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A method is described which converts the dense distribution of pole singularities given by a discrete representation
of a Green's function or resolvent operator into an approximation to the smooth function defined by the continuum
limit of such a representation. The method uses a finite-element approximation to the pole-strength distribution
function, equivalent to the width function in a scattering problem. Three distinct applications of this method are
provided by a model scattering problem, making use of Feshbach resonance theory, the Schwinger variational

principle, and the theory of the Fredholm determinant, respectively.

I. INTRODUCTION

Hazi' has applied Stieltjes moment theory"
to the problem of ealeulating widths of electron-
scattering resonances. In this method, a continu-
ous approximation to the width function l ~(Z) is
obtained from a discrete representation of the
background energy continuum. 'The background
eigenfunctions are constrained to be orthogonal
to a discrete state p„(I,' normalized). The in-
teraction of y~ with the background continuum is
described by the resonance theory of Feshbach. '
The resonant phase shift q, (z), defined relative
to a background phase shift q,(z), is given by

tanq, (Z) = --,'l, (Z)QZ -Z, -~,(Z)].

The energy-shift function A( )Zcan be obtained

by a numerical Hilbert transform of I'~(Z). To-
gether, these functions define a complex energy-
shift function

or

x -zq -4~(x) = 0,

where

Z,(~)=g,z" .

As N increases, the eigenvalue spectrum (Z,)
becomes dense, and the limit of Eq. (6) cannot
be taken directly. Hazi's method, originally ap-
plied to the special. case of Feshbach resonance
theory, can be considered in a more general con-
text as a numerical method for estimating the
complex function g~(g) of Eq. (2), taken to be the
true limit of Eq. (6). The same mathematical
structure occurs in the original application of
Stieltjes moment theory to oscillator strength
distributions. "

The basis of Hazi's method is the observation
that the cumulative width function

W, (z ) =A, (X) ——I"„(z),

which should be analytic for values of g in the
upper half of the complex energy plane.

The mathematical situation to which Hazi's
method applies can be described in terms of a
finite Hamiltonian matrix in bordered ddiagona1,

form. A discrete representation of the background
continuum is given by N -1 orthonormal functions

(p,), all orthogonal to y~. The matrix elements
are

Hggl —Eggggl,

together with transition elements H~g and the diag-
onal element g~ = H~~. The eigenvalues of this
matrix are obtained by solving the secular equa-
tion

must be approximated by the sum

It is assumed that the discrete spectrum (Z,)
approximates the complete continuum density of
states orthogonalized to p~. Equation (6) is a
consequence of Feshbach resonance theory, taking
into account the relationship between the normal-
ization of continuum wave functions and the density
of states with respect to energy.

Equation (6) defines a histogram, which ap-
proaches the smooth function of Eq. (7) as the
eigenvalue spectrum becomes dense. Moment
theory" is used to define a smooth approximation
to E~(Z), which ean then be differentiated to get
I'~(Z). Equation (6) is replaced by the principal-
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value integral

" r, (z')dz'
2z 0 E-E'

equivalent to a Hilbert transform.
Equation (6) is a special case of the operator

expression

aHoo(z)=H~(z —H)J JHpo (10)

/ ) /
/

/

/

/ / ~/al

Eg.-2 Eg ) Eg Eg+

involving the Green's function or resolvent opera-
tor (z —H}~~~ In t.he Partitioned Q sPace, nHoo is
the effective Hamiltonian or generalized optical
potential that describes interaction with the P-
space continuum. The Stieltjes moment technique
cannot be used for nondiagonal expressions such
as

relevant to Eq. (10). Moment theory is not appli-
cable because the distribution function H~,g«/ is
not in general positive definite.

In the present paper, a new computional method
is proposed, applicable in principle to Eq. (11}.
Given a discrete representation of &», in Eq.
(10), this method provides an approximation to
matrix elements of gHQQ valid in the continuum
limit.

The computational method described in Sec. II
is applied to a model scattering problem, de-
scribed in Sec. III. Feshbach resonance theory
is used in Sec. IV. The Schwinger variational
principle is used in Sec. V. Section VI describes
use of this method to evaluate the Fredholm de-
terminant or Jost function.

An original purpose of this study was to examine
a model problem in which a virtual state occurs.
The case studied is that of scattering by a poten-
tial well with no external barrier, where the po-
tential is too weak to support a bound state. This
problem is discussed in standard works on scat-
tering theory, for example, by Joachain. '

Although the Feshbach resonance theory is ordi-
narily applied to true resonances, there is noth-
ing in principle to prevent use of this formalism
for a virtual state. A narrow true resonance is
characterized by relatively weak coupling between
the postulated discrete state pz and the back-
ground scattering continuum. The effect of ortho-
gonalizing the background wave functions to pz

I

FIG. 1. Geometrical construction of r(E).

II. NUMERICAL METHOD

In the histogram given by Eq. (8), the entire
contribution 2~8 ~, to the cumulative function
F~(E) is concentrated at E, . Thus rz(Z) is rep-
resented by a sum of 5 functions, each corre-
sponding to one pole of n, ,(Z) in Eq. (6). When E,
represents a point in a continuous spectrum, it
is much more reasonable to approximate 1'(E)
by a continuous function of Z. If the pole strength
H„, associated with g, is distributed in a continu-
ous finite element extending only between the
neighboring points 8, , and g„„the sum of such
finite elements must converge to the correct I'(E)
a,s the density of eigenvalues(Z, ) increases. A
numerical method based on this construction is
described here. The geometric construction of
I'(E) is illustrated in Fig. 1.

A piecewise linear continuous approximation
to I'(E) is given by a sum of triangular finite
elements

where

(12)

can be assumed to be small, so that the back-
ground phase shift q, (E) should be only weakly
dependent on energy.

In the example considered here, a natural choice
of p~ leads to a more complex situation: the width
and shift functions are relatively large and the
energy dependence of q, (E) is not small compared
to that of the "resonant" phase shift q, (E). The
model problem considered here provides an exam-
ple of relatively strong coupling in the Feshbach
theory. Methodology appropriate to such a case
will be described, including methods suitabl. e for
direct calculation of the background or total phase
shift.

p,

r(I Z) r(I Z )x (E -E, ~)/(Zg E) ~)~ Z) ~ -E- EtX(
(E, ,~-E)/(Z, ~~-Z, ), E,- E E, ~~

E)+~&Z
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with

I (t;E,) = 4~If ', /(E, , -z, ). (14)

Eq. (9). For Z =Z„ the limiting value of Eq. (20)
1S

EO=Eth

EN EN-& EN

(15)

Equation (13) corresponds to a finite-element
approximation to the complex energy-shift func-
tion of Eq. (2):

W(z)=g W(t;z), (16)

where

The area of each element is 2nH~„as required
by Eq. (8). To use these formulas for a finite
grid (assuming E,&E~ where E,„ is the continuum
threshold) of N —1 ordered values of Z„ two
points must be added:

n(l;E, ) =c(l;E,)ln[(z, „E-,)l(Eg -Eg,)].
(21)

If [E,} includes a true discrete spectrum, with
some values of E, below the continuum threshold
at E th, these points contribute to real pol e func-
tions in W(z), in the form H~2, /(z -Z, ), as in
Eq. (6). These pole terms must be included in
Eq. (19}for n(z) but omitted from Eq. (12) for
I'(E}, since they have no imaginary part for real

In applications to scattering theory, the finite
elements of I'(E) should be modified to have cor-
rect analytic behavior for E near the continuum
threshold E,„. For this purpose, it is preferable
to use the wave number or momentum (in units
such that mass m =1)

W(l;z)=C(t;E, )
' ' ln
I-1 z r-1 k = [2(E -z,„)]'~' (22)

E) „-z I'z -EI
+ '

l.n
E -E (z-E )

with

c(t;z, ) = 2tf,', /(z—„,-z, ,).

If the branches of the logarithms are taken so
that W(l;z) vanishes for large ~z~ in the upper
half-plane, Eq. (2) implies Eq. (13) for I'(l;E)
on the real E axis. Qn this axis, the real part
of Q' is

n(E) = gn, (t; E),

where

n, (t;z) =c(t;z, )~
'-' »

1 l 1

Es, j-E l+ ' ln
E E E )

(18)

(19)

as an independent variable, rather than E, for
E &E,„. Use of piecewise linear functions of k
as finite elements builds in the correct threshold
dependence of I'(k) for short-range scattering
potentials.

To define r as a function of k, Eq. (9) must be
replaced for real values of k by

d' '" I', (k')dk'

E~ =Z,h
—z~/2. (24)

The poles occur at +is~ in the complex k plane.
Since r~(k} is required by threshold laws to be
an odd function of real k, Eq. (23} implies that
n, (k) is an even function of real k.

For real positive k a piecewise linear continu-
ous approximation to I'(k} is given by

The pole terms here (denoted by ellipses) are
the sum, Eq. (6), taken only for bound eigenstates
with

(20)

Equation (20) can be obtained directly from Eq.
(13) by evaluating the Hilbert transform as in

r(k) = g r(l; k),

where

(25)

0, k&k, ~

( k) ( k )
(k —kg, )/(k, —kg, ), , ~- k- kg

(k, „-k)/(kg„—k), k, ~ k~ kg„
(26)

The required normalization is
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l )'() k)dk =f )'(1 k)kdk=)'() k)A, = k)k'„
0 0

where the area of the second factor in Eq. ()26) is

A, =e(k)+, +kk+kk k}(k,+k —k/ k}.

Hence

(27)

(28)

r( f; k, ) = 2~a,', IA, . (29)

The threshold law is built into Eq. (26) by taking k, ,= 0 for the first E, above the continuum threshold.
Omitting bound-state poles, the complex energy-shift function corresponding to Eq. (26} is

W(k)=g W(f;k), (30)

where, with

&(f;k,)=-H,', lA„

W( l; k) =8( l; k, )
'-' in'

kg -k, , k+k, , k, „-k,
k, +, -k k+k,

(31}

(32)

For real values of k, b, (l; k) is given by Eq. (32) with the arguments of all logarithms replaced by their
absolute values. This result can be obtained directly from Eqs. (23) and (26). For k = k, the limiting value
ls

g(f k ) f}(f,k ) Lkk) 7+k k k kk k l )ikk kk k k$+k+kk l kk+kk+kt( (33)

The full expression for the energy shift for real k is

2H
n, (k) = p a(f; k)+ g „, '", ,k'+z' ' (34)

where the sum over l excludes bound states, indicated by the index b in the second sum. For complex k,
the branches of the logarithms in Eq. (32) are to be chosen so that W(l; k) vanishes for large [k~ in the
upper half-plane.

III. DESCRIPTION OF THE MODEL PROBLEM

The Schrodinger equation

( 1 d2
, +v(r) E~ y(r)-0-,

2 dr' i
)t)(0) = 0,

(35)

(36)

are used here, in the virtual-state regime.
The phase shift q(E} for any positive energy E

is easily computed from continuity conditions at
r, . A complete discrete set of eigenfunctions
correspond to the imposed boundary condition for

for the square-well potential function y„(r,) =o. (39)

-V„0&r&r,
v(r) =

0, r, &r
(37)

V, = 1.2, r, =1.0, (38}

has simple analytic solutions. As discussed, for
example, by Joachain, ' Eq. (35}provides an ex-
ample of a virtual state if the parameter (2 rV)' 2O')

is less than 7(/2. For larger values of this para-
meter the potential supports at least one bound
state. Parameter values in dimensionless units

The value of r, used for results reported here
is 10.0, in dimensionless units. The eigenvalues

fZg are obtained by solving the transcendental
equation obtained from continuity conditions at
r, With the .parameter values of Eq. (38), all
eigenvalues Z„are positive.

For a model study of the Feshbach resonance
formalism, a discrete state p„ is defined as the
lowest-energy eigenstate of the square-weQ po-
tential V~(r) obtained from V(r) of Eq. (37) by
placing an infinite potential barrier at r, . Then
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I(I,(r}=N, sin(k, r),
where k, is vlr, and N, is (3/r, )'~'. It should be
noted that IjI~, which vanishes outside r„has
discontinuous slope at r, . When ItI~ is acted on

by the operator H Eo-f Eq. (35), this produces
an inhomogeneous term proportional to a Dirac
delta function at fp.

The background continuum functions orthogonal
to ItI~, required in the Feshbach theory, are solu-
tions of the projection of Eq. (35) into a function
space orthogonal to IjI~. These solutions can be
constructed in closed form by standard methods,
for any positive E, and the resulting background
phase shift I},(E) can be computed. If the boundary
condition of Eq. (39} is imposed, the projected
Schrodinger equation has a discrete set of normal-
ized eigenfunctions I}II(r) and eigenvalues E, The.
transition matrix elements H„can be evaluated
from explicit formulas. The functions and matrix
elements mentioned here were evaluated and used
in the calculations described below.

Exact phase shifts computed for the model prob-
lem are shown in Fig. 2. The total phase shift,

I}(E)is characteristic of a virtual state: It rises
rapidly from the origin, following an F.'~' law,
then returns gradually to zero at large E. The
background phase shift I},(E) shows no effect of
the virtual state, but descends to -1j radians over
a broad energy range. This could be called an
antiresonance, since it represents the effect of
removing one state from the energy spectrum.
The difference phase shift I},(E), computed as
q -q„combines these two features, converting
the antiresonance of II,(E) into a broad resonance
structure.

The numerical method described in Sec. II was
tested on known analytic functions, computing
the real part as the Hilbert transform of the imag-
inary part. In the model calculations, conver-
gence was examined by varying the number N of

'rr
I I I

ir/2—

discrete basis functions (or energy grid points

E„)and the parameter r„which determines the
density of energy points. Results will be reported
here only for N=50 and r, =10.0.

IV. MODEL CALCULATIONS:
FESHBACH THEORY

When the present method was applied to the model

problem described above, it was found that the
computed value of a~(E) did not agree well with

the value obtained directly from I'~(E) and tang„
which could be computed accurately from the
wave function. The error in g, (E}was nearly
constant in Z. This problem was traced to failure
of the Hilbert transform relationship, Eq. (9),
for the model problem, rather than to a failure
of the numerical method. Specifically, as dis-
cussed by Titchmarsh, ' the cumulative integral

F,(E) of Eq. (7) must be bounded for large E for
the Hilbert transform of Eq. (9) to define an inte-
grable function a~(E) In th.e limit of complete-
ness (large r, and large N here), Eqs. (7) and (8)
imply that the cumulative width function for E-~
is proportional to the integral over r of

~(H E~)I}I,~-'. Because I}I, has a discontinuous
slope at t'„ the integrand contains the square of
a 5 function, and this integral diverges. In order
to use the Feshbach theory, the discrete function

ItI, apparently should satisfy the same continuity
conditions as the background functions (ItII).

Referring to the function defined by Eq. (40)
as IjI«&„ this function was modified to remove
the discontinuity in slope at zp by adding another
function g»„described below, then orthogonaliz-
ing to the first N I func—tions (IVIII) and renormal-
izing the resulting function, which will be called

IjI~ in the subsequent discussion. To minimize
the modification of p,&~, the augmenting function
was taken to be

0, r&r,

C sin[k(r, -r)], r, &r

where k was chosen to be the value nearest k, of

k =n,vl(r, —r,),

gp

-x/2—

0.20

FIG. 2. Exact phase shifts.

-7r I I I I I I

0.0000 0.0010 0.0020 0.10 10.0 20.0

where n~ is an integer. Since p&», vanishes at r„
the coefficient Q is determined by matching the
slope of IjI, at r, The effec. t of orthogonalizing

IjIt»~ to all
IVIII

for I &N is to reduce the norm of
IjI&»~ to a very small quantity, without affecting
the exact matching condition. For W = 50, the
resulting change of g~ is still substantial, 0.2
energy units, although this energy correction
should vanish in the limit of large N. The re-
normalization of the modified ft)~ multiplies all
transition matrix elements H~, by a common fac-
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TABLE I. Values of I'&(E) and Q(E) computed in the Feshbach formalism.

E) Exact
Q(E))
(2) Exact

0.05616
0.224 61
0.505 24
0.897 87
1.402 25
2 01802
2.744 71
3.581 72
4.528 27
5.583 35
6.745 72
8.013 74
9.385 37

10.858 06
12.428 70
14.093 70
15.849 36
17.692 61
19.622 17
21.639 64

0.91965
1.817 14
2.670 40
3.457 44
4.15645
4.745 91
5.204 68
5.512 28
5.649 29
5.598 25
5.345 15
4.882 33
4.213 59
3.362 76
2.386 92
1.392 68
0.546 56
0.055 60
0.087 92
0.643 99

0.91965
1.817 14
2.670 40
3.457 43
4.15644
4.745 89
5.204 65
5.512 24
5.649 24
5.598 18
5.345 06
4.882 22
4.213 47
3.362 64
2.386 81
1.392 60
0.546 52
0.055 60
0.087 91
0.643 92

0.91958
1.817 00
2.670 18
3.457 13
4.156 06
4.745 43
5.204 09
5.511 57
5.648 46
5.597 29
5.344 07
4.881 18
4.212 44
3.361 74
2.38618
1.392 30
0.546 48
0.055 60
0 ~ 087 95
0.644 30

-3.443 67
-3.335 85
-3.15833
-2.91445
—2.609 00
-2.248 36
-1.840 72
-1.39639
-0.928 24
-0.452 30

0.01137
0.437 81
0.796 24
1.050 07
1.15948
1.089 84
0.829 78
0.418 20

-0.036 36
-0.376 77

-3.443 51
-3.335 68
-3.15816
-2.91428
-2.608 82
-2.248 18
-1.840 54
-1.396 21
-0.928 05
-0.452 11

0.01156
0.437 99
0.796 41
1.050 23
1.11596
1.089 99
0.829 94
0.418 39

-0.03613
-0.376 50

-3.449 58
-3.341 59
-3.163 80
-2.91952
-2.613 55
-2.252 24
-1.843 77
-1.398 41
-0.928 97
-0.451 43

0.014 27
0.443 25
0.804 80
1.062 25
1.17520
1.107 45
0.844 78
0.423 06

-0.048 19
-0.403 46

Computed using modified g.
~ Computed from true eigenfunctions.

tor. The shift of P„very nearly compensates
the systematic error found in b, ~(E) in calcula-
tions with the unmodified p&»~.

The method of Sec. II, in its k-dependent ver-
sion, was applied to the modified function p~ in
the Feshbach formalism. Computed values of
I'~(E) and b, ~(E) are listed in Table I, columns (1),
and compared with exact values. This method
appears to be capable of giving quantitative re-
sults.

An alternative method of constructing a function

p~ with satisfactory continuity properties was
also implemented. In this method, N exact eigen-
functions(p„) and the overlap matrix elements
(p„~ g»~) are computed. The particular y„, with
maximum overlap element is selected and de-
noted by y, . The remaining N —1 eigenfunctions
are orthogonalized to p(p)g by successive 2x 2
rotations with the current ft)~, which is updated
by each rotation. The final function p~ is the
least-square approximation to p~», in the basis
of N eigenfunctions. This process is organized
as a modified Jacobi algorithm, and is completed
by diagonalizing the Hamiltonian matrix among
the orthogonalized functions. The final matrix
is in bordered diagonal form as in Eq. (3).

The method of Sec. II was applied to this ma-
trix using the Feshbach formalism. Computed
values of I'~(E) snd g~(E) are listed in Table I,
columns (2). The results agree closely with meth-

od (1), and represent an excellent approximation
to exact values.

To compute tang, from the data given in Table
I, using Eq. (1), values of E, are required. These
are 3.532481 for method (1) and 3.532279 for
method (2). The value of E~ for the unmodified
function y«&„ is 3.734 802.

V. MODEL CALCULATIONS:
SCHWINGER FUNCTIONAL

It is evident from Fig. 2 that beyond the thresh-
old region, the principal energy dependence of

q, (E) simply compensates the antiresonance be-
havior of the "background" phase shift q, (E)
Hence, for practical applications, the background
phase shift cannot be assumed to be less strongly
energy dependent than q, . It is necessary to com-
pute either q, or the total phase shift q directly.
It will be shown here that the Schwinger variation-
al principle can be adapted to this purpose, using
the numerical method of Sec. II, but still requir-
ing only data computed from discrete eigenfunc-
tions.

The variational method of Schwinger, ' as dis-
cussed, for example, by Nesbet, ' can be based
on the stationary functional

[tanrll = —2(~.l~ VI f )(fI~ V

+~vc~vlf) '(f I~vis 0) (41)
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TABLE II. Calculations using the Schwinger variational functional.

0.017 02
0.12648
0.344 75
0.671 42
1.105 61
1.646 07
2.291 11
3.038 63
3.88614
4.831 05
5.871 08
7.004 96
8.233 07
9.557 38

10.980 70
12.50549
14.132 95
15.862 86
17.693 82
19.623 88

0.032 26
0.0g2 99
0.1391$
0.16505
0.17000
0.157 66
0.134 64
0.10828
0.084 58
0.067 05
O.Q56 77
0.053 12
0.054 47
0.058 46
0.062 26
0.063 42
0.060 91
0.055 36
0.048 46
0.042 02

-0.107 68
-0.108 90
-0.089 38
-0.063 87
-0.038 03
-0.016 20
-0.001 00

0.006 96
0.008 72
0.006 25
Q.001 64

-0.003 29
-0.007 07
-0.008 6g
-0.007 84
-0.005 12
-0.001 78

0.000 92
0.002 27
0.002 16

-0.11293
-0.124 89
-0.123 57
-0.11989
-0.11485
-0.108 92
-0.102 65
-0.096 82
-0.092 51
-0.090 98
-0.093 30
-0.0g9 64
-0.108 73
-0.11800
-0.124 71
-0.12728
-0.125 71
-0.121 25
-0.11571
-0.11095

Schwinger

3.073 18
2.90825
2.034 89
1.473 21
1.10645
0.850 19
0.662 30
0.521 69
0.417 73
0.344 81
0.299 01
0.275 63
0.267 89
0.267 42
0.266 35
0.259 59
0.245 75
0.226 56
0.205 37
0.18576

Exact

3.553 00
3.047 21
2.072 31
1.485 42
1.11063
0.851 40
0.662 38
0.52145
0.417 51
0.344 76
0.299 17
0.275 98
0.268 39
0.268 02
0.266 97
0.26014
0.24618
0.226 86
0.205 58
0.185 91

gu, (E„)= h„'i' sin(k„y),

where

(42)

(43)

Instead of evaluating the Green's-function inte-
gral in Eq. (41) directly, the method of Sec. II
can be used to approximate it from a formula
involving only bound-free integrals (Q,'lVl p„)
where p» is an L, ' normalized eigenfunction of Ho
with the boundary condition of Eq. (39). The eigen-
value is Eo~Equation (4. 1) is equivalent to an
expression similar to Eq. (1) of the Feshbach
theory:

(44)

Here

(45)

(46)

Here f is an approximation to a true scattering
wave function, and gy, is the exact solution of a
model scattering problem, with model Hamiltonian

The difference potential H Hp is gP, and G'

is the principal-value Green's function of the
model equation, symbolically 5'(H, -E) '.

In the present context, f can be taken to be the
discrete eigenfunction p„at Z„. Then gr, is the
free scattering wave function at the same energy
if gp is the full scattering potential function of
Eq. (37). The required normalization of w, is
given by

and

(47)

Equation (47), evaluated for E =E„, is an approxi-
mation to the Green's-function integral
—(fl&VGsVl f) required in Eq. (41), with exactly
the same structure as Eq. (6). The principal-
value integral over energy gk is replaced by sum-
mation over the discrete eigenvalue spectrum
of ff, . Since g,' and w, at E„' differ only by a norm-
alization constant, the same bound-free integrals
occur in Eqs. (45) and (47). The method of Sec.
II essentially computes this normalization con-
stant if Eqs. (45) and (47) are evaluated by this
method.

This version of the Schwinger method was used
to evaluate tang, where g is the total scattering
phase shift, for the model problem considered
here. Results of these calculations are given in
Table II, with [tang] listed in the column labeled
Schwinger. The method appears to be quite accur-
ate. It should be noted that Eq. (44) is, in princi-
ple, exact, since p„ is an exact eigenfunction of
H within the range of V. The approximation enters
through Eq. (47), which tests the method of Sec.
II as a numerical Hilbert transform, and through
use of the discrete eigenvalue distribution to com-
pute the relative normalization constant of Eq.
(45).

Because the sum in Eq. (47) approximates a
function n„(E) which is different for each index n,
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each value a„(E„)requires separate use of the
method of Sec. II. The arrays of values n. „(E„)
and I'„(E„)do not necessa, rily correspond to a
function of complex energy analytic in the upper
half-plane.

VI. MODEL CALCULATIONS:
FREDHOLM DETERMINANT

Reinhardt and collaborators' "have shown that
the Fredholm theory of integral equations can
be used to derive scattering information from
quadratically integrable wave functions. The tech-
nique is to evaluate the Fredholm determinant
D(z) for complex energy'z. For single-channel
scattering, the phase shift q(E) is equal to minus
the phase of D(E+iz) in the limit e -0+. Diago-
nalization of the matrices of H, and & in an N-
term quadratically integrable basis gives the ap-
proximate expression

D(z)-=II (48)

Nl~n n n

(49)

If this residue is used instead of &„ in Eqs. (8)
and (14}or (29), the numerical construction of
Sec. II can be used directly to give a complex
function W(z), as in Eq. (2), for which

D(z) =g (z)+1

=a(z) ——I'(z)+1.
2

(50)

valid for values of z sufficiently far from the
real axis. Here E„ is an eigenvalue of & and E'„
in an eigenvalue of H„evaluated here by imposing
the boundary condition of Eq. (89). If, will be taken
here to be the free scattering Hamiltonian, as in
Sec. V.

Along the real z axis, D(z) as given by Eq. (48)
is a real function with an artificial structure of
closely spaced poles and zeroes due to the dis-
crete representation. The true limit of D(E+ie)
is a complex-valued function with continuous
phase. Reinhardt et al."estimate this limit by
evaluating Eq. (48) at points displaced from the
real axis, then use a rational approximation of
lower order than N to smooth this function and to
extrapolate back to the real axis. It was found
necessary to use an approximation of order roughly
N/2 in order to avoid the coarse-grained struc-
ture inherent in Eq. (48).

The numerical method described in Sec. II here
provides an alternative estimate of the continuum
limit of Eq. (48}. The residue of Eq. (48) at 8„'is

TABLE III. Calculations using the Fredholm de-
terminant.

E„
tang

Fredholm Exact

0.000 00
0.049 35
0.19739
0.444 13
0.789 56
1.233 70
1.776 53
2.418 05
3.15827
3.997 19
4.934 80
5.971 11
7.10612
8.339 82
9.672 21

11.10331
12.633 09
14.261 58
15.988 76
17.814 64
19.739 21

0.000 00
0.403 07
0;75917
1.030 15
1.193 52
1.245 70
1.201 16
1.087 82
0.940 01
0.790 81
0.665 57
0.578 10
0.530 00
0.512 99
0.513 21
0.516 12
0.510 62
0.491 51
0.459 71
0.420 78
0.382 19

—0.970 41
-0.939 02
-0.849 80
-0.716 58
-0.55915
-0.39926
-0.256 41
-0.144 39
-0.069 36
-0.029 83
-0.01816
-0.023 38
-0.034 17
-0.041 58
-0.040 59
-0.030 47
-0.013 89

0.004 63
0.020 55
0.030 77
0.034 38

0.000 00
3.305 03
2.527 23
1.817 34
1.353 65
1.036 81
0.807 68
0.635 70
0.505 04
0.407 56
0.338 94
0.295 97
0.274 37
0.267 62
0.267 46
0.266 17
0.258 91
0.244 62
0.225 23
0.204 11
0.18474

0.000 00
3.696 02
2.61677
1.838 53
1.357 40
1.035 77
0.805 65
0.633 91
0.503 84
0.406 96
0.338 82
0.296 20
0.274 83
0.268 20
0.268 06
0.266 67
0.259 27
0.244 85
0.225 38
0.204 23
0.184 88

The constant unity must be included separately
here to give the correct limit of D(z) for large
~z~, while retaining the Hilbert transform rela-
tionship between g and I'. From the phase prop-
erty of the Fredholm determinant, the total phase
shift q(E) is given by

tang(E) =-,'I'(Z)/[1+b (E)] (51)

This method was applied to the present model
problem. Results are given in Table III, with
tang computed from Eq. (51) listed in the column
labeled Fredholm. The table includes the point
E = 0, which is not an eigenvalue of H, . The re-
sults appear to be usefully accurate.

The present results should be compared with
earlier work of Langhoff and Reinhardt, "who
used the Stieltjes imaging technique to evaluate
the Fredholm determinant for static s-wave elec-
tron-hydrogen atom scattering. For a given
number of basis function (50) the present method
appears to be more accurate, presumably be-
cause the finite element method gives a smoother
approximation to the principal-value integral of
Eq. (19).

Unlike the data of Table II, the calculations
summarized in Table III define a single analytic
function D(z) that can be used for general values
of complex energy z. It can be shown" that D(z}
is identical with the Jost function J(z), which can
be evaluated in closed form for the present model
problem. For real k, such that k'= 2E, this is
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x/2,

0.000 0.001 0.002 0.003 0.004 0.005 1.0 2.0 3.0 4.0 5.0
E

FIG. 3. Convergence of total phase shift, the Fred-
holm formalism.

J(k) =cos(k'r, )e '"/cos(kr, +n),

where

yI2 y2+ 2y

The value at k = 0 is

j(0) = 0.021 60.

From Table III,

D (0}= 1+n, (0}= 0.029 59.

(52)

(53)

(54)

(55)

This close agreement indicates that the present
method can be used, for example, to characterize
a virtual state, which depends on the analytic
behavior of J(k) near the origin k = 0.

VII. DISCUSSION

A new computational method, described in Sec.
II here, has bepn applied in three different ways
to a model scattering problem. The method ap-
pears to be sufficiently accurate for practical
use in all three applications. In the Feshbach
resonance formalism, this work provides a comp-
utational procedure alternative to the Stieltjes
moment theory technique of Hazi. ' In the Schwing-
er variational formalism, the method makes it
possible to evaluate the required Green's-function
integral through use only of bound-free integrals,
which can be evaluated using only quadratically

integrable functions. In the Fredholm formalism,
the preset, method provides a simple and effective
alternative to the analytic continuation technique
of Reinhardt et al."

Data plotted in Fig. 3 give an indication of the
relative accuracy and rate of convergence of the
present method, as applied to the total phase shift
in the Fredholm formalism. The results con-
verge monotonically, so that curves for N &10
lie between the N = 10 and exact (N = ~) results.
For N &10, differences between the different
curves are not distinctly evident except in the
near-threshold region, plotted separately. The
threshold results are sensitive to extrapolation
below the lowest computed energy eigenvalue.
Forcy=10, the highest eigenvalue, as give@ in
Table III, lies below 5.0 units, causing the dropoff
of the curve shown in Fig. 3. This occurs at suc-
cessively higher energy values as N is increased.

Unlike Stieltjes moment theory, the present
method does not require pole strengths to be posi-
tive definite. Although this aspect has not been

exploited in the examples given here, this should
make other more complicated applications feas-
ible. In particular, it should be possible to use
this method in multichannel applications of the
Fredholm formalism.

The geometric construction used here assumes
that the residue at each discrete pole represents
a pole-strength distribution that can be localized
between the adjacent poles. A similar assump-
tion is implicit in practical applications of Stieltjes
moment theory. " If the discrete spectrum is a
superposition of two or more weakly interacting
spectra, this assumption can lead to difficulties
that have been discussed and exemplified else-
where. " In such cases, the weakly interacting
subspectra must be separated before either the
present method or the Stieltjes moment theory
can be used.
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