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By explicit calculation on the one-dimensional Dirac equation, we exhibit an ambiguity in defining the relativistic

& -function potential.

In many cases of physical interest, the 6-func-
tion potential is a very convenient approximation
to more structured, and more difficult, short-
ranged potentials. In relativistic theories, its
use is often mandated because only a mathematical
point has a relativistically invariant shape. Never-
theless, we were surprised recently to find dif-
ficulties and ambiguities regarding its use. Prob-
lems appear even in the case of one-body point
scatterers, although it is generally assumed that
all problems and paradoxes concerning one-body
potentials have been resolved since the beginning
of relativistic quantum theory. Nevertheless, the
difficulties—and their resolution—that we point
out in the present work have apparently not, as
far as we are aware, been analyzed before.

Previously, we noted' some difficulties regard-
ing the use of two-body forces in one spatial di-
mension. For arbitrary potentials, we discovered
that Schrédinger’s equation without mass possesses
a “strange” set of eigenfunctions which, in most
applications, one would rule inadmissible on phys-
ical grounds. The problems could be traced to
the kinetic energy, which, being linear in the
momenta, has no lower bound. Indeed, filling
the Fermi-Dirac sea had the effect of restoring
the lower bound and thus eliminating the strange
solutions in favor of physically admissible states.

In the present study we observe that generally,
with the inclusion of a mass, one-body potentials
are less pathologic, but that, nevertheless, the
limit of a 5 function presents its own peculiar
difficulties. Such difficulties, arising from very
steep or deep potentials, have long been known
to exist in relativistic equations. Klein’s famous
paradox (transmission coefficient exceeding unity)
comes from potentials which “punch a hole” in
the sea of negative energy states, as a § function
surely does. However, our findings seem to be
unrelated to this classic paradox, although of
course our considerations are based on similar
equations.

What we have observed is that as potentials of
different “shapes” approach the §-function limit
of zero width and constant area, the resulting
eigenfunctions approach different values at the
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discontinuity. The resulting phase shifts, trans-
mission coefficients, etc., are, therefore, all
different. In particular, where cutoffs are used,
the solutions will depend explicitly on the cutoffs
and on the manner in which they are taken. This
is a most unfortunate situation, which is only
somewhat alleviated by the observation that all
reasonable methods agree in weak coupling, i.e.,
to leading order in ¢/m, where c is the strength
of the §-function potential. (We have chosen units
such that the speed of light is unity.)

We now examine solutions of the one-particle
Dirac equation in one dimension with a mass term.
In a basis of left- and right-going particles—or the
no-mass basis—the Hamiltonian eigenvalue equa-
tion has the following form:

HY = (—'io,ad;+V—ma,)\If=w\I/. (1)

We emphasize that H is here given in configuration
space. The potential V is a local potential which
we will examine in detail. The 2X2 matrices are
the Pauli spin matrices:

L0\ (0N

01 10

0 -4 10 @)
0,= y 0g= .

i 0 0 -1

Outside the region of interaction, ¥ =0, so we
look for solutions of the form

T=e™¢. 3
The spinor ¢ obeys the equation

(I +mo, —ka,)p=0, 4)
and thus

det(wl +mao, —ko,)=0=w? -k — m?, (5)

A convenient parametrization of this dispersion
relation is

w =mcoshd, k=msinho, (6)

and solutions correspond to
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(a) Im6 =0, positive energy states,
(b) Im6 =m, negative energy states,
(c) Re6=0, bound states.

Upon returning to Eq. (4), the spinor ¢(6) is de-
termined to be

~ 1 ee/z
¢(0) = W(_e-e/;' (7

To simplify notation, we henceforth set the mass
m=1.

We now must determine the solution within the
interaction region |x|< /2 in order to connect
solutions on the left with solutions on the right.
We want to consider local potentials, or potentials
of the §-function type—that is, potentials which
vanish for |x|>a /2, yet V0 for |x|<a/2, and
a-0, |V|-=. Infact, we wish to consider more
general potentials than simply those diagonal in
configuration space. Our two examples in this
paper will be

(a) a configuration potential

Vv=b(x-x")g, |xl<a/2
~cb(x -x")8(x), (8a)

as g-», -0, and c=ga;
(b) a separable potential

v=g, |xl<a/2, |x|<a/2
~cd(x)d(x') (8b)

as g-», a-0, and c=ga®

Note that both potentials appear to approach
the same limit as @ - 0. However, much to our
surprise, we have found that the solutions do not
in fact approach the same limit. This is in con-
trast to the nonrelativistic case, as we shall veri-
fy.

Thus, to summarize, we consider potentials
of the form

V=gu(x,x'), |x|<a/2 9)
where
alz2 alz
f dxf dx'v=c, (10)
~a/2 ~a/2

as a -0, g-, and c is constant.

Inside the interaction region |x|<a/2, the poten-
tial is very large in magnitude since g is large
in magnitude, and thus we can neglect both the
mass and energy terms of the Dirac equation (1).
We are thus left with two uncoupled equations for
the two components of y;, j=1,2 of y:

alz
(0 g [ arete -0 an

Assume for the moment we have solved this
linear integrodifferential equation for y,(x),
|x| <@ /2. We may then require continuity of the
spinors at x=+a /2. Since we are interested in
the limit o - 0, these become

x=a/2-0+:
$,(0+) fa
_ = ‘ ’ (12)
ap(8) +bop(—0)= 2,(0+) —M(9)<b>
x==a/2+0-:
$,(0-) e
= ! = ° (13)
s +f6@=| o) M(G)( f>
We have defined the 2X 2 matrix M(6) as
_ 1 ee/z e-elz .
M(B)v— W _e-e/z __ee/z ) as)
Thus,
6\ [nOa/mo) 0 e
s SO oy 00/,0-)| MO\ £

e
=N(0) : (15)
o)

The final matrix N(9) is the connection matrix
from. left to right, and is related to the transmis-
sion and reflection amplitudes T'(8), R(8) by

@)~ 1/7(8) R(—e)/T(—a)_ (16)
NO=\r@y/T6)  1/7(-0)

Let us return to Eq. (11), which applies in the
interaction region. First, if v*=v and v(-x, —x')
=v(x,x’), then

¥o(x) = (%) =9, (- x). (17)

The symmetry requirements on v are simply time-
reversal and parity invariance. Then

900 4)/9,(0=) =9, (04)/p%(0+) =™ (18)
and
$,(04)/9,(0 =) =91(0+) /y, (0 +) =€*. (19)

The function o(c) is a real, odd, analytic, and
monotonically increasing function of the potential
strength c.

We may easily evaluate

N(6) = M~X(0) (e-‘o °> M(6)

0 €'
_ snllhe sinh(9 —i0) - sinh(io) , 20)
sinh(jo0)  sinh(8 +ic)
and hence,
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sinhé

O San - ) @)
_sinh(jo)
RO)= G —io0) - (22)

We will analyze the physics of these amplitudes
later, but first let us return to Eq. (11), and con-
sider the two examples to verify our claim that o
is not a universal function of c.

(a) For a potential diagonal in configuration space
we choose v(x,x')=6(x —x'Jv(x). If

(v)sifa/

/2
v(x)dx=1,
=-a/2

then we have ¢ =ga., Thus, Eq. (11) reads

¥ = —igu(x)y, (23)
or
dIny, = —igv(x)dx. (24)
Then, integrating from —a/2 to +a /2,
v ON\_ _. (o .
ln(¢l(0 )=~ [a/z v(x)dx =—-ic. (25)

Thus, we finally arrive at o=c.

(b) On the other hand, for a separable potential,
we choose v(x,x’)=v(x)v(x’), (v) =1, and ¢ =ga?.
Equation (11) now reads }

a/2 .
‘i*l)i(x)+gv(x)_[/ dx'v(x' ), (x') =0. (26)

If we define the integral to be 5, a constant,
then the equation becomes

Yi(x) = —ignv(x). (27)

v(x) is either even or odd, and thus y} is either
even or odd, so y, is either odd or even plus a
constant 8. However, if even, only the constant
part B of y, contributes to the integral . Thus,
we have

vh=—igas [ o(xdx (28)
o
or

¥.(a/2)=—icB/2. (29)

On the other hand, if v(x) is odd, =0, y,=8,
$,(0+)/9,(0-)=1, and 0 =0. We now assume v(x)
is even. Then,

$,(04) - 1-4c/2
$,(0=) " 1+4c/2 (30)
and

o=2tan"(c/2). (31)

We see that (i) o is not a universal function of c,
and (ii) to first order in ¢, and hence, in the non-
relativistic limit, the two examples agree. It is -
an easy matter to prove point (ii) for any v(x,x’)
by iteration of Eq. (11).

To return to Egs. (21) and (22) for the trans-
mission and reflection amplitudes, we identify
the poles, and conclude that bound states occur
when 6 =4y, with y, real and 0< y,<7; and p,+0o
=nm, with » an integer. We conclude that there
is always exactly one solution and hence, always
exactly one bound state. The energy is given by
wo=cosyy=(=1)"*'coss. K o=nm, w=1+1, then
R =0, and the potential is transparent at all ener-
gies.

We may verify that do/dc <0 and thus dw,/dg < 0.
Hence, the picture that emerges is that as o de-
creases from »n7m, a bound state of energy w,
emerges from the continuum of positive energy
states, passes through zero, and enters the con-
tinuum of negative energy states at o= (n - 1),
just as another bound state once again drops out
of the continuum of positive energy states. The
system is a periodic function of o with period 2,
while the bound state energy is a periodic function
of period 7.

In order to follow explicitly the levels of the
continuum, and to examine the possibility of level
crossings, it is useful to make the levels dis-
crete by placing the system in a box of length L,
and imposing periodic boundary conditions.

Thus, a spinor to the right of the potential a
distance L/2 is the same as a spinor to the left
of the potential a distance — L/2. In terms of
amplitudes, this translates into

(o ) ()-)

|

_,,j_ / _"
24’/_/
-3/_ i

-4 —

FIG. 1. Energy levels are shown as a function of the
renormalized coupling constant ¢. We have chosen
L=m.
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FIG. 2. Band structure of the Dirac-Kronig-Penney
model as a function of the renormalized coupling con-
stant . We have chosen L =7.

or using Eq. (15),

et 0 e\ e
. (33)
(0 e*")”"”(f)’(f)

Thus the above matrix must have an eigenvalue
of one. But we easily verify that the determinant
of the matrix is unity, and hence, both eigen-
values are 1. Thus the trace must be equal to 2.
Explicit evaluation gives

z[e** sinh(9 - ig) +e** sinh(0 +40)] = sinhé. (34)
Manipulation puts the equation in the form

N k _ _ sino sinkL
(1 +82)72 ~ 1 _coskL coso ’

(35)
w=% (1L+k?)V2 O0<k<+c,

Bound states occur for imaginary &, 2=4k, and
then the equation becomes

K sing sinkL

* (1-k22 " 1 —coso coshkL °’

(36)
w=%(1-k)¥2 O<k<l.

These transcendental equations may be easily
solved numerically, and an example is shown in
Fig. 1, where we have plotted the energy levels
as a function of 0 —the coupling constant for a
realization of the §-function potential as a poten-
tial diagonal in configuration space. We have taken
a typical value L =7 for the size of the system
and followed eight levels over a period 27 of o.
We note the crossing of pairs of levels at g =nmw;
the pairs may be classified according to parity
=1,

Another amusing way to interpret the results
is as a relativistic band problem—the Dirac-
Kronig-Penney model. In this case, the potential
is an infinite lattice of §-function potentials of
the type we have been considering, with lattice
spacing L. The band edges are given by imposing
periodic or antiperiodic boundary conditions over
a cell. Thus our previous levels are half of the
band edges, while the other half of the band edges
due to antiperiodic boundary conditions are simply
the previous levels at ¢ +7. Thus the band struc-
ture of this model has periodicity 7 as a function
of 0. The bands are shown in Fig. 2, again for
the lattice spacing L =m, as a function of o over
twice a period n. Forbidden bands are shaded,
and we note the “valence” band clamping down
on the bound state w,=coso.

In conclusion, we have exhibited, as promised,
ambiguities in the concept of a relativistic 5~
function potential. We have not been able to arrive
at a reasonable criterion to impose on the limiting
procedure to resolve this ambiguity. In fact, one
wonders if this ambiguity, which manifests itself
in the renormalized strength ¢ of the §-function
potential being an arbitrary function o(c) of the
bare strength ¢, is not another case which can
only be resolved by a fit with the “experiment.”
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