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The asymptotic solution of light scattering from a perfectly conducting circular cylinder is derived using the

Watson transformation method first applied by Franz. It is clearly demonstrated that the scattered pattern is a

superposition of a reflected wave and radiation from two creeping waves propagating around the cylinder in

opposite directions. An He-Ne laser was used as a light source with H field parallel to the axis of an aluminum-

coated quartz fiber at normal incidence. The positions of intensity maxima and minima of the scattered light

predicted by the Franz theory were not fully in agreement with experiment. We found it necessary to consider the

phase change of the reflected wave in order to obtain satisfactory agreement.

INTRODUCTION

The scattering of electromagnetic waves at
normal incidence by an infinitely long, homo-
geneous, circular cylinder was first treated by
Lord Rayleigh. ' This was later extended to ob-
lique incidence by Wait. ' The numerical calcula-
tion of the solution can be carried out for radii
not larger than a few times the wavelength. A
recent publication' describes this method of cal-
culation and gives some experimental results.
However, problems arise for larger radii. Since
the solutions contain harmonic series with argu-
ment ka (where k is the wave number outside the
cylinder, and the a radius of the cylinder), for
large ka the series in the solution converges slow-
ly. The work of Lundberg' gives a detailed des-
cription of the light scattering from conducting
cylinders for ka greater than 50 by using the
Fraunhofer diffraction equation and the approxi-
mate scattering function. The more accurate
asymptotic solution for large A,a can be obtained
by two different methods. One is by means of an
integral equation of the surface currents or fields
at the surface currents or fields at the surface.
This has been used by Fock' and later by Franz
and Deppermann. ' The second method is the use
of the Watson transformation as proposed by
Franz. ' The asymptotic solution has the advan-
tages of simplifying the calculation and of giving
a physical model of the exact solution. It clearly
demonstrates that the field outside a perfectly
conducting cylinder is a superposition of an inci-
dent wave, a reflected wave, and two creeping
waves. The creeping waves are injected at the
shadow boundaries and creep into the shadow re-
gion, continuously spraying electromagnetic radia-
tion forward tangentially away from the surface
as they travel around the cylinder. A strong
creeping wave is obtained for the incident wave
with H parallel to the axis of the cylinder, whereas

a relatively weak creeping wave is obtained for
the incident wave with E parallel to the axis of
the cylinder. The creeping wave is of major im-
portance in explaining the scattering problem in
the shadow region as well as in the lighted region.

THEORY

We consider a perfectly conducting circular
cylinder of radius a, having its axis along the z
axis of a Cartesian coordinate system. Let a
plane wave be incident along the s axis (see Fig.
I). If the incident magnetic field is in the z direc-
tion,

H.'=e ' z,
and the total magnetic field at a point (p, P), in a
cylindrical coordinate system, outside the cylinder
is'

H=H +H
Oo J'~&a-41)P ms 0 ~ ( &)m m i0N)(. ) g(1)(k )H(1Y(k ) I) P

(-') e' ~ Z (1p)- (,), )('„"(ap)),
J'(ka

a & 1~'(ka)

(2)

FIG. 1. Light scattering from a circular cylinder at
normal incidence.
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FIG. 2. The contour c& encircling the real axis in the
v plane, the dots representing integers.

where H,' is the incident wave, H', is the scattered
wave, J is a Bessel function of order m, H ' is
a Hankel function of the first kind and order m,
and the prime denotes differentiation with respect
to the argument. A time dependence e ' ' is as-
sumed.

The series given in Eq. (2) converges slowly
for large values of ka. In order to find the asymp-
totic solution for large values of ka, Franz' used
the classical method of the Watson transformation
to convert the series into a contour integral

f v{$-«)
(8)sin vm

1

where we have put

f v«/2

B,=
2 &»,( }

[HI„'» (ka)HI„'»(kp) —HI »(k~a)HI'»(kp)].

(4)

FIG. 3. The deformed integration path. The dots are
zeros of H ~, }' =0

fft

The contour c, is a closed contour encircling the
entire real axis in the v plane as shown in Fig. 2.

With the relations

H '„(x)=e'""H '(x}
and

H'(x) = e''"'H ' (x)

we have B.„=B„and

cos»(P —»»)
(8)

sinvw

where the path of integration c, is slightly above
the real axis in the v plane. Now close the contour
c, with a large semicircle in the upper half plane
as shown in Fig. 3.

It can be shown that the contribution from the
semicircular arc vanishes as the arc radius ap-
proaches infinity; then the integral can be evaluat-
ed by computing the residues at the zeros v' of
H „' (ka}. We obtain

(6)
ss=y H(z»'(k+)

~

ss

where v' has the form v' = ka —q' e' "/'(ka/2}'/'. The numerical values of —q' and associated values of the
Airy functions Ai(q„') are given in Table I.' We note that the imaginary of v' is positive.

( )'The Airy function representations of H~l (ka) and [BH „' (ka}/sv] („„aregiven as

e -5 «/6 2 2/3

(7)

(
—H t'» (ka) = Ai(q„') .

The asymptotic expression of H„' (kp) for large kp is

, kp

(8)

~

~

2 Il. ~ /2
exp if k(p —a ) —v„cos

mk(p -a ) p 4
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The asymptotic solution in the shadow region can be obtained by substituting Eqs. (7), (8), and (9) into
Eq. (6) and using the following relations

= —i g (exp[i v' (2sn+ P —w/2)] + exp[i v' (2'+ 3e/2 —&g]]sins' w

,„(aai'~'
v-'= ha —q-'e'""I —

I

We have the total field

Hg=H '+H

where

(10)

ff,'"'= " ',i,+"' "Q Q D exp[ Z-(ha)' 'y„,]exp(i[ha+& (ka)' ']y„,},
m= 1 n =0

H~= [, , „,&»,&, g g D exp[-E„(kaP 'Q„,]exp(i[ha+8 (ka)'i']p~],2$Ip2 a2% 1/21 l/2
m=1 n =0

(12)

where we have put

g a)$„=2nm ~ (g
———cos '—

P)
&sw , a&

$„,=2nw+j —-Q —cos ' —
~,p)'

(13a)

(13b)

D =2 "r "((-q')[Ai(q')]'] '

Z =(-q')2 'i'sinn/3,

E =(-q')2 'i'coss/3.

(13c)

(13d)

(13e)

The numerical values of D, E, and + are given
in Table II. H, ' and H,'"' may be interpreted as
follows. The angular dependence phases in Eqs.
(11) and (12) are proportional to the angles P„,
and fan}„„respectively. These angles are mea-

sured from the shadow boundaries and correspond
to the paths of rays traveling along the surface of
the cylinder. For this reason, they are called
creeping waves. The geometrical representation
of creeping waves H, ' and H, ' is given in Fig. 4.
The summation over m goes from 1 to infinity;
therefore creeping waves H',"' and H', have an
infinite number of modes, and the velocities of
the creeping waves for different modes on the
surface of the cylinder are c/[1++ (ka) '~'],
where c is the velocity of light in the vacuum.
The summation over n indicates the number of
turns of the creeping wave traveling around the
cylinder surface. The exponents of the damping
factors are determined by the imaginary part of
v' which is proportional to —q'. The value of
—q' is larger for larger m (see Table I); there-

TABLE I. Zeros and associated values of the Airy
functions.

TABLE II. The numerical values of Dm, Em, and Em
for the first ten modes of the creeping waves.

ql Ai(qlm) Dm F

1
2
3
4
5
6
7
8
9

10

1.0188
3.2482
4.8201
6.1633
7.3722
8.4885
9.5354

10.5277
11.4751
12.3848

+ 0.5357
-0.4190
+ 0.3804
-0.3579
+ 0.3423
-0.3305
+ 0.3210
-0.3132
+ 0.3065
-0.3007

1
2
3
4
5
6
7
8
9

10

1.5316
0.7853
0.6420
0.5672
0.5184
0.4830
0.4558
0.4336
0.4154
0.3999

0.7003
2.2327
3.3132
4.2364
5.0674
5.8347
6.5543
7.2364
7.8876
8.5129

0.4043
1.2890
1.9129
2.4459
2.9257
3.3687
3.7841
4.1779
4.5539
4.9149
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(P,4)

I -
2

~-cos (a/p}

X

cosv(p —w) = e'""cosvQ —ie'" csin vw

into Eq. (5), we have

Hg= I, +I2,

where
i V7i

sinvn

BvdV .
C

FIG. 4. The geometrical representation of the creep-
ing waves in the shadow region.

The first integral I, can be evaluated by closing
the contour c, in the upper half of the v plane and
integrating about the residues at zeros of HP (ka)
= 0. We obtain

fore, the first mode of the creeping wave gives
the largest contribution to the field.

In the lighted region, the derivation is slightly
different. Substituting the relation

I =H'"'+H"
1

where

(14a)

g g D exp[ E(k-a)'~'p„', ] exp(i[ka+F (ka)'~']y„', )
Nt=l n=0

(14b)

D exp[- E (ka)'~'Q~) exp fi[ka+ E„(ka)'&]p ' j,(ka)'~'exp fi [k(p' —a') 'a + w/12])
pyp2 g 1212

ffa= 1 fw Q

(14c)

where we have put

Q'„~ ——2sw+~ —+ p —cos -g a
2

(15a)

I2 ——II', + I2~,

with

1k' cosy
2g

(17a)

(17b)

g'„2 ——2nw + ——
Q

—cos31r -g Q

2 p
(15b}

If the observation point is far away from the
cylinder, then P'„q and P'„t in Eqs. (15a} and (15b}
can be replaced as

acos(g/2) '~
I2a

2p
exp(ik(p —2a cos(P/2)} .

(17c)

P'„) ——2sw+ (w+ P),

y„,=2sw+(w- y) .

(16a)

(16b)

The numerical values of D, E, and E are
given in Table II. Equations (14b) and (14c)
represent two creeping waves in the lighted
region. The geometrical representation of
creeping wavesH', ""and II',""in the lighted region
is given in Fig. 5.

The second integral I2 can be evaluated by the
method of stationary phase. If we deform the
path of integration to pass through the stationary
points kp[sin(P)] and ka[sin(P/2)] (see Fig. 6),
we can obtain

—p+Q-3
2

= X

FIG. 5. The geometrical representation of the creep-
ing waves in the lighted region.
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ka sw(4/2) &P &i&(4 )

FIG. 6. The deformed integration path passes the

stationary points for evaluation in geometrical optics
field.

The quantities E2, and I2, represent the incident
wave and reflected wave, respectively. If we

neglect the contribution of the creeping waves in

the lighted region, then I2, and I2& are just the

leading terms of the asymptotic solution which is
deduced by the methods of I uneberg and Kline. "
The total field H, outside the cylinder in the lighted

region is the superposition of the incident wave,
the reflected wave, and two creeping waves.
That is,

scanning electron microscope and compared with

a standard aperture. We adjusted the radii slightly

from the values measured by the scanning elec-
tron microscope (less than +) to get the best
fit with the experimental data. The fibers desig-
nated A1.-1 and Al-2 have adjusted radii of 1.481

and 1.715 p. m, respectively. The distance from

the fiber to the photomultiplier is about 20 cm.
The plane wave of the He-Ne laser is incident

perpendicular to the axis of the fiber with 5, par-
al, lel to the axis of the fiber and produces strong
creeping waves.

The values of kg for the fibers Al-1 and Al-2
at wavelength 6328 A are 14.7 and 1V.O, respec-
tively. The distance from the fiber to the photo-

multiplier is relatively large eomyared to the

radii of the fibers; thus the field at the yhoto-
mu1, tiylier represents the far zone field. More-
over, the width of the slit is also large compared

to the radii of the fibers; thus the equations for
the lighted region ean be used for theoretical cal-
culations. In the fax' zone, we have H =F.@. The
angular distribution of the scattered energy is
the time-average Poynting vector '3 in the radial
direction; thus we have

S = 8' )If,['.

H' =Ig~,

(18c)

If I, denotes the intensity of the incident wave

and I the intensity of wave scattered in the direc-
tion p at a large distance p from the cylinder,
then the ratio of J to I, is

The quartz fibers were prepared by the method

described by Neher. ~'3 They were mounted be-
tween straight pins glued 7 cm ayart on an alumi-
num support which was painted vrith black paint
to prevent reflection from the support. The sup-
port was covered temporarily with a piece of
aluminum foil. The entire assembly was then
positioned in a bell-jar evaporator above the evap-
orating source, and the fiber and mount were
rotated about the fiber axis while metal was evap-
orated onto the fiber. The order of 500 A of alum-
inum was deposited, vrhich represents an effec-
tively infinitely thick layer at the He-Ne laser
wavelength of 6328 A. The aluminum foil was
then removed from the support. The aluminized-
quartz fiber was set on a three dimensionally
adjustable arm, vrhieh is mounted in a 3700 series
ORTEC scattering chamber. A IP28 photomulti-
plier detector eras housed in a box with a slit of
width about 0.25 cm. In order to prevent non-
uniform response of the photocathode, a piece
of Scotch tape was used as a diffuser on the slit.
The radii of the fibers had been checked by a

I lu'. I'
la'. t' '

The theoretical calculations can be obtained by
substituting Etis. (18), (1V), (16), and (14) into
the above equation. If we choose only the first
mode of the creeping waves (i.e., m =0), the
theoretical results and experimental data for the
fibers Al-1 and Al-2 are given in Figs. V(a) and

7(b). We can see that the positions of intensity
maxima and minima predicted by the theory are
not in good agreement with experiments, especial-
ly near the forward scattering region (P -v).
This may be attributed to the series given in Eq.
(14c) yielding a poor convergence for y-v and

s =0. If y-v ands =0, Eq. (16b) gives p„',-0.
The exponent of the dampi. ng factor, which is
-E (ka)'~'P„'„ in Eq. (14c) is small for p„',-0;
thus the series has a poor convergence when p
approaches x. It is necessary to choose more
terms (i.e., more modes of the creeping waves)
in Eg. (14c) to make the series converge. If we

choose 10 modes of the creeping waves (i.e. , the
summation over m from 1-10), the series con-
verges approximately in the regions (0'& y&170')
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FIG. 7. (a) Scattering from fiber Al-1. The first mode
of the creeping waves is used in the Franz theory. (b)
Scattering from fiber Al-2. The first mode of the creep-
ing waves is used in the Franz theory.

and (0'& p & 174') for fibers Al-1 and A1-2, re-
spectively. The theoretical results and experi-
mental data for the fibers Al-1 and Al-2 are given
in Figs. 8(a) and 8(b). These figures show that
even though we took 10 modes of the creeping
waves for the calculations of Eq. (14c), it still
did not improve the agreement with experiment
much even in the convergent regions.

One consideration which was omitted in the
calculation was the phase change of the reflected
wave from the conducting cylinder. This will be
considered next.

The phase change of reflected wave

The theory derived above is based on the as-
sumptions that the value of kg is large and the
cylinder is a perfect conductor. Since aluminum
is a good conductor, we assume that the creeping
waves are damped by spraying electromagnetic
radiation and by Joule losses. The path lengths
of the creeping waves traveling on the surface
of the cylinder are so short that we can ignore
the effect of Joule losses. " The phase change
of the reQected wave has to be examined in more

FgG. 8. (a) Scatter1ng from faber Al-1. The erst ten
modes of the creeping waves are used in the Franz
theory. (b) Scattering from fiber Al-2. The first ten
modes of the creeping waves are used in the Franz
theory.

detail. Since the value of ka is large and the radius
of the cylinder is larger than the wavelength, we

can assume that the surface is locally Qat for
the reflected wave. If the conductor is a non-
magnetic material, the phase change and the amp-
litude of the reQected wave for different polari-
zations of incident plane wave are given in the
following'4:

E" =p es~&X'

H" = p„e~&sH',

(2Oa)

(2ob)

where E,' is the incident wave with E field normal
to the plane of incidence, E~ is the reQected wave
with E fiel.d normal to the plane of incidence, H,'
is the incident wave with II field normal to the
plane of incidence, H~ is the reflected wave with

H field normal to the plane of incidence,

(A -cosa)'+a'
(A + cos 8)'+ 8' '

—2B cosa
cos28 -~2 -g2 '
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improves the agreement of t'he positions of inten-
sity maxima and minima substantially. Better
agreement of the magnitude of the intensity of
scattered light is achieved if more modes are
included in the creeping waves.

The pattern of the scattered light from a circu-
lar cylinder is a complete ring around the cylin-
der, and the intensity of the scattered light is
angularly symmetric with respect to p = 0 and

The theoretical calculation of Eqs. (14)
and (16) for the scattered light is only appbcahle
in the range of P from 0 to w or from 0 to —x.
If

~ y~ exceeds m, then either p„', or P„', in Egs.
(14) and (16) is negative; and this makes the ex-
ponent of the damping factor in Eq. (14) positive
so that the series diverges.

The creeping waves are damped very rapidly
by spraying electromagnetic rgjl, iation, and thus
they travel only a very short distance and make
only a few revolutions on the surface of the cylin-
der. Thus 'the summation over s In Eg. (14) can he
taken for only a few terms without loss of accur-
acy. It is interesting to note that the calculations
of the positions of intensity maxima and minima
for the scattered light are not very sensitive to
the changing of the optical constants N and K.

I i Vk i I I l i I I I I t I I l l~
180 160 140 120 100 80 60 40 20 0

g (degj

FIG. 11. (a) Scattering from fiber Al-1. The first ten
modes of the creeping waves are used, and the phase
change of the reflected wave is included. (b) Scattering
from fiber Al-2. The first ten modes of the creeping
waves are used and the phase change of the reflected
wave is included.
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