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The linear-algebraic method for electron-molecule collisions developed by Schneider and Collins is generalized to
include separable expansions of the exchange kernel. These separable expansions are constructed using bound-state
integral programs and spherical-harmonic projections which may be performed by analytic methods. The short-
range nature of the exchange operator obviates the need for large basis sets in the separable expansion and allows for
a very efficient construction of the required integrals. The method is applied to e + H, and e + LiH scattering in the
static-exchange approximation. Comparison of the separable expansion with more standard numerical techniques
for exchange is excellent ( < 1%) even for strongly polar systems like LiH.

I. INTRODUCTION

In a recent letter' we described a new approach
to electron-molecule scattering which reduces the
coupled partial-wave Lippmann-Schwinger equa-
tions to a set of linear-algebraic equations. The
technique has been modified and extended to in-
clude R matrix boundary conditions and will be
described in detail in a subsequent publication.

The purpose of this note is to describe an al-
ternative way of including exchange interactions
in the method which has some advantages over
more traditional approaches. The central idea is
quite simple and has been used to treat correlation
and polarization in electron-atom collision prob-
lems.? Recently, Rescigno and Orel® have pro-
posed a similar technique for electron-molecule
scattering using the numerical static Green’s func-
tion as the unperturbed system. In all of these
treatments the exchange operator is represented
by a sum of separable terms using a discrete
basis of Gaussian or Slater orbitals. By restrict-
ing the separable expansion to the exchange ker-
nel, which is of short range, the need for large
basis sets is obviated and convergence is rapid
even for strongly polar molecules. The essential
difference between our use of the separable ex-
change potential and that of other workers is the
manner in which it is included in the scattering
equations. As we pointed out in Ref. 1, the most
time consuming step in many of the newer ap-
proaches to electron-molecule collisions, is the
construction of the exchange operator. By uti-
lizing discrete basis set expansions we are able
to construct representations of the exchange ker-
nel using standard bound-state integral programs,
quickly and independently of the scattering cal-
culation. The linear-algebraic approach dis-
cussed previously allows us to incorporate these
separable expansions directly in configuration
space without the need to construct a distorted-
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wave Green’s function or to solve additional in-
homogeneous equations. The size of the set of
algebraic equations does not increase, and the
additional complexity of the exchange interaction
over the purely local potential is quite minor.
The price paid is the additional work required to
calculate the matrix elements of the exchange
kernel in a typical bound-state basis plus the
transformation from function to configuration
space. Since both steps are energy independent,
we feel this is a small price to pay for the sim-
plicities introduced in the actual solution of the
scattering problem. At a given energy, the time
to solve the scattering equations with the separa-
ble exchange potential is from three to ten times
less than that with an exchange potential deter-
mined by numerical quadrature. However, a re-
alistic comparison of computational times must
include a contribution from the energy-independent
basis set calculations to the time to solve the
scattering equation for the separable potential.
When this is taken into account, we find that the
separable potential technique becomes the more
cost-effective method after four or five runs of
the scattering code. Far more importantly, the
approximation has been shown to give reliable
results (~2% or less) with moderate sized basis
sets even for strongly polar molecules.

II. THEORY

The form of the separable exchange kernel used
in our calculations is

K= z; ta)KaB(Bl ’ (1a)
where
- 1
Kqp= Z bl<¢aXi ,,_|X4¢B> . (1b)
i=1 12
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The set of orbitals (x;) and the “occupation num-
bers” b, depend on the actual form of the scat-
tering wave function. For a closed-shell system,
the y; run over all the occupied bound molecular
orbitals and b, = —1.0 for all 5. In order to trans-
form from the (¢,) representation to configura-
tion space it is necessary to calculate the pro-
jection of the L? basis functions onto sperhical
harmonics. I we define

Fatm(7)=(Ylm|¢a>ﬂ ’ (2)
then

Klm.l'm'(rlr,)= Zﬂthlm(’r)KaﬂF;l’m'(yI) . (3)
oy

The double summation may be reduced to a single
sum by transforming the operator from the (o)
representation to the representation which di-
agonalizes the K 5 matrix. This requires one
extra energy-independent unitary transformation
and results in the expression

Kiparm r|7')= ;G\lm(r)xc)\l'm’(’-,) 4)

for the exchange operator. Although this last step
is not necessary to use the separable expansion
in practical calculations, it does reduce the work
needed to extract the scattering information. More
importantly, however, there is much to be learned
by studying the eigenvalue spectrum of K. Inall
of the systems we have examined, the eigenvalue
spectrum has rapidly proceeded from moderate
negative values (a few hartrees) to zero. The
number of near zero eigenvalues (s107%) has al-
ways been a significant fraction of the total set.
Since these eigenvalues always multiply the con-
figuration-space functions, one has a practical
tool to study convergence questions. In the cal-
culations we have performed, we have tested the
convergence by deleting functions from the sum-
mation in Eq. (4). Essentially, no loss of ac-
curacy was observed if all eigenvalues below 10-¢
were deleted from the summation. In fact, one
could often obtain 2-5% accuracy with the lowest
four or five eigenvalues. These results are con-
sistent with the short-range nature of the exchange
operator and make calculations on even small
triatomic molecules practical.

The computational savings one achieves in the
scattering calculations using the linear-algebraic
method can be seen by considering the integral

I(r)= fG‘,’(rlr’)K,,,(r' |7, r")dr'dr”,  (5)

where G(r|7’) is the free-particle Green’s func-

tion and w,(r) the unknown scattering wave function.
Introducing a quadrature we get

I(7)=; E Gy |7 Ky (|7 oy (7 YW, W (6)
7

and

I(r,) = iZ GY(ry |7 K gy (ry |7 )y (r JW W
7

= ZMII'(yk‘rj)‘pz'('V'!)Wj R (7a)
i

where

Mu'("'c |71)= Zk: G(t)("'i I"h)Ku'('rk 'rj)wk » (7o)

and W, is the quadrature weight. Substituting Eq.
(4) into (7b) yields

My (rilry)= ; E}\ Gi(r, \rk)Gle(rk))‘G:I'm(rj)wk .
(7c)

Thus the separable form of the exchange operator
reduces the formation of the M,,/(r;|7;) subma-
trices from an N° to an N? problem in the number
of radial quadrature points. The calculation can
be made even more efficient by using the greater
and/or lesser form of the unperturbed Green’s
function. This enables us to reduce the summa-
tion over k in Eq. (7c) to a set of two recursion
formulas, each of which is proportional to N. The
final process is still proportional to NZ but the
constant in front of the N2 term is considerably
reduced.

The entire formation of the configuration-space
representation of the exchange kernel from Eq.
(1) rests on the ability to calculate the projec-
tions of the molecular orbitals onto the spherical
harmonics. These projections may be calculated
numerically using Gauss-Legendre quadratures
but for certain types of basis sets analytic pro-
cedures are available. If the molecular orbitals
are expressed as linear combinations of Cartesian
Gaussians it is possible to reduce the projections
to the calculation of modified spherical Bessel
functions. These may be computed very quickly
for many [ values by using recursion relations.
One may then step up to higher angular-momentum
quantum numbers using the recursion relationships
satisfied by the Legendre functions. The proce-
dure is quite simple and accurate and has been
implemented in our computer programs.
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TABLE I. Results for e + H, scattering in the static-
exchange approximation (k%= 0.04 Ry, number of chan-
nels= 4, number of exchange terms 1 =2, and number
of points =30). .

No. of terms in Eigenphase
separable expansion sum?P
2 -0.4427
(—0.4398)
4 —0.4392
(—0.4363)
8 —0.4199
(—0.4171)
15 -0.4199
(=0.4171)

2 The numbers refer to matching the solutions to
asymptotic forms at R =10.0 and 20.0 a.u., respectively.
b The value from the same program using numerical

exchange is —0.4171.

III. CALCULATIONS

The technique described above has been applied
to the scattering of electrons from H, and LiH.
The latter molecule provides a particularly strin-
gent test of the numerical procedure since the
older L2-type approaches had great difficulty with
the representation of the strong anisotropic static
interaction of this highly polar system. In Tables
I and II we present the results of our study as a
function of the number of terms kept in the sepa-

TABLE II. Results for e + LiH scattering in the static-
exchange approximation *k2=1.0 Ry, number of chan-
nels =8, number of exchange terms 1=7, and number of
points =56).

No. of terms in Eigenphase

separable expansion sum?P
5 1.3786

(1.3652)

10 .1.7089
(1.6944)

20 1.8573
(1.8424)

45 1.8578
(1.8429)

2 The numbers refer to matching the solutions to
asymptotic forms at R = 16.0 and 64.0 a.u., respectively.
b The value from the same program using numerical

exchange is 1.8559,

rable expansion for the two molecules mentioned
above. For comparison we give the converged
eigenphase sums using the same number of chan-
nels and exchange [ values obtained with the lin-
ear-algebraic technique with numerical exchange.
The results clearly show that the separable ex-
pansion of the exchange kernel is a viable alterna-
tive to the older methods. It converges quite ra-
pidly with basis set size and yields results which
deviate by less than 1% from the “more exact”
treatments.
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