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A concise interpretation of the perturbation potential in the distorted-wave Born-approximation representation is

given for state-to-state rearrangement collisions. We discuss the usefulness of the kernel and radial overlap

distributions for understanding reaction mechanisms. For example, the cause of backward scattering in product

angular distributions is explained from the study of the kernel distribution. The reaction zone is seen to be well

defined by the domain of the kernel distribution with the exclusion of the region interior to the channel radii

corresponding to the classical turning points in the initial- and final-arrangement channels. However, the domain of

the overlap distribution sharply defines the reaction zone on the channel coordinate plane. Unlike the case of a few

nucleon transfer reaction involving a massive target nucleus, wave-number matching alone is not a sufficient

condition for yielding the maximum cross sections for the state-to-state rearrangement-collision processes of

heterotriatomic systems.

I. INTRODUCTION

One of the frequently used quantum-mechanical
methods for the study of rearrangement collisions
(res.ctive scattering) is the DWBA (distorted-wave
Born-approximation). ' " The DWBA is best served
for one-step collision processes which occur as a
consequence of negligible coupling between the en-
trance channel and inelastic channels in the initial-
arrangement channel, and between the exit chan-

nel and inelastic channels in the final-arrangement
channel. In such direct reactions, particles(wave
packets) in each arrangement are propagated with

negligible time delay. Thus, in the DWBA theory
for rearrangement collisions, the transition is
assumed to occur between elastic-scattering states
which belong to the two different arrangement
channels.

In our present DWBA" study, we do not attempt
to report excessive computed results of product
angular distributions. Instead, we focus our at-
tention on physical factors which determine the

structures of angular distributions for the less
understood reactive scattering of atom-diatomic-
molecular systems. The collision-energy- inde-

pendent kernel (Eq. 34} describes the internal

properties of the state-to-state reactive system. "
The radial overlap integral (Eq. 33) defines the

overlap "strength" between the energy- independent
("internal"} part, namely, the kernel, and the

energy-dependent ("external" ) parts, namely, the

initia, l and final partial (distorted) waves. Thus,
it is of great interest to investigate separately the

internal and external contributions to the structure
of the product angular distributions. For this
reason we will pay attention to the distributions
of both the kernel and radial overlap on the chan-
nel-radii (coordinates) plane defined by the initial-
and final-channel coordinates. In addition, we

present a concise interpretation of the perturba-
tion interaction which appears in the DWBA for-
malism. "

To quickly acquaint the readers with the present
work, we briefly list the general contents. In

Sec. II, the perturbation potential of the DWBA for
rearrangement collisions is interpreted in terms
of the projection operator. The kernel and radial
overlap integral, which contain the perturbation
potential, are defined for the atom-diatomic-mol-
ecule system in Sec. III. In addition, all the tri-
angular inequalities necessary for the complete

description of the DWBA are listed. In Sec. IV,
we analyze the radial overlap integral with parti-
cular emphasis on ~ave-number matching. After
a brief description of extracting the distorting po-
tential for the present DWBA calculations, we dis-
cuss the computed results of the kernel, radial
overlap integral, angular distributions, and ex-
citation functions in Sec. V. In the final Sec. VI,

discussions regarding future improvements over

the present DWBA will be presented along with a

summary of this work.

II. INTERPRETATION OF PERTURBATION
INTERACTION CAUSING REACTIVE

SCATTERING

Consider two-body interactions leading to two-
body breakup reactions,

x+X= (y+ a)+X~ (a+X)+ y = Y+ y.
Here, x and X are the incoming projectile and

target, respectively; y and Y are the outgoing pro-
jectile and residual particles. The forward direc-
tion is the stripping process and the reverse
direction, the pickup process. Such terminology
refers to the event that occurs to the projectile.
All or part of the particles above can be compos-
ite systems.
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The Hamiltonian for the two-body collisions is
conveniently partitioned for the initial 0. and final
P arrangement channels,

interaction potential.
The integral equation that satisfies the boundary

condition of an outgoing wave is

where or

e&'=X& &+g' W~'& (10)

and

H =h +He,

H~= h~+Hq,

(3a)

(3b)

e&'& =X& &+g '.(U. PU~)x&:&

with the Green's function

ge = g j.e+g xe Weg (12)

and

H'=T +U,

Hs Ta+ Us

(4a)

(4b)

where T (T&) is the relative kinetic energy and
U, (U,), the interaction-energy part of the Hami&-
tonian. The interaction U (U~) between the col-
liding (departing) pairs can be further subdivided,

U =PU P+(1-P)U P+PU (1-P}
+(1 —P)U (1 —P), (5)

with P being the projection operator, P'= p. The
projection operator p is defined to project onto
a state of the entrance channel. Under this def-
inition, the first term pU„P obviously corre-
sponds to the distorting potential which opens only
a single channel, thus describing elastic-scatter-
ing waves (uncoupled distorted waves). For the
DWBA representation, the complementary pro-
jection operator (1 -P) is defined to project onto
a state of the final-arrangement channel.

The two potential Hamiltonians for the descrip-
tion of the DWBA are

assuming that the internal motion is uncoupled to
the external motion. Here, h (h~) describes the
internal motions of the composite systems, both
incoming (outgoing) projectile and target (residual)
particles. The relative (external) motion in the
initial-(final-i)arrangement channel is described
by H' (Hq),

where

g'„= jE —(H' +PU,P)+ie]j'.
Now for X", we write

X"= C, +g,' (PU j')4

(13}

(14)

T "=&X~ 'iU —PU PiX"&

or from (8),
r'~" = &x&-&

i w. ix&:&&.

The use of (5) and

(1-P) ~x&:&&=0

(18}

(20)

4 is the plane-wave solution.
The Gell-Mann Goldberger transformation' leads

to the T-matrix element,

= &4& (&U P ~X"&+&X'-&
~

U

(15)

The substitution of (11)and (14) into (15) yields

T& =
&4&&& ~PU P+PU Pg& PU P ~e, & (16)

i&X& & ~U -PU P+(U, -PU P)g (U -PU, P)IX&'&).

The first Born approximation yields

T =&@ (PU P~@,&+&X' ' (U -PU P ~X& ).
(1V}

In the case of negligible contribution by the first
term above, we simply have the commonly ex-
pressed DWBA transition amplitude of the form

and

H =H +PU P+W

H~ = HN+PUQ+ WB,

(6a)

(6b)

reduces the T-matrix element to

T ~"=
&X&'& 'i(1 —P)Uj iX '&. (21)

where

H' =h +T

H~= h~ + T~,

We = Ue —PUeP,
and

W&&
=

U&& PUQ. -

(»)
(7b)

(8}

(9)

In what follows, we choose the prior form of the

From (19) and (21), it is clear that the W„defined
in (8) is now the perturbation interaction which can
be regarded as the cause of the reactive transition
from a state of the entrance channel a to a state
of the final-arrangement channel P. In the DWBA
representation of the rearrangement collision,
the operator (1 —P) is then the projection operator
which projects onto a state in the new arrangement
channel. Finally, we write (18) more explicitly by
noting that X =X P„&&&z and X~=X~ g„g„due to (3),
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Xs" 4'~ r We 4x4x X"&

Here (II),. is the internal wave function of the parti-
cle i (i = x, X, y, Y) and!t, (X~) is the distorted-wave
function which describes the relative motion of the
two particles in the initial (final) channeL R.(R,)
is the initial- (final-) channel coordinate vector.

IH. KERNEL AND RADIAL OVERLAP ON THE
CHANNEL RADII PLANE (Ra,R~ )

In what follows below, we bring attention only to
essentials, as details are found in the literature. "
We consider the two-body rearrangement collis-
ion of the atom-diatomic-molecule system, A+BC
-AB+ C, where A = x, BC =X, AB = Y, and C =y.
The rearrangement transition from the vibrational
(n, ) and rotational (j„m,) state of the reactant
molecule BC to the vibrational (n, ) and rotational
(j»m, ) state of the product molecule AB is de-
scribed by

as a consequence of the conservation of the total
angular momentum J,

J=j,+L,=j,+L, ,

in which L,(L,) is the orbital angular momentum
of the initial-(final-) arrangement channel. It
immediately follows that

(25)

x y„& (r,)}(",(K„R,)dR, dR, .
(23}

J is the Jacobian of the transformation from the
internal coordinates (interatomic displacements of
the diatomic molecules} r, and r, to the external
(channel or relative} coordinates R, and R,. K,(K,)
is the wave vector for the relative motion in the
initial- (final-) arrangement channel.

We introduce the transferred angular momentum

j during reaction

i=&b- ja= La- Lb (24)

T„&
" .„& =J g(-1) ~(j~j,m~-m, ~jm}bb b'aa a

x X~ '*K„R,W R„r, X" „,P*,, r, Q~ r. , dR, dR, ,

where

(25}

(27)[g~& (r~}pl (r,}]&
——g(-1) a(j~j,m~-m, ~jm}p~& (r~)Q& (r,).

stb

The summation of the squared value of the transition amplitude over the z components m, and mb leads
to the incoherent sum over the transferred angular momentum,

with
a b

(29)

(29}

(e) =P &a 'a(-1) (2v/K&K, )Z(2j +1)(2j&+1)

x g i ~a ~ae'~'&,+'x '[2L +1)(2L +1)]~k ' P' ~(8)(L L mo ~jm)
g, (Lg- 1ml }!

a b a (L + 1ml }!LaLb b

x Q (-1)"~-"n(2k+1)! '
t~

' ' Z's' "I'a'S'~'. '~'. '

Here, a~ is the phase shift in rearrangement channel i and („) is the binomial coefficient. The angular
momentum factor Z is given by

g~b~a b a = g (d~k00 ~L~O} (d,k00 ~L,O}W(d~L~d,L,;kj)[(2d., + 1)(2d~+ 1)]
&a!fb

j.—~. d.
(j~ —X~A, OO ~d 0}(j,—X,X~00 ~d, O) j -X A, n'

.7a .j

(3o)

W(a, b, c, d; ef) and

23 j4 J34

Ji3 Ji4
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jl. j, I

-- j -j.+j„
L.-jl-i -I +j

0& X, &y. ,

0~&) ~& j
Ij. —X. —)nl ~ d, j,-—X.+&s~

lj, ~, -x,
l

&
d,

& j x, +x-. ,

ld. -j I «, - d. +j,
lL, —d

l
k L+d, ,

(31a)

(31b)

(31c)

(31d)

(31e}

(31f}

(31g)

(3lh)

are, respectively, the Racah coefficient and 9-j
symbol. The summing indices (X„X„d„d,and
k) came into existence as a result of angular in-
tegration processes. Listed below are all the
necessary triangular inequalities to be satisfied
for the sums that appear in the DWBA expression,

Mc
/R, ) Ms+Me

\a, i M„ (r
M„+M J

(36)

for the collinear configuration of the triatomic
system ABC. M, is the mass of the atom i (i=A,
B, and C}. We find, by using the internal co-
ordinate r, of the reactant molecule BC,

Rb=mR, +b,
where

(37a)

of the kernel distribution. As an example, we
consider here the case of collinearly favored re-
actions.

The linear relationship between the channel co-
ordinates and internal coordinates is

and

IL'c -da
I
- k ~ I-~+d~ ~ (31i) and

m =M„l(M„+Ms}, (37b}

The overlap integral factor S above is defined by b=bor, , (37c)

Sfbf b
k =S b tfb-XbSfa at alfbfa beak

b b a a Lb La
b a

(32)

with the mass factors (s„ t„s„and t,) defined
in the literature. " Here, the radial overlap in-
tegral I is given by

with

ho=Ms(M~+Ms+Mc)/[(M~+M/(Ms+Me)], (37d)

or by using the internal coordinate rb of the product
molecule AB,

I b'a "b"a = Xi b&Rb G&b a Rb&Ra XLa Ka&Ra
b a

x Rf " '" "Rfa "a'"b' dR dRbb b a b&

in which the kernel G is simply

1
G~»'a(R, ,R,) = [u, (r,)/r', a)W(R„r, )

(33)

Rb= nR, + c,
where

n = (Ms +M )/Mc, c
and

C=Cor b,

(38a)

(38b)

(38c)

x [u, (r, )/r~a) Pa(p)du, (34)
with

ca = -Mz(M„+Ms +Mc)/[Mc(M„+Ms }]. (38d)
with

y, = R. R,/(RQ, ) . (»)
Here, u

&
(r,)lr, (u&,(r,)/r, } is the radial part of the

wave function of the reactant (product) molecule.
As can be seen here, the kernel is the energy-in-
dependent part of the contribution, while the radi-
al overlap integral contains both the energy-de-
pendent and energy-independent contributions to
the cross sections. The details of the kernel and
radial overlap will be explored later.

IV. WAVE-NUMBER MATCHING CONDITION
FOR COLLINEAR REACTION

It is now obvious from (33) that a good overlap
is necessary for yielding large cross sections.
Such a situation will occur if the partial waves
(y~ and y~ ) overlap well with the dominant regionLa Lb

The kernel distribution for the collinearly fav-
ored reactions can be approximated as

Gz(R„R,) = Goa(R, )6(R, -mR, -b). (39}

Here, G',(R,) is the value of the kernel at R,=mR,
+b.

Later it will be seen that the kernel distribution
for the collinear raction located near the lines
with the slopes m and n, and with their intercepts
b and c in which r, and r b are taken as equilibri-
um distances of the diatomic molecules AB and
BC, respectively.

The substitution of (39) into (33) yields

ILb L
b"' — XL K»mR, +b Q„mR, +b yL K„R,

X (mR +b}~a b' a' R~a a+ aa dR, (40}

where the range of k is
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E= To+ g ~ 7- AE = gg + gg (42}

min(L„L, }~ k ~ max(L, +j,+j„L,+j,+j~), (41}

as can be verified from (31).
For the particular case of rotational ground-state

transitions, k =L, = J,. The best overlap occurs
with the following conditions: (1) wave number
matching K, = K„(2)occurrence of the classical
turning points at nearly same channel coordinates R',
= R'„and (3}mass ratios with m = 1 and holm « l.

In general, the state-to-state reactive (rearrange-
ment collision) scattering process is likely to prefer
nonzero transferred angular momenta unless ~K,R,'
-K,R,'

~

= 0. Unlike the case of a few nucleon
transfer reaction involving a massive target nu-
cleus, ' wave-number matching is not generally
sufficient to yield the maximum contribution to
cross sections for heterotriatomic systems. For
identical triatomic systems, the condition of wave-
number matching alone may, in general, be suf-
ficient. For the heterotriatomic systems, the two
classical turning points are not likely to easily occur
at the same distances. Thus, angular momentum
mismatch is favored even in the reaction which in-
volves wave-number matching. If the lower
(smaller orbital angular momentum) partial waves
yield better overlap compared to the higher ones,
the product angular distributions will favor back-
ward scattering for the collinear atom-diatom re-
active system.

From the conservation of the total energy, we
write

torting potential. Using (42}, we find the linear
relationship for wave-number matching K, =K„

(~. ) I (ug I ) («, '}

4' /

(46)

in which

+ &E', (4')
for exoergicity;

0
B 6~ —4E

for endoergicity,

and

LOU ptg Upp P Upp e

(47b)

(48)

Here, p, (p~) is the reduced mass in the initial
(final) a.rrangement, i.e. ,

and

=M„(Ms+ Mc) /(M„+ Ms+ M c),

p 8 =Me(Mal+Ms)/(Mg +Ms+Me),

(49a)

(49b)

for A+BC -AB+ C .
«,(«) measures the rovibrational energy dif-

ference between the two diatomic molecules with
.the reference energy level at the zero-point vibra-
tional energy of the reactant (product) molecule.
4U is simply the mass-weighted distorting poten-
tial difference between the final and initial chan-
nels. Note that the relation (46) satisfies any re-
action, both collinear and noncollinear.

e,(e~) is the internal (rovibrational) energy in the
initial (final) channel. The zero of the internal en-
ergy is defined at the zero-point vibrational en-
ergy. 4E' is the difference between the potential-
energy depths V' and Vz where the zero-point
vibrational energies of the reactant and product
diatomic molecules occur:

V. DISCUSSIONS OF DISTORTING POTENTIAL
AND COMPUTED DWBA RESULTS

For the distorting potential PUPneeded for the
solution of the distorted-wave function, one can
use the diagonal term that appears in the coupled
Schrodinger equation. Otherwise, the optical
model potential which fits elastic-scattering data
is well suited for the description of the distorted-
wave functions as commonly used in the study of
nuclear reactions. However, the phenomenologi-
cal optical potential is not readily available for the
two-body interaction problem of the atom-dia-
tomic-molecule system. In what follows below, .

we first present a brief discussion on the extrac-
tion of the distorting potentials consistent with the
Hamiltonian (3) defined earlier.

In accordance with the Hamiltonian, the complete
function is written:

&E =V -V (43}

Thus, the zero of the total energy is the larger
(in absolute magnitude) of the two potential
depths V' and Voz. The negative (positive) sign is
for exoergicity (endoergicity).

Now we write

K, =(2g [T —U (R,)]] (44)

and

K, = (2~,[2;—~.'.(R,)]]
Here, U (U ) is the initial (final) channel dis-

(45)

(50)

m &N''
a

k

00 00

~~& z (R, , r~)= g [X~&,z .,„,. z (R,)/R~][u„,&(r~)/r, ](j,'L,'m,'M,'~JM) Y'z. „,(R~)Y, (r",).
~ L&

a a~a
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Here, k runs over all the arrangements, k = 0., P, and y for the triatomic system. i is to denote the ini-
tial arrangement. Now the scalar product of the Schrodinger equation,

H+r", ~ (R„r,.) = E4'r"r ~ (R„r,)
by the product of the radial wave function u„,r,(r, )/r

and

y&,"r,.(R„r ) = g(j,'L,'m,'M,'~JM&Yz.„,(2$ )Y, (r )

(51)

(52}

yields the set of the coupled differential equations,

-if f do L,'(L,'+ 1)
2@~ (CÃo Roo o + nr ~ ~Xor ~ r ~ l o] I(Ra)

aa~ aa a'aa a

„„&„r„&n'j' '~ V~n'j' "& X„r r, ;„r r, ( )

fd yd R, „.,Jr, yr~(R„r )(H-z)M„,.tr )lr, &f" (R„r,)x„, „, (R ).
ffyfyLy

(53)

The first term on the right describes coupling with the inelastic channels in the arrangement channel o.
Coupling with the states of other arrangement channels appears in the second term. V is the two-body
interaction potential in the arrangement channel o.

For application to the DWBA, we focus our attention on the potential matrix element given by" "
(n'j,'L,'

~

V ~n, j,L,&r= (-1)ra'ro" [(2j,+ l)(2j,'+ 1)(2L,+ 1)(2L,'+1)]~o

x ZU! r".. r ( .) &j.~.'00 Ijo&& . .'ooIjo& iV(j.L.j.L.', dj) gy2j, 1, (54)

where (T+ Uoo —E)Xo = Uor Xr (57)

Uo, r...o r (R,)

dr, u„*,r, (o',)Vr (R„o;)u„r (r,). (55)

Here the subscript a for the arrangement of A
+BC is simply replaced by a. It is obvious that
the diagonal term corresponds to the first term
PUP in (5). This is then the distorting potential
to be used for the description of the DWBA transi-
tion amplitude. For the rotational ground-state
reactive transitions, the distorting potentials be-
come

(T+ Urr —E}Xr=-Uro Xo ~ (58)

X

XI=

Here, 0 is to denote the entrance channel and I, the
rest of the channels. Thus, the column vector
Xg is given by

U~= ch, U+0 h, V~ R„h, U„o h,

for the initial-arrangement channel 0., and

Uooo = J~d U„*o o(r,)oV (Ror„)Uo„(r,)o

(56e.)

(56b)

U is the potential-energy matrix and E is the en-
ergy matrix,

(60)

for the final-arrangement channel.
For completeness, we formally discuss the

optical model potential that is suited for the DWBA.
From the elimination of all channels except the
entrance channel, the coupled equations in matrix
form are

The introduction of (58) into (57) defines the opti-
cal model distorting potential U through

(T+ Uoo —E)Xo = 0.

Here,
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1
oo oo or

Z g E ~ lo+ II— (62)

Finally, the prior form of the perturbation poten-
tial is, in general,

8' = U~ —Uoo. (63)

This is the form we have used in our present
DWBA analysis.

For the DWBA study of angular distributions,
we illustrate

F + H2(n, = 0, j,= 0) —HF (n ~,j~
= 0) + H, (64)

with n, = 2 or 3. The semiempirical Muckerman
V LEPS potential surface"" was employed to ob-
tain the rotationally averaged distorting potential.
For U„ in (63), we use

UN =
VFHH —V„z (66)

g 50
c4

V)

0
4.0

LLIX
5.5x

O

5.0
O0

2.5

2.5 3.0 5.5 4.0
REACTANT CHANNEL RAG)US L4.U.)

FIG. 1. Contour map of kernel [G~8(R&,R, )~ for the
reactive transition from the rovibrational ground (n,
= 0, j,= 0) state of the reactant molecule to the vibra-
tionally excited (n~= 2, j~= 0) state of the product mole-
cule. The solid line is from Eq. (37a) and the dashed
line, from Eq. (38a). The abscissa is in the reactant
(initial) channel radius, R, and the ordinate, in the pro-
duct (final) channel radius, R&. Each value of the con-
tour is scaled relative to the peak value set as one. The
contour values are labeled by the powers of ten. These
contour values are accurate only in the order of magni-
tude.

where V~„ is the LEPS potential surface and V»,
the interatomic potential of the hydrogen mole-
cule.

The magnitudes of cross sections are dependent
on the degree of overlap between the kernel and
partial waves as discussed earlier. In Fig. 1 the
kernel distribution for the (n =0, j =0) state to
(n, = 2, j,=0) state is displayed on the channel-

radii (coordinates) plane. A distinctive feature of
this reaction is that the

~ G, ~
distribution is located

near the two lines with the slopes m = 1 and n = 2 and
their intercepts evaluated at the equilibrium intera-
tomic distances of the reactant and product mole-
cules, respectively. This indicates that preferential
configuration during reaction is the collinear tri-
atomic arrangement. The contour values are
meaningful only in the order-of-magnitude sense
(see the figure caption for more details). If the
intermolecular interaction between the product
molecule and projectile atom is repulsive, such
collinearity will cause backward scattering in
the product angular distribution. Unless the in-
cident kinetic energy is exceedingly high, such
backward scattering will tend to persist. We ex-
pect some notable shifts in angular distributions
toward smaller c.m. (center-of-mass) scatter-
ing angles as the energy increases. The correct-
ness of such conjecture will be found later. How-
ever, at considerably high energies, the DWBA
may cease to be reliable as coupling with inelastic
channels becomes increasingly significant. At
still higher energies, a complete three-body break-
up reaction leading to continuum will be a likeli-
hood.

The kernel map shows that a large contribution
comes from the region interior to the classical
turning points. However, the reaction region will
be substantially reduced due to the difficulty of
"penetration" beyond the turning points. Indeed,
this point is well understood from the radial over-
lap distribution ~yGy

~

shown in Fig. 2. The over-
lap region will increase with collision energy.
This will, in turn, increase the reaction domain,
thereby yielding larger cross sections. However,
continuous increase of cross sections will not oc-
cur as will be seen later. At lower incident ener-
gies, the radial overlap between the kernel and dis-
torted waves will be poorer. Only the smaller or-
bital angular momenta (impact parameters) will
be good "participants" as they yield better over-
lap with the kernel than the larger ones do.
Obviously, this causes more pronounced backward
scattering. The angular distributions which dis-
play such features are plotted in Fig. 3 for the
case of three different incident energies at 0.1 V,
0.2, V and 0.3 eV for the transition from n, = 0,
j,=0 to n, =2, j~=0. Note also that the radial
overlap distribution did not significantly change
the slope in the channel-coordinates plane.

Using (46) through (48), we obtain the best wave-
number matching at the kinetic energy,

T~ (~n &, +a&) + (peUoe g~UOO)
Pg —Po

(66)
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5.0

M
4 5.

O
K

4.0
UJ
Zz

3I5
0

3.0
O
O

2.5

25 3.0 3.5 4.0
REACTANT CHANNEL RADIUS (R.U.)

FIG. 2. Contour map of overlap distribution
)Xz G~X~ [ for the same transition (as in Fig. 1) withLf
L&=L~=k = 8 at the incident kinetic energy of 0.1 eV.
The contour values are labeled in the same manner as
in Fig. 1.

for exoergicity. The F+H, reactive scattering
system is exoergic. For the above rovibrational
transition, we find that with the Muckerman po-
tential surface"", the best wave-number match-
ing occurs at the incident energy, T = 0.45 eV.
At this energy, the classical turning point in the
initial and final channels is found to satisfy Ro

= R', with R, =2.6 a.u. . We find at these values,
d U/&s, «1. For the mass factors in (38}and
(39), m =1 and b, /m~0. 5. The last mass factor
0.5 does not exactly agree with the condition
bo/m «1. However, it is interesting to note that
the state-to-state cross section peaked near the

incident energy of 0.45 eV, gradually declining
thereafter. This is the energy where good wave-,
number matching was found. The excitation func-
tions for the state-to-state rearrangement col-
lision shown in Fig. 4 exemplifies this feature
fairly well. . For the reactive transition from the
rovibrational ground state of the reactant mole-
cule to the state n, = 3, j~= 0 of the product mole-
cule, similar analysis was not feasible as several
conditions were not satisfactorily met. However,
the maximum position of the total cross section
is expected to shift toward a lower energy as
shown in the figure.

As is seen in Fig. 3, backward scattering (peak
value of the differential cross section at the c.m.
scattering angle of 180') was predicted at the in-
cident kinetic energy of 0.1 eV. Although not
shown in the figure, such backward scattering fea-
tures are more pronounced at lower incident en-
ergies. At incident kinetic energies about 0.2 eV,
we find that sideways scattering (peak value of the
differential cross section at the c.m. scattering
angle less than 180 ) occurred. Recently Lee
et al."have observed sideways scattering in their
molecular beam measurements of F+H, (n, =0,
j,=0}-HF (n, =2, all j~'s)+H. Work will be re-
sumed to theoretically verify the sideways scatter-
ing by considering such reactive transitions lead-
ing to the product molecule states of rotational
angular momenta other than j,= 0.

Finally, we would like to note that the present
study can be regarded as a case study since the
DWBA quantitative results are subject to change
depending on the choice of the potential surface.
The Muckerman V LEPS potential surface we
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FIG. 3. Angular distributions for the state-to-state
reactive transition of F+H2 (n~=O, j~=0) HF (n&=2,
j&= 0) at the incident kinetic energies of 0.1, 0.2, and
0.3 eV. The numbers are to indicate the peak values of
the angular distributions at these incident kinetic
energies.
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FIG. 4. Excitation functions for reactive transitions
from the reactant molecule state of (n, = 0, j~= 0) to the
product molecule states of (n&=2, j&= o) and (nq=3,
j&= 0), respectively.



TWO-BODY REARRANGEMENT COLLISION OF. . . 137

have used in this study is not yet fully verified
with experiments.

VI. CONCLUSION

A DWBA study made here is by no means ex-
haustive. Since one of our main objectives is to
discuss physical factors that govern the angular
distributions of scattered products, no compara-
tive study has been made. For improvements, the

present DWBA can be extended to include the cou-
pling effects, by introducing coupled-channel wave
functions in place of the elastic-scattering (dis-
torted-) wave functions. The perturbation potential
will be accordingly changed. Such CCBA" (cou-
pled-channel Born-approximation) study is cur-
rently underway.

Other ways of improving the present DWBA
treatment is the use of the diatomic-molecule
wave functions which are coupled with the pro-
jectile motions. Such DWBA studies have been
previously studied by others. " Their studies in-
dicated marked differences in the magnitudes of
the cross sections between the perturbed and un-
perturbed molecule treatments. On the other hand,
it is to be noted that the other method known as
Franck-Condon model" predicted notable differ-
ences in the widths of the angular distributions.
The comparison of our DWBA method with the
latter is less direct due to the differences in

formalisms. We plan to examine the perturbed
molecule case by using our own DWBA method for
the sake of consistency.

In conclusion, we note from the DWBA study of
direct reactive collision that the following hold
true.

(l) Backward scattering in the product angular

distribution is explainable from the examination
of the kernel distribution for the atom-diatomic-
molecule system in which the intermolecular in-
teraction between the product molecule and pro-
jectile atom is repulsive.

(2) At high incident kinetic energies, sideways
scattering is predicted to occur in the state-to-
state reactive scattering.

(3) For identical triatomic systems, the mag-
nitude of the cross section will be largest at the
incident kinetic energy where wave-number
matching occurs. However, unlike the case of a
few nucleon transfer reaction involving a massive
target nucleus, the conditions of wave-number
matching for heterotriatomic systems is not always
sufficient to yield the maximum cross section.

(4) The preferential transferred angular mo-
mentum is expected to be, often, other than 0
(even in the case of wave-number matching) un-

less I+,R, +,R-s
I
=o.

(5) The kernel is seen to well define the reaction
zone with the removal of the region interior to the
channel radii where the classical turning points
occur.
Despite the shortcomings of the present DWBA
approach, it is expected that the conclusions made
above will, in general, hold true.
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