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By explicit calculation on the one-dimensional Dirac equation, me exhibit an ambiguity in defining the relativistic

8-function potential.

In many cases of physical interest, the 5-func-
tion potential is a very convenient approximation
to more structured, and more difficult, short-
ranged potentials. In relativistic theories, its
use is often mandated because only a mathematical
point has a relativistically invariant shape. Never-
theless, we were surprised recently to find dif-
ficulties and ambiguities regarding its use. Prob-
lems appear even in the case of one-body point
scatterers, although it is generally assumed that
all problems and paradoxes concerning one-body
potentials have been resolved since the beginning
of relativistic quantum theory. Nevertheless, the
difficulties —and their resolution —that we point
out in the present work have apparently not, as
far as we are aware, been analyzed before.

Previously, we noted' some difficulties regard-
ing the use of Igloo-body forces in one spatial di-
mension. For arbitrary potentials, we discovered
that Schrodinger's equation without mass possesses
a "strange" set of eigenfunctions which, in most
applications, one would rule inadmissible on phys-
ical grounds. The problems could be traced to
the kinetic energy, which, being linear in the
momenta, has no lower bound. Indeed, filling
the Fermi-Dirac sea had the effect of restoring
the lower bound and thus eliminating the strange
solutions in favor of physically admissible states.

In the present study we observe that generally,
with the inclusion of a mass, one-body potentials
are less pathologic, but that, nevertheless, the
limit of a 5 function presents its own peculiar
difficulties. Such difficulties, arising from very
steep or deep potentials, have long been known

to exist in relativistic equations. Klein's famous
paradox (transmission coefficient exceeding unity)
comes from potentials which "punch a hole" in
the sea of negative energy states, as a 5 function
surely does. However, our findings seem to be
unrelated to this classic paradox, although of
course our considerations are based on similar
equations.

What we have observed is that as potentials of
different "shapes" approach the Q-function limit
of zero width and constant area, the resulting
eigenfunctions approach different values at the

discontinuity. The resulting phase shifts, trans-
mission coefficients, etc. , are, therefore, all
different. In particular, where cutoffs are used,
the solutions will depend explicitly on the cutoffs
and on the manner in which they are taken. This
is a most unfortunate situation, which is only
somewhat alleviated by the observation that all
reuseable methods agree in weak coupli. ng, i.e. ,
to leading order in c/m, where c is the strength
of the (}-function potential. (We have chosen units
such that the speed of light is unity. }

We now examine solutions of the one-particle
Dirac equation in one dimension with a mass term.
In a basis of left- and right-going particles —or the
no-mass basis —the Hamiltonian eigenvalue equa-
tion has the following form:
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Outside the region of interaction, V = 0, so we
look for solutions of the form

(2)

The spinor p obeys the equation

(&oI + m(r, -ko,}P= 0,

and thus

det((oI+mo, -ko, ) =0=(u'-k' —m'.

A convenient parametrization of this dispersion
relation is

~ = pg coshg, k = m sinh8,

and solutions correspond to

We emphasize that H is here given in configuration
space. The potential p is a local potential which
we will examine in detail. The 2x 2 matrices are
the Pauli spin matrices:
l
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- cb(x —x')5(x),

asg-, a-0, and c=gn;
(b} a separable potential

V=g, !xi&a/2, lx'I&a/2

-cb(x)6(x'}

(8a)

(Sb)

as g-, a-0, and c=go. '.
Note that both potentials appear to approach

the same limit as a -0. However, much to our

surprise, we have found that the solutions do not

in fact approach the same limit. This is in con-
trast to the nonrelativistic case, as we shall veri-
fy.

Thus, to summarize, we consider potentials

of the form

(a) Im8= 0, positive energy states,

(b) Im8=v, negative energy states,

(c) Re8=0, bound states.

Upon returning to Eq. (4), the spinor P(8) is de-
termined to be

( 8/2

~"' =
(2 coshe)'/'! (7)

(-e '
To simplify notation, we henceforth set the mass
m=1.

We now must determine the solution within the
interaction region lxl & a/2 in order to connect
solutions on the left with solutions on the right.
We want to consider local potentials, or potentials
of the 5-function type —that is, potentials which

vanish for lxl &a/2, yet Veo for !xi& a/2, and

a 0, l Vl -~. In fact, we wish to consider more
general potentials than simply those diagonal in
configuration space. Our two examples in this
paper will be

(a) a configuration potential

v = 6(x -x')g, !xi& a/2

Assume for the moment we have solved this
linear integrodifferential equation for p~(x),
!xi&a/2. We may then require continuity of the

spinors at x =+a/2. Since we are interested in
the limit cz -0, these become

x=a/2 0+:

y, (0+) I/a)

ay(e)+by( e) -= = M-(e}!6o+
x = a/2-- 0 —:

0,(0 -) t/e )
ey(8)+f y(e) = -=M(e)!

$,(0-)
~ff

We have defined the 2x 2 matrix M(8) as
~e/2 ~ e/2

M(8) =
X/2

(-e -e(2 cosh8}

(12}

(13}

(14)

Thus,

(e) 0 (0+)/y (o-}
I= M-'(e}

(bi

(el
y.(0+)/y. (0 -) M el

= N(8)l
A

The final matrix N(8) is the connection matrix
from left to right, and is related to the transmis-
sion and reflection amplitudes T(8), R(8) by

( 1/T(8) R(- e)/T( 8))-
N(8} =

I

!(R(8)/T(8) I/T (- 8) j
Let us return to Eq. (11},which applies in the

interaction region. First, if v*=v and v(-x, —x')
=v(x, x'}, then

(16)

y, (x) = y*,(x) = y, (-x).
The symmetry requirements on v are simply time-
reversal and par ity invariance. Then

V=gv(x, x'), !xi&a/2

where

(9)

Ch dh'V=c, (10)

a/2
i(- 1)' + g dx'v(x, x')y, (x') = 0.

dh -a/2

as e-0, g-~, and c is constant.
Inside the interaction region lxl& a/2, the poten-

tial is very large in magnitude since g is large
in magnitude, and thus we can neglect both the
mass and energy terms of the Dirac equation (1).
We are thus left with two uncoupled equations for
the two components of p&, j =1,2 of g:

and

y, (0+)/y, (0 -) = y, (0+)jg+(0+) = e"'

y, (0+)/y, (0 -)= y~(0+)/y, (0+) = e".

(18}

(19)

(20)

and hence,

The function o(c} is a real, odd, analytic, and

monotonically increasing function of the potential
strength c.

We may easily evaluate

N(e) = M '(e)
!

~ M(e)

( 0 e"f
1 (sinh(8 —io) —sinh(i(r) )

sinh8 I

sinh(io) sinh(8+ io)f
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