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%e have formulated and applied a separable approximation for treating the nonlocal exchange interactions thai
arise in electron-molecule collision problems. A separable representation of the exchange terms in the electron-
molecule interaction potential is obtained by projection onto a finite set of Cartesian Gaussian functions and is
combined ~ith a single-center expansion of the direct potential terms that accurately treats the long-range,
multipolar forces. An integral-equation method is used to obtain a solution of the set of coupled equations obtained
in a body-frame formulation of the collision problem. The method is illustrated by application to low-energy e -H,
and e -LiH scattering in the static-exchange approximation.

I. INTRODUCTION

The developmentof discrete-basis-set approach-
es based on multicentered expansions has played
a key role in recent years in the ab initio calcula-
tion of cross sections for low-energy, electron-
molecule scattering. ' Nevertheless, there are
aspects of the electron-molecule collision prob-
lem, namely, the l.ong-range nature of the inter-
action potential, that are difficult to treat so).ely
with finite-basis-set expansions. In a recent
paperm (hereafter referred to as I), we proposed
a modification of the usual separable expansions
in which the long-range, direct components of the
interaction potential are treated exactly and the
short-range, nonlocal components are proj ected
onto a finite basis set. The technique was iQus-
trated for the simple case of single-channel. , po-
tential scattering and was found to converge quite
rapidly.

We have generalized the approach outlined in I
to the case of low-energy, el.ectron-molecule
scattering. The present formalism is based upon
a single-center, body-frame treatment of the
collision problem, 4 and our initial studies have
been confined to the static-exchange approxi-
mation. The exchange component of the interac-
tion potential is first projected onto a finite set
of symmetry-adapted, Cartesian Gaussian basis
functions. The motivation for such a construction
is that the electron-exchange potential, though
strong and, in general, highly aspherical, - does
not extend beyond the charge density of the target
molecule and consequently should be well repre-
sented in a small basis of short-ranged functions.
Indeed, we have found that accurate results can
be obtained with the present approach by employing
the same basis set to represent the exchange po-
tential that is used to expand the occupied mol. ec-
ular orbitals. This contrasts markedl. y with
earlier T-matrix' ' and R-matrix' work where

large expansion sets were needed to assure
adequate convergence.

In the present work„ the entire electron-
molecule interaction potential is subjected to
a single-center expansion; the resulting set of
coupled equations must be solved numerically.
In the approach we followed in I, a two-potential.
formalism' was used to express the K matrix
in terms of matrix el.ements of the reference
Green's function for the static potential, which
required two numerical integrations of the ref-
erence Schrodinger equation for both regular and
irregular solutions. We have avoided the latter
construction in the present work by employing
an integral. -equation method of solution. The
method of solution used here is essential. ly that
of Sama and Kouri, ' generalized to the case of
multichannel scattering with a separable potential.
of rank &1.'0 Although the integral. -equations
method has been used by others in studying elec-
tron-molecule collision problems, " its combi-
nation with a separable representation of the ex-
change interaction is a new development and
leads to a highly efficient numerical technique
that avoids the need for ifergtige methods of
solution" or the inversion of large matrices. 's

In Sec. II of this paper, we outline the approxi-
mation scheme we have devel. oped and the integral-
equation method of solution. Section III presents
the results of a numerical application of the method
to electron-H, and electron-LiH. scattering in the
static-exchange approximation. Section IV contains

'a brief discussion and suggestions for future
work.

H. THEORY

We restrict ourselves to a discussion of elec-
tron-molecule scattering in the static-exchange
approximation for which the interaction potential
can be written (for closed-shell motecules):
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where J and Eare the usual Coulomb and exchange
operators and the sum runs over all the nuclei
in the target molecule. As in I, we use a sep-
arable approximation for the exchange potential,

K(r, r')=Q J( (r)y y, (r'), (2)

where, for convenience, we have chosen an
orthonormal basis of Gaussian functions (y )
that gives a diagonal representation of the ex-
change potential with eigenvalues (y,j. Carry-
ing out a single-center expansion of the potential
gives the following set of coupled equations for
the radial components of the scattering wave-
function:

+g')d„(r) P(U„.(r=)d, .„(r)rg g', (r)YJ r" (r')d, .„(r')dr' (, (3)

(6)
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p» (r) =5«j,(kr)+g g, (r, r'}U», (r')p, , , (r')dk'+gy g, (r, r')y'„(r')dr' Jl'„(r")p... (r")dr".
gl p 5~a p p

(6)

where the functions U„.(r) are matrix elements of the direct potential

U (rl f„.Y, '(=r)U~(r")Y; (r)dg. (4)

and Jt„(r)is the radial function obtained by projecting a Gaussian basis function onto a spherical harmonic,

X' (r)=r fdr K, (r)Y", (r)

The radial functions X' can be evaluated in closed form. ' ' We have assumed a linear molecule and,
hence, dropped the implicit dependence of the wave function on the quantum number m.

The set of coupled equations (3) is first written in integral form:

Note that we are using the realm Green's func-
tion" which vanishes for r' & r and is defined by

g, (r, v') = -[s,(kr)j, (kr') —j, (kr)s, (kr')], (7)
1

where j, and s, are Riccati-Bessel functions. We
then express the solution as a linear combination
of homogeneous and inhomogeneous terms, "'

(r) = yd, U(r)+g y~ (r)C(„ (8)

which satisfy the following set of Volterra equa-
tions:

y'„,(r) =6„,j,(kr)

+Pf g(r, r')U„.(r')d'. .. ( '), (Qr)
p

r
e;(~) = ~. g, (», ~')x'. (~')«'

0

~$f g, (rr')()„.(r')d, ,(r')dr',
p

It is simple to show that the constants c, are de-
termined by the set of linear-algebraic equations,

(10)

where

(12)

(13)

U„,gf r', lrl=d;, ,Ir)dr
gf p

Newton" has pointed out the need for careful
counting of the dimensions of the matrices in-
volved in treating an N-charinel problem with an
M-term separable potential. It is important to
note here that the potential eigenvalues (v„}of
Eq. (2} are independent of f Thus, the .dimen-
sionality of the square matrix& which has to be
inverted to obtain the coefficients c,p

is equal
to the number of separable terms employed in
Eq. (2), and is independent of the number of
angular-momentum terms used in the single-
center expansion.

The basic numerical techniques used in solving
a set of coupled Volterra integral equations have
been discussed by a number of different investi-
gators"""' and only a brief summary is given
here. It is convenient to write the homogeneous
solution (t)U», [Eq. (Qa)] as

dt)~» (r) =j,(kr)Q» (r)+N, (kr)p», (r),
where the auxiliary matrices p and Q are defined
as

d r=() Qf r'( )d,'( )d, -
g p

rp„(r}= —M j,(kr')U». (r')gtd'd. , (r'}dr',
~l p p

(14)
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If the integrals in Eqs. (14) and (15) are now re-
placed by numerical quadratures, the solution
matrix can be propagated noeiterctively to large
r values, since the kernel vanishes at the upper
limit of integration, giving

4 Il { j} j)( j)@II { j 1) nj{ j}+jlo(

The same procedure is used to develop numeri-
cal solutions to the inhomogeneous equations{9b),
which are written as

(16}

1q„,(r) = 5„,-„- n, (hr')LJ„,(r')y'„, (r')dr'.
(15)

There is an additional point about the solution of
the inhomogeneous equations worth mentioning.
These mere formulated with a set of orthonormal.
functions that diagonalize the exchange potential.
In actual practice, it is easier to solve the in-
homogeneous equations [Eqs. (1V)-(19)]with the
X' replaced by a primitive set of Gaussians, which
avoids the need for an orthogonal transformation at
every step in the integration. A single linear
transformation is performed at the end of the in-
tegration to obtain &", and Q, at the final mesh
point.

(t ", (r) =j,{hr)g, (r)+n, (hr)I ~(r), (1V) IH. NUMERICAL EXAMPLES

where,

P", (r) =- y„j,(hr')X„'(r')dr'1

gf +),(&~')))„(~')y,"(~')dr'.), .
0
r

q, (r) = —y„nj(hr')X'„(r')dr'
r

+ n, ) kt' Ugg r' ", r' dr'.
0

(18)

(20}yt",-&{r)-j,(hr)6„,-z„,n, (hr).

Comparing this with the asymptotic behavior of
the regula solution we have developed, we see
that the K matrix can be obtained from the l.atter

I')i =&jj { )+QJ'F{ )&F

Ii'» ~ =&» {")+Z&i{")&)"- {23)

Thus, the K matrix is determined from the values
of the auxQiary & and Q matrices at the final

point in the integration mesh and the inhomogen-

eous "mixing" coefficients c", It is, in fact,
unnecessary to store the solution matrices Q'{r)
and Q"{r) in order to evaluate the X matrix.

Introduction of a quadrature mesh into Eqs. (16)
and (19) again leads to a noniterative propagation
scheme for outmard integration of the equations.
In the work reported hex e, trapezoidal quadratures
mere used. It is also worth noting that numerical
values for the & and 8 matrices, mhich are re-
quired for the solution of Eq. (10), are developed
stepwise as the wave functions are propagated
outwardly.

The reactance matrix X is obtained from a
PhysicaL solution of the coupled equations [Eq.
(3}]specified by the asymptotic normalization

%e have applied the separable-exchange tech-
nique to electron-H, and electron-LiH scattering
in the static-exchange approximation. Both these
systems have been studied previously in some de-
tail and it was therefore not our intention to pro-
vide an extensive set of col.lision parameters.
These examples mere chosen to get some feeling
for the accuracy and timings achievable with the
approach outlined above.

For the e + PI, calculations, we used a [Ss/2j)]
set of Gaussian functions to solve the self-consis-
tent-field (SCI ) equations for the occupied Ia,
orbital. The basis-set parameters are identical.
to those given in Hef. 17. Tmo sets of scattering
calcul, ations are reported here for the 'X' and 'Z'„
symmetries. In one set, the same [5s/2p] basis
mas used to form the separable representation of
the exchange potential. %e also performed cal-
culations with an unoptimized [Vs/6P] valence basis
set. The 'X, and 'Z'„K-matrix el.ements and

eigenphase sums are given in Table I for scatter-
ing energies of 0.01, 0.25, and 1 Ry.

Detailed comparison with numerical results ob-
tained by other methods are often difficult because
of small differences in the taxget orbitals being
used, the number of single-center terms retained
in the expansions, and the quadrature meshes used
for integration. Individual K-matrix el.ements can
be quite sensitive to these details. Therefore,
me have also performed "exact" static-exchange
calculations for comparison —that is, numerical
solutions of the single-center coupled equations
using the same SCF orbitals, ) expansions, and

quadrature grids. These were obtained using the
iterative Schwinger variational technique of Lucc-
hese, %'atson, and MeKoy. " The results shown
in Table I for 'Z+('E'„)were obtained by retaining
terms up to I = 6(V) in both the occupied la and
the scattexing orbitals. Nuclear terms up to X= 2)
mere retained in the expansion of the static poten-
tial. Piecewise trapezoidal meshes extending out
to 90 a.u. were used in the computations. In spite
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TABLE I. K-matrix elements and eigenphase sums for
Z' symmetry in H2. See text for description of calcu-

lations.

TABLE II. K-matrix elements and eigenphase sums
for 2Z' symmetry in LiH. See text for description of
calculations.

k2 (Ry) SCF basis [7s/Q) basis~ "Exact" K (Ry) SCF basis [gs+4f/Ss5pj basisa "Exact"

0.01
0.25
1.00

0.01
0.25
1.00

-0.211
-1.490

8.051

0.348(-2)
0.120(-1)
0.121

2g+j
Koo

-0.216
-1.551

7.984

Kp2

0.350(-2)
0.131(-1)
0.121

-0.217
-1.551

7.945

0.349(-2)
0.134(-1)
0.120

0.25 0.903
1.00 -0.189

0.25 -0.281
1.00 0.105

0.25 -4.451
1.00,1.651

Kpp

0.916
-0.188

Kpg

-0.252
0.163

K«

-4.200
1.511

0.g14
-0.188

-0.248
0.165

-4.299
1.517

0.01
0.25
1.00

0.209(-2)
0.148(-1)
0.876(-1)

0.208(-2)
0.181(-1)
0.919(-1)

0.208 (-2)
0.164(-1)
0.914(-1)

0.25
1.00

0.284
0.220

Kp2

0.309
0.189

0.310
0.190

0.01 -0.205
0.25 -0.961
1.00 1.542

Eigenphase sum

-0.210
-0.976
1.545

2g+
Q

Kg)

-0.211
-0.977

1.545

0.25 -2.741
1.00 0.684(-1)

0.25 -1.022
1.00 1.185

-2.587
0.114

K22

-0.939
1.160

-2.638
0.111

-0.969
1.163

0.01
0.25
1.00

0.126(-1)
0.423
1.353

0.124(-1)
0.411
1.340

K)3

0.122(-1)
0.410
1.336 0.25 -0.388

1.00 1.g14

Eigenphase sum

-0.387
1.859

-0.396
1.857

0.01
0.25
1.00

0.01
0.25
1.00

0.109(-2)
0.653(-2)
0.2g1 (-1)

0.936(-3)
0.518(-2)
0.180(-1)

0.109(-2)
0.743(-2)
0.314(-1)

K33

0.936(-3)
0.567(-2)
0.193(-1)

0.109(-2)
0.693(-2)
0.302 (-1)

0.937(-3)
0.526(-2)
0.191(-1)

~ The orbital exponents are as follows: Lis: 22.0, 6.0,
3.0, 1.5, 0.8, 0.4, 0.15, 0.07, 0.03; Lips'. 1.5, 0.8, 0.4,
0.15, 0.07, 0.03; Lid~:. 1.0, 0.5, 0.1, 0.05; Hs and Hp~:
2.0, 1.0, 0.5, 0.25, 0.1.

~ Terms up to A, » 6 were retained in computing the
eigenphase sums.

Eigenphase Sum

0.01
0.25
1.00

0.140(-1)
0.408
0.958

0.138(-1)
0.398
0.954

0.136(-1)
0.398
0.953

~ The orbital exponents of the g functions are 3.0, 2.0,
1.0, 0.5, 0.25, 0.125, and 0.06. The p exponents are the
same, except that the 0.06 functions were deleted.

of the fact that the quadratures used represented
something of an overkill (N ~ 900), the computa-
tional times are quite modest. The calculations
with the [7s/6p] basis reluired about 1.5 sec per
energy on a Cray 1 computer. The results obtained
with the separable-exchange approximation are in
good agreement with the "exact" numerical results
and are evidently insensitive to the basis sets used
in the expansion.

For the e +LiH calculations we used a

[5s4p3d/3s4p] set of contracted Gaussian functions
to construct the target SCF wave function. The
exponents and contraction coefficients are the
same as those used in our earlier Schwinger cal-
culation on LiH and are given in Ref. 19. The
results reported here were obtained by retaining
terms up to g = 10 in the expansion of the occupied
orbitals and scattering wave function and nuclear
terms up to X= 20 in the expansion of the static po-
tential. A set of calculations was performed using
the same SCF basis as the expansion basis for
constructing the separable representation of the
exchange potential. A second set of calculations
was carried out using an uncontracted [9s6$4d/
Ss5p] basis. The 'Z eigenphase sums for both
sets are shown in Table II, along with converged
results obtained from an iterative Schwinger"
calculation with the same target basis and ex-
pansion parameters. The uncontracted basis
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does slightly better than the SCF basis in this
case, giving results that lie within 1-3% of the
Schwinger results.

IV. DISCUSSION

We have formulated a separable approximation
for treating exchange interactions in electron-
molecule scattering and presented some illus-
trative results for the e-+H, and e-+ LiH sys-
tems in the static-exchange approximation. The
preliminary indications are that accurate results
can be obtained with small basis sets. The inte-
gral-equations approach we have outlined has the
advantage of offering a computationally rapid,
noniterative propagation technique that does not
require the storage or inversion of large matrices.
It also avoids construction of the static Green's
function, in contrast to the approach we previously
employed in I. The essential point of the devel-
opment, however, is that the separable approxi-
mation offers a simple and accurate means for

treating the exchange effects which had previously
represented the most time-consuming aspect of
numerical approaches to electron-molecule
scattering. The separable expansion of exchange
terms may prove useful in other numerical
approaches to electron-molecul. e scattering, such
as the numerical Schwinger variational technique
of McKoy and co-workers" and the linear-alge-
braic approach recently proposed by Schneider
and Collins. ' The techniques outlined here for
electron-molecule scattering in the static-exchange
approximation should also prove useful for ex-
tensions to multichannel. calculations and electron-
ic excitation.

ACKNOWLEDGMENT

This work was performed under the auspices
of the U. S. Department of Energy by the Law-
rence Livermore National Laboratory under
Contract No. W-7405-ENG-48.

For a review, see Electron-Molecule and Photon-Mol-
ecule Collisions, edited by T. N. Rescigno, V. McKoy,
and B.Schneider (Plenum, New York, 1979).

2T. N. Rescigno and A. E. Orel, Phys. Rev. A 23, 1134
(1981).

B. H. Bransden, Atomic Collision Theory (Benjamin,
New York, 1970), p. 66.

4See, for example, P. G. Burke and A. L. Sinfailam, J.
Phys. B 3, 641 (1970).

~T. N. Rescigno, C. W. McCurdy, and V. McKoy, Chem.
Phys. Lett. 27, 401 (1974); Phys. Rev. A 10, 2240
(1974); 11, 825 (1975).

8(a) A. W. Fli6et and V. McKoy, Phys. Rev. A 18, 1048
(1978); (b) 18, 2107 (1978). (c) See also A. W. Fliflet,
in Electron-Molecule and Photon-Molecule Collisions,
edited by T. N. Rescigno, V. McKoy, and B.Schneider
(Plenum, New York, 1979), p. 87.

~B. Schneider, Chem. Phys. Lett. 31, 237 (1975); Phys.
Rev. A 11, 1957 (1975); B. Schneider and P. J. Hay,
ibid. A 13, 2049 (1976); B. Schneider and M. A. Mor-
rison, ibid. 16, 1003 (1977).
J. R. Taylor, Scattering Theory (WQey, New York,
1972), p. 270.

9W. N. Sams and D. J.Kouri, J. Chem. Phys. 51, 4809

(1969); 51, 4815 (1969).
R. G. Newton, J. Chem. Phys. 53, 1298 (1970).
See, for example, M. A. Morrison, in Electron-Mole-
cule Collisions, edited by T. N. Rescigno, V. McKoy,
and B. Schneider (Plenum, New York, 1979), p. 15.

~2L. A. Collins, W. D. Robb, and M. A. Morrison, Phys.
Rev. A 21, 488 (1980).

~3M. J.Seaton, J. Phys. B 7, 1817 (1974).
R. G. Newton, Scattering Theory of Woes and Parti-
cles (McGraw-Hill, New York, 1966), Chap. 12.
D. Secrest, Electron. Atom, and Molecule Collisions,
Vol. 10 of Methods in Computational Physics, edited
by B.Alder, S. Fernbach, and M. Rotenberg (Academ-
ic, New York, 1971).
R. A. White and E. F. Hayes, J. Chem. Phys. 57, 2985
(1972).

~TD. K. Watson, R. R. Lucchese, V. McKoy, and T. N.
Rescigno, Phys. Rev. A 21, 738 (1980).
R. R. Lucchese, D. K. Watson, and V. McKoy, Phys.
Rev. A 22, 421 (1980).

9D. K. Watson, T. N. Rescigno, and V. McKoy, J. Phys.
B 14, 1875 (1981).

20B. I. Schneider and L. A. Collins, J. Phys. B 14, L101
(1981).


