RHF orbitals for the 'g state are compared in
Table IV with the results obtained using the 'p
orbitals. Between any two corresponding states,
the maximum energy difference is 0.14 eV, which
occurs for the lowest state at 99',. The maximum
percentage change in the excitation energies be-
tween any pair of states is 6/0 and arises in the
energy difference between the two lowest states at
99+0 At 3 95Qp the maximum percentage differ-
ence in the excitation energies is 0.88%, also for
the energy difference between the two lowest
states. The percentage differences in the energy
separations between the upper state and the two
lower states, which are of greater importance
when considering the charge-transfer problem,
range from 1.7$ for states 4 and 5 at 99', to
0.56% for states 4 and 6 at 3.95',. These results
indicate that sufficient flexibility has been incor-
porated into the wave functions to attain the ac-
curacy needed for our purposes. The full poten-
tial-energy curves obtained for the 'II states by
using the procedures described above are pre-
sented in Fig. 2.

TABLE IV. Comparison between Z and II orbital
sets.

state 6 (H)
state 5 (H)
state 4 (H)

state 6 (H)
state 5 |H)
state 4 (H)

Z Orbital set

R= 3.95g0

-396.9424
-396.7900
-396.7525

R=99ao

-397.0658
-397.0350
-396.8348

II Orbital set

-396.9451
-396.7913
-396.7541

-397.0691
-397.0402
-396.8366

IV. CALCULATION OF THE INTERACTION MATRIX
ELEMENTS FOR CHARGE TRANSFER

A. The 2Z states

Because of the large difference in energy between
the two 'g states, we expect that the cross sec-
tion for this channel will be effectively zero at the
energies of primary interest (~1 eV). In any case
it should be much smaller than the cross section
in the 'II channel. Nevertheless, a knowledge of
the (o', IdldRIo, ) matrix element obtained from the

interaction in the & state will be useful in con-
sideration of the 'II channels.

Instead of calculating explicitly the adiabatic
matrix element for radial coupling, an approxi-
mate technique is utilized that is based on expan-
sions in a Taylor series about the diabatic cross-
ing point. " In this procedure the radial coupling

-396.50— I1 l8 CONFIGURATION C I
POTENTIAL—ENERGY CURVES: X

-396.60— $ ~

C9
K -396.70—
R
4J

- 396.80—
Z
4Ji-
O -396.90—
CL

-39700—

&P)+H

P)+H+

S (3p D)+H'

I i I i I i I & I ) I

3 4 5 6 7 8
INTERNUCLEAR SEPARATION (00)

FIG. 2. The II adiabatic potential-energy curves for
the SH2' system calculated using the CI approximation
with the 18-valence-orbital configurations (&), and with
these 18 configurations plus the virtual-orbital mixing
conf iguration (o).

term between states j and j can, to lowest order,
be parametrized by

(
. d -Q

dR [2n(R -R, ) +y] + 1' (5)

where the parameters z, y, and R„are deter-
mined by the properties of the (as yet undeter-
mined) diabatic states at the crossing point. The
transformation matrix from adiabatic to diabatic
states can then be obtained from the integral of the
radial coupling term

(6)

Using the calculated curves for the energies of the
adiabatic states and the above form for 8(R), we

vary z and y until smooth diabatic curves are
generated. An additional criterion used to differ-
entiate between pairs of ~ and y that give similarly
smooth diabats is the smoothness of the approxi-
mate, diabatic U» through the crossing region.
'The optimum values so obtained are ~ = 0.382 and

y =0.19. In Figs. 3 and 4, we present the diabatic
curves and the U»(R) corresponding to this choice
of parameters.

Though somewhat different in detail, the above
approach is similar in spirit to that used by
others" in that approximate curve fitting is used
to find diabatic states. While such approaches
clearly are not as accurate as a direct numerical
calculation of the matrix elements, they do provide
a basis on which to assess the likely importance of
radial coupling for the 'Q system. A more accu-
rate (and laborious) calculation could, if war-
ranted, then be performed.
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FIG. 3. The 2g diabatic potential-energy curves for
the SH ' system derived from the adiabatic potential-en-
ergy curves using the approximate diabatic interaction
matrix element shown in Fig. 4.

B. The 2II states

Interpretatipn pf the 'Q potential-energy curves
is complicated by the presence of bonding effects.
In particular, with decreasing internuclear se-
paration the energies of the asymptotically degen-
erate configurations w, w, w, and w~, o, [see Eq. (4)]
begin to diverge as a result of the differing sus-
ceptibility of the p„z„and 0,(T, groups to bonding
effects. The latter group, being directed along
the internuclear axis, tends to form a two-elec-
tron bond with the proton. In contrast, the 7t,g„
group, being directed perpendicular to the inter-
nuclear axis, does not show appreciable bonding
effects. Thus as internuclear separation de-
creases, the g,p„p„configuration becomes in-

0.09—
DIABATIC INTERACTION0.08—

0.07

0.06
K
IJJz 0.05
LLI

& oo4
I-
Z 003
4JI-

0.02

0.0 I—
I I I i I i I

5 6 7 8
INTERNUCLEAR SEPARATION (oo)

FIG. 4. The approximate diabatic interaction matrix
element determined from the calculated adiabatic poten-
tial-energy curves for the 2p state of the SH~' system.

I

8

creasingly important in state 5, whereas the
g,g,g, configuratipn decreases in importance. The
opposite trend is apparent in state 6. This sug-
gests that the presence of a minimum in the energy
separation between states 4 and 6 at an internu-
clear separation of 6.1&, is most probably due to
bonding effects rather than to a pseudocrossing.
In any case, the energy separation between this
pair of states is so large as tp make it very un-
likely that their interaction provides a significant
contribution to the cross section for charge trans-
fer.

At an internuclear separation of 3 9pp there is
a minimum in the energy difference between states
4 and 5. Unlike the case above, bonding effects in
the lower of these two states plays no role in the
occurrence of a minimum in the energy differ-
ence. There is no indication of bonding behavior
in the potential-energy curves, and in addition,
state 5 is dominated by the z,z,77, configuration
(coefficient z0.96) in this region which, as stated
previously, is expected to display little bonding
behavior.

Furthermore, examination of the relevant wave
functions shows no indication of the interchange of
character typical of a pseudocrossing. Unlike the
situation for states 4 and 6, in which a possible
interchange of character would be obscured by the
configuration mixing necessitated by orbital adjust-
ment, any interchange of character between states
4 and 5 would be apparent, since state 5 is largely
dominated by a single configuration (w, w„w„) that is
relatively unaffected by orbital adjustments.
These considerations indicate that the potential-
energy curves of states 4 and 5 do npt form a
pseudocrossing at 3.9a,.

Nevertheless, the two states are quite cl,ose to
each other over an appreciable distance so that a
significant contribution from this channel to the
charge transfer cannot immediately be excluded.
Tp assess quantitatively the contribution from
this channel, the following approximate calcula-
tion was performed to obtain the relevant inter-
action matrix elements. It should be kept in mind
that the actual curves have a somewhat larger
energy separation than do the computed curves. -

We will deal with this subsequently.
The calculational method involves finding ap-

proximate wave functions for the two states for
which we can readily obtain (p„ I

h
I fw ) and

(q„Idld& I g ). This is done by dividing the set
of configurations into two mutually exclusive sets
and restricting the configurations allowed in the
wave functions of each state to one or the other
of the two sets. That such might be a reasonable
approach is suggested by the fact that the wave
functions which correspond to the two states of
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interest are dominated by different configurations.
The division simplifies the calculation of the in-
teraction matrix element in the following manner.

l. use d/dR matrix element

The matrix element of d/dR between any two CI
wave functions g„and Ps can be expressed as

C~)Cs~6])

Ai Bj i dg (7)

where C„, and Cs,. are the coefficients of the ith
configuration p,. in wave functions g„and gs, re-
spectively, and C» =dC»ldR Beca.use p„and
g~ are formed from mutually exclusive sets of
configurations, the first term on the right-hand
side of this equation is eliminated by the action
of the delta function. To simplify the evaluation
of the second term, all of the configurations that
involve virtual orbitals are excluded. A set of 18
configurations remains. The adiabatic potential-
energy curves obtained with the 18 configurations
alone are compared in Fig. 2 with those found
using the full set. As might be expected, the main
effect of excluding the configurations with virtual
orbitals is to raise the energy of the upper state
(state 5).

Within this limitation, large contributions to
(P, ~

d/dR
~ P,.) can only come from pairs of con-

figurations p,. and p,. of which one contains the
g, orbital and the other, the o, orbital. Then

(Q, ~d/dR I Q~) will be given approximately by
a, &(o, ~d/dR ~o,), where the a, &

are determined
from the symmetry restricted coefficients of the
various Slater determinants in p,. and P, An
estimate for (o,~d/dR

~ o,) was found previously in
the discussion of the 'Z channel. The function
(g„~d/dR ~ gs), which is thus found from Eq. (7),
is presented in Fig. 5. If on this basis the con-
tribution of the (d/dR) term seems likely to be
important, a more detailed calculation for it would
be warranted.

-ale
—al2-

i 0-0.0e o
-OA)4

OA)

-396.50

-396.60z

~ -396.70R
z
w 396.80

I- -396.90
I-
O

aooe ~
-O.OOS

most important configurations for each state were
selected. At infinity, state 4 is dominated by config-
urations 3 and 8, whereas state 5 is dominated by
configurations 1, 2, and 5. At 3.95'„ in'addition to
the configurations already listed, configurations 4
and 16 were important in state 4 while configura-
tion 7 was important in state 5. The sum of the
squares of the coefficients of these four most im-
portant configurations in each wave function ex-
ceeds 0.96 at every point included in the calcula-
tion. This implies that wave functions for states
4 and 5 formed from these two disjoint sets of
configurations will be reasonable approximations
to the actual wave functions. To increase further
the accuracy of the wave functions, the remain-
ing 10 configurations were distributed as much
as possible to allow for mixing among the o-type
orbitals in the four most important wave functions
of each set. The final configuration sets are given
in Table V, while the resulting potential energies
of the states in this approximation and the inter-
action matrix elements are shown in Fig. 5. For
comparison, (g, ~ h, ~ g, ) calculated with inclusion
of the virtual-orbital configurations is also shown.
The agreement between the two forms is an in-
dication that the accuracy is satisfactory for the
purposes here.

WIT -ao04 ~
g f4) he (fw) VIR -aOOR w

I I I X
3 4 5 6 7 8

INTERNUCLEAR SEPARATION (ao)

FIG. 5. Potential-energy curves for the 2II states 4 and
5 obtained with the disjoint basis set CI technique. Also
shown are the associated adiabatic and diabatic radial,
coupling-matrix elements.

2. Vise U&& matrix element

Fortunately, the computational techniques neces-
sary for evaluating the U, , (iaj) matrix elements
are similar to those used in the CI program. The
first step in the process outlined above is the
selection of the configurations to be placed in each
of the two sets. To ensure that the wave function
of each state is accurately represented both at
infinity and at the point of minimum energy sepa-
ration, the fully adiabatic 18-configuration wave
functions at these points were examined and the

V. ESTIMATES FOR THE CROSS SECTION

Since it appears that no curve crossing actually
occurs in the 'H channel —the channel that as pre-
viously noted would seem to produce the largest
contribution —the Landau-Zener approximation is
inapplicable. Because the minimum energy sepa-
ration is in the repulsive region and because a
small transition probability is anticipated, the
accuracy of the semiclassical treatments of the
collision is particularly questionable in this case.
Numerical integrations of the quantal scattering
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TABLE V. Configurations used in disjoint basis set
calculation of U4& and ($4~d/dR[g&).

Configurations included in state 4

O'A (O'27r O38&)

~Pi(~2&.~382)
zPq(O2m'»O38g)

g„Tr„(g2m'„O 382)

~2~2(~i&»~38')
O2O2«i&»gs 2)

g 3O 3(g gw» O 282)

(Jgg g 7rygyX»

Configurations included in state 5

O'gg~g'202&»

g gg'g 7l'P&7l'»

g 2g27fyw~'K»

X„TI'„(Ogm O28g)

g„m„(gym'»O282)

x„Tl„(ggx»o38g)

~pr„(~,~.~,8,)
O'2O 2g'3g'p'»

g 3O 31fy7T~7I'»

equations [Eq. (1)] for a collision involving only
states 4 and 5 have therefore been performed"
with data from Fig. 5, and are reproduced in Fig.
6. Three sets of cross sections have been com-
puted: (i) one with coupling between the states
from both the U„and d/dA matrix elements, (ii)
a second with coupling only through U„, and (iii)

IO

IO =
OJ 0

O

X0
I-
QJ o3

O

IO =

I
O5

IO5
COLLISION ENERGY (eV)

FIG. 6. Cross section for charge transfer involving
II states 4 and 5 versus center-of-mass translational

energy for three cases: calculated potential-energy
curves with coupling by the dldR and U45 coupling-matrix
elements (+), calculated potential-energy curves with
coupling by only the U45 coupling-matrix element (o),
and potential-energy curves shifted, by a constant to re-
produce the asymptotic separation with coupling only by
the U4~ coupling-matrix element (x) (from Ref. 15).

finally, a set with coupling only through U45 but
with the separation in energy of the two states
increased by a constant amount to reproduce the
experimental asymptotic separation. Comparison
of cross sections (i) and (ii) provides an indica-
tion of the importance of d/dR coupling with the
result that it does not cause a significant increase
in the cross section. This tends to support the
notion that the states can be treated as diabatic.
Shifting diabatic potential-energy curves by a
constant amount to reproduce the proper asymp-
totic energy separation is considered likely to lead
to a reasonable estimate for the cross section. "
The incomplete description of correlation which
causes the inaccuracies in total energy ordinarily
is not critical for the calculation of F45. Because
a diabatic state (in contrast to an adiabatic state)
consists largely of orbitals of similar character
on both sides of an interaction region, simply
shifting the total energy by a constant amount at
all internuclear separations is a realistic approx-
imation. The best estimates for the cross sections
for S"+ H charge transfer are thus the set (iii).

Because of the smallness of the cross sections,
the computer code was unable to produce reliable
cross sections for collision energies below about
3 eV. At energies near 1 eV, which are of pri-
mary interest for astrophysical gases, the cross
section appropriate for this asymptotically cor-
rect pair of energy levels would be well below
the value of approximately 10 'z,' computed at 3
eV. The product of this cross section by the col-
lision speed is then about 10 "cm's '—a seem-
ingly conservative upper limit to the rate coef-
ficient at temperatures 7 = 104 K.

In our treatment of the charge transfer of SH"
we have assumed that the transition is dominated

by radial couplings, and have thus neglected the
possible contributions from rotational couplings
between the 'Z and Q states. At the relatively
low collision energies of interest here, any large
cross sections for charge transfer ordinarily are
expected to be due to radial coupling because of
the velocity dependence of the rotational coupling.

As in the case for radial coupling, transitions
with rotational coupling are favored by the pres-
ence of a crossing. The noncrossing rule does not
apply to states of different symmetry and the rele-
vant potential-energy curves may, in fact, cross.
An approximate form for the transition probability
that is analogous to the Landau-Zener expression,
but for the case of a curve crossing with rota-
tional coupling, is available. " This expression
provides some guidance. In the SH'+ system, there
are no such crossings between states of different
symmetry. We thus expect that any contribution
from rotational coupling will be unimportant in
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comparison with that already computed from the
radial coupling.

In the absence of a large charge-transfer cross
section due to radial or rotational coupling, it is
possible that the radiative charge-transfer mech-
anism described by Butler et al."makes a sig-
nificant contribution to the total cross section.
Although we have not calculated the contribution
to the S"-H cross section due to this mechanism,
the results of Butler et al."suggest that it will
be of the same order of magnitude as that due to
the radial coupling (-10 "cm'a ' at T-10' K).

It is encouraging to note that this value for the
S"-H charge-transfer reaction rate is consistent
with the prediction made by Pequignot et al. ' This
prediction was based on the value of the S"-H

charge-transfer reaction rate that was needed
to obtain agreement between their model of the
ionization structure of the planetary nebula NGC
7027 and observations.
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