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The configuration-space Hamiltonian for a many-electron atom is derived clearing up some of the ambiguities

concerning the projection operators which must occur in this Hamiltonian. In the process, numerical calculations

which have been previously performed are justified. The elementary two-electron interaction in the presence of
many other electrons is also discussed.

I. INTRODUCTION

All numerical calculations' of atomic structure
in the relativistic regime start from a configura-
tion-space Hamiltonian of the form

N N

H =pa(j)+ g V(i,j), (1.1)
)=1 g &j~l

where h(j) is the Dirac single-particle Hamiltoni-
an,

h( j) = cZ ~ ~ p
'~' + P '~'mc' + V„(r&), (1.2)

and where the Dirac a and P matrices have their
usual meaning and V„ is the interaction of the
electron with the nucleus. This should include the
finite-size effects of the nucleus and may also in-
clude the vacuum polarization by the nucleus.
The two-body potential V(i,j) contains the Coulomb
interaction of the electrons and sometimes also
contains the Brett' interaction, which is the (v/c)'
correction to this interaction. These calcula-
tions give results which show good agreement with
the experimental binding energies of the inner-
shell electrons, which indicates that the underly-
ing physics is at least close to being correct.
However, Brown and Ravenhall' pointed out that
the two-electron version of (1.1) yields no stable
(normalizable) bound-state solutions. They modi-
fied (1.1) by returning to first principles, quan-
tum electrodynamics in this case, and deriving a
configuration-space Hamiltonian to replace (1.1).
Their result (with a minor generalization to the
case of an arbitrary number of electrons) can be
written

ff,a =Q&r(j)&(j)Af(j)

+ Z &'. (i)&'. (j)V(i, j)i~".(iQ.".(j), (1 3)
) &(~1

where the projection operation A~ projects onto
the positive-energy states of the free Dirac parti-
cles, i.e. , the positive-energy states of (1.2) with
V„=0. This modification of the configuration-
space Hamiltonian then results in stable bound

states. It has been pointed out"' that the free
particle projection operators in (1.3) are physi-
cally reasonable when the potential V„ in (1.2) is
weak. (For a Coulomb approximation for V, this
means Zn «1.) When this is not the case, the
projection operators in (1.3) should more properly
be replaced by A"„which projects onto the posi-
tive-energy states of (1.2). However, in the case
when the potential V„ is not weak and the number
of electrons in the atom is large, it is not at all
clear how one should define the projection opera-
tors. In any case, the good results obtained from
the use of (1.1), rather than (1.3) or its modifi-
cations, requires some explanation. This is the
subject of Sec. II which may also be viewed as a
more rigorous specification of the projection op-
erators which enter into a better form of (1.3).

Section III deals with an attempt to define the
elementary electron-electron interaction in the
case in which V„ is strong and when there are
many other electrons present. Brown' has ob-
tained this interaction in the case when only a few
electrons are present. It, of course, reduces to
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the Breit interaction when V„ is weak but is non-
local otherwise.

H. DETERMINATION OF. AND JUSTIFICATION
OF NUMERICAL CALCULATIONS

The starting point for the determination of a
configuration-space Hamiltonian for a, many-elec-
tron atom is quantum electrodynamics, ' which

starts with the Schrodinger equation in the Fock
space of electrons and photons (II=1),

Hs=- d'rj r ~ A r

where the electron current is

j (r) = ec]j)t(r)(7t()(r) .

The radiation gauge in which

V A(r} =0

(2.6)

(2.7}

(2.8}

with

HOED H& +Ha+HI +H

The Hamiltonian for the matter field alone is

dsrg~r h r r,

(2.1)

(2.2)

(2 3)

is used here for reasons previously discussed, "'
and the interelectron Coulomb interaction, which

is explicitly separated in this gauge, is given by

d'rd'r'g r g r —,g r' p r' .
Ir -r'I

(2.9)

Finally, the electromagnetic fields are defined by

the equal-time commutator s

[|J)(r),]j)'(r')], = 3(r —r') .
The radiation field Hamiltonian is

d'r
H„= — [E'(r)+H'(r)],

(2.4}

(2 5)

where E and H are the quantized electromagnetic
fields, which are defined in terms of the vector
potential A(r) in the usual way. The transverse
interaction Hamiltonian between the two classes
of fields is

where h is given by (1.2) and ]j) is the usual parti-
cle-wave field defined by the equal-time anti-
commutator

[Z,(r),A,(r')]=—f d'k(5„-kp, )e& ' ' ', (2 10)

[A,(r), tt(r')] = 0. (2.11)

We are interested in states which describe an
atom with no real photons present, so it is useful
to partially remove the photon-matter coupling by

a canonical transformation, which accomplishes
this in lowest order in a series in e'. The meth-
od, originally given by Schwinger, ' will be presen-
ted in some detail in Sec. III, but it is sufficient
to simply give the results here. When there are
no real photons present, the most general form
of the Hamiltonian is

H+ED =N d'x g x h x g x + —,'N |tj xx 4 xg V 12& 1 2 |t) x2 g &2 d +1d &2d &gd (2.12)

The normal ordering operator N, occurring be-
fore the first term, is necessary in order to
eliminate the difficulties associated with the
Hamiltonian (1.1). The difference between this
term and the same term in the absence of N is a
C number, which can be removed by a unitary
transformation with no physical effects. (How-
ever, see the discussion at the end of this sec-
tion. )

The second term in (2.12) is the two-body inter-
action and V is the electron-electron interaction
potential whose precise form will not be signifi-
cant in this section. The normal ordering opera-
tor inserted before this term is done for conven-
ience. The difference between the second term in
(2.12) as it stands and the form with N absent is a
sum of one-body operators and a C number.
These are renormalizations and radiative correc-

(j)(r) = Z4 (r)b (2.13)

where

(2.14)

The operators b„are interpreted as destruction
operators when 8'„&0, and creation operators
when W„&0. This is made ex~elicit by their action
on the particle vacuum state 0}, given by

I

tions, which are not of direct interest in this dis-
cussion and so can be dropped.

The normal ordering operator itself must now

be discussed. It is usuaQy defined with respect
to the eigenfunctions of h, which we denote by

(]])„(r)with eigenvalues W„. In that case the field
operators are expanded as



THEORY OF RELATIVISTIC EFFECTS IN ATOMS: ll69

b„i0)=0, W„) 0

b„'i0) =0, W„(0.
(2.15)

The normal ordering of the first term of (2.12)
then results in

(+)

N d'x y xhxqx = Wgb~b„
n

(-)

+ g )W„/bgt, (2.16)

K=h+0, (2.17)

where 0 is to be specified later. In that case the
normal ordering becomes

N d'gfthg= gt A, hA, +A, hA +A hA, &

-y(A hA )P~](dx), (2.18)

where the subscript t in the last term indicates

where the superscripts on the sums refer to the
sign of the eigenvalues W„. We shall allow for a
more general form of the normal ordering opera-
tor by introducing a more general set of states in
(2.13), which are eigenfunctions of a single-par-
ticle operator, which we shall write as

the transposed form of the operator. The projec-
tion operator A, projects onto the positive-energy
states of h [Eq. (2.17)]. The vacuum is also rede-
fined so that (2.15) becomes

A g/0)=/A /0)=0 (2.19)

The usual normal ordering of the first term of
(2.12), which is (2.16), is a positive definite op-
erator and the more general form (2.18) is not
necessarily so, but it can be shown to be bounded
from below, which is a sufficient condition to re-
move the difficulties associated with (1.1).

The Fock-space Hamiltonian can be used to
generate a configuration-space Hamiltonian with
the aid of the Rayleigh-Ritz variational principle.
We must first assume a form for the Fock-space
wave function which satisfies (2.1). It is known
that the state which describes a system of elec-
trons of total charge ( Ne) w-ill have a leading
term with N electrons. The second term will con-
tain (N+1) electrons plus one positron and suc-
ceeding terms will have additional pairs. The
mathematics becomes too complicated to include
anything but the first term, so we must drop all
virtual pairs from this description. The wave
function is then approximated by the term with no
virtual pairs and is written

4= e ~~'4 =e ' ' dpi ~ ~ ~ dg& g 1 ~ ~ ~ g NA.'1 ~ ~ A,'NX' 1 ~ ~ ~ N 0, (2.20)

where we have, for the moment, allowed a different projection operator A,' in (2.20) than that defined by
(2.17) and the associated discussion. This is clearly redundant because of the second part of (2.19).
That is, (2.19) allows us to write

0'(j) 10& =tj'(j)A. (i) I0&,

so that the projection operator A, (1) ~ A, (N) can be inserted immediately to the right of gt(1) ~ ~ gt(N) in
(2.20). Then the product A,'(1) ~ ~ A,'(N)X'(1 ~ ~ N) can be identified as a new wave function X(1 N), and

so the allowance for the difference between the projection operators A, (j) and A,(j) is redundant. We
therefore rewrite (2.20) as

4~e'~'4=e'~' dz, dhg(~1 ~ ~ g NA, 1 A, NX 1 ~ N 0, (2.21)

where A, is defined by (2.17) with 0 to be determined below. The function X(1 ~ ~ ~ N) will then be interpre-
ted as the N-electron configuration-space wave function of the atom.

The Rayleigh-Ritz principle can now be used in the form

[4 ffQED4] (X,ff„X)
[@,@] (X,X)

(2.22)

where [, ] is an inner production in Fock space and (, ) is an inner product in configuration space. The
transition to the second form of (2.22) must be taken with a little care. (This is discussed in the Appendix. )
The fact that the definition of the vacuum is (2.19), rather than (2.15), simplifies the process with the re-
sult

H„=gA, (j)h( j)A, (j) +QA, (i)A, (j)V(i, j)A, (i)A, (j), (2.28)
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where V is the two-body interaction potential in (2.12}. Variation of (2.22) with respect to X yields the
Schrodinger equation in configuration space

(2.24)(E-~„)X=o,
where the configuration-space Hamiltonian is given by (2.23). The projection operator A, is still undeter-
mined since 0 in (2.17) has not been specified, but variation of E with respect to 0 can yield an equation
which will determine it T. o that end we may rewrite (2.22) as

E (X, [A.(l)h(1)A, (1)+~(N —1)A,(1)A,(2)V(1 ~ 2)A, (l)A, (2)]X}
(X,X)

and define density matrices from the wave function y,

r,(,r, ;r,'r,') fdr, =.rr X(r,r, r, ~ r)X(r,'r,'F, .r),

p, (r„r,') fd'r=p, (r,r, ;r,'r, ),
with the normalization

(2.25)

(2.26)

(2.27)

Then (2.25) can be rewritten as

N=tr, p, (1)A,(l)h(1)A, (1)+&(N —1)tr»p, (12)A,(1)A,(2)V(12)A,(1)A,(2), (2.28)

where the notation tr» means a trace over coordinates 1 and 2. The variation of E with respect to Q is
accomplished by variation of only A, since y, and therefore p, and p„are independently varied. This
variation is accomplished with the use of 4

6A, =A QA. +A. Q'A-,

where A =1-A, and

(2.29)

Q = dve~50e "'
0

The variation of (2.25) then yields

O=tr, p, (1)[Q'(1)A (1}h(1)+h(1)A (1)Q(1)] +(N —1)tr»p, (12)[Q'(1)A (1)V(12)+ V(12)A (l)Q(1)],

(2.30)

(2.31)

where use has been made of the fact that A acting on either p, or p, vanishes. This comes from the defi-
nitions (2.26) and the Schr odinger eq'uation (2.24) with (2.20). Use has also beenmade of the symmetry of
p(12) and V(12) in their arguments. The use of (2.30) in (2.31) results in

0= dvtr, 501 e""'"A 1 h1 p, 1 e ~""+e""'"p, 1 h 1A 1 e~"'"
0

+ distr»50(1)[e""'"A (1)V(12)p,(12)e '"'"+e '" p), (1 2V}(12)A (1)e""'"],
0

and use is now made of the fact that 6A(1) is an arbitrary infinitesimal operator to yield an equation to
determine A. We also use

p(l)h(1)A (1)=-p(1)Q(l)A (1)

and its Hermitian conjugate in the first term of (2.32). The result is

0= dv e"' 'A 1 -Q 1 p, 1 + N -1 tr, V 12 p, 12 e "
0

+e" [-p,(1)A(1)+(N —l)tr~, (12)V(12)]A (1)e" ").

(2.33)

(2.34)

If we operate from the left with A and from the right with A„ the last term vanishes. We may then form
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the (q I
~ ~ In} matrix element of the remaining part, where (q I

is a negative-energy eigenstate of K and

In) is a positive-energy eigenstate. The v integral may then be performed with the result

j. —(q I
—A(1)p, (1) +(N -1)tr, V(12)p2(12) In) = 0,

a

which can be written as

(2.36)

A(1)p, (1)= (N -1)tr2V(12)p2(12), (2.35)

where the (-
I I+) matrix element, in a representation of the states of h, is understood. [The Hermitian

conjugate of (2.33) is also true. ] This equation determines 0 in a very complex way since 0 enters into
A, and therefore into y, which in turn determines p, and p, .

An exact solution of (2.35) is a hopeless task, but if y is approximated by a Hartree-Fock solution, then

p, and p, can be written as
N

p, (r,; r,') =—P W&(r, )W&+r,'),
f=1

N

p (r r; r'r,') =N(N g W&(r )W&(r )[W&(r')W&(r') —W&(r')W (r')]*,
~ )sf=1

where the W, are the Hartree-Fock single-particle
orbitals based upon the N-electron Hamiltonian
(2.23). Substitution of (2.36) into (2.35), and the
formation of the (q I

~ ~ In) matrix element in the
Hartree -Fock representation yields

q Qn5„, f

(q In ln) =7 [(qj I
v lnj) —(qj I

v ljn)]. (2.38)

It should be pointed out that (2.35) was derived
with the understanding that it applies only for the
(-

I I+) matrix element in a single-particle repre-
sentation defined by the Hamiltonian K. In ob-
taining (2.38) we used a (-

I I+) matrix element
in the Hartree-Fock single-particle representa-
tion, but the result shows that these representa-
tions are the same, since the right-hand side of
(2.38) is precisely the (-

I I+) matrix element of
the Hartree-Fock potential. This is a direc't dem-
onstration that the (- ~ ~ ~ +} matrix element of 0
is the same as the (- ~ ~ ~ +} matrix element of
the Hartree-Fock potential obtained from the
many-body Hamiltonian (2.23 . It also implies
the same thing for the (+

I

~ ~ +) and (-
I I

-}
matrix elements, since (2.38) also shows that the
.eigenstates of K [Eq. (2.1V)] must be identical with
the Hartree-Fock orbitals W& in (2.36). Hence,
0 is the Hartree-Fock potential when the Hartree-

=Z[(qjlvlfi)6. , ~ -(qflvlfi)6. ,,]. (2.»)
j)1

If n is not one of the occupied orbitals then this
yields no information but, if it is, then this be-
comes

Fock approximation is made for the wave function

X

We now return to the problem of the numerical
calculations raised in the Introduction. All of
these are Hartree-Fock calculations based upon
the Hamiltonian (1.1). They all operate with the
implicit constraint that only positive-energy
single-particle states will be retained. In effect
this inserts the operators A", in place of the A~,
which occur in (1.3), where Anr projects onto the
positive-energy states of K with A replaced by
0" . But we have shown that this is a correct
prescription when the simplifying assumption
(2.36} is made. This provides an understanding of
the agreement of numerical calculations with ex-
periment. A minor point of concern can, how-
ever, be raised with regard to the use of (1.1) in
a Hartree-Fock calculation with only the implicit
appearance of A", . It is possible to generate in-
correct results in this way by an iteration method
for solving the equation, since negative-energy
states can intrude as intermediate states (where
they do not belong) with this method. For ex-
ample, suppose that (1.1) is used as a starting
point, and that V(i,j ) is taken to be the Coulomb
plus the Breit interaction. If Z is not too large,
it is reasonable to treat the Breit interaction as
a perturbation. Then the zero-order problem
would be (1.1) with only the Coulomb electron-
electron interaction. If this is treated by an ana-
lytic Hartree-Fock technique with an implicit
constraint of positive-energy orbitals, the result
is a set of Hartree-Fock orbitals which is almost
identical with those which would have emerged
from the Hartree-Fock treatment of the more
correct form, (2.23). Now suppose that the effect
of the Breit interaction is included. Its first-or-
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der effect is obtained from first-order perturba-
tion theory using the Hartree-Foek orbitals des-
cribed above. The result is eorreet. However,
the second-order contribution of the Breit inter-
action would introduce negative-energy inter-
mediate states, and it is well known'0 that this
gives a large and incorrect result. This is a
simple example of the possibility of an iterative
technique in which the Hamiltonian (1.1) gives
wrong results.

In the limit of only a few electrons (N«Z), the
potential (2.38) becomes small compared to the
nuclear potential and the projection operators in
H„[Etl. (2.23)] can be replaced by A", in which 0
is set equal to zero. In the further limit in which
the nuclear potential is small, A, can be replaced
by Af and the Brown and Ravenhall' result, (1.3),
is recovered.

The normal ordering described above results in
additive C numbers in the Hamiltonian, which are
discarded on the usual grounds that C numbers
have no physical effects in a fieM theory. How-
evex, the C number, which has been discarded
here, depends upon the state of the system, since
A and consequently A, are state dependent. This
means that the vacuum is state dependent and
therefore, so is the C number, which we discard.
This does indeed cause conceptual difficulties in
a more exact theory than is contemplated here. "

Recently, Sucher' discussed the Hartree-Fock
reduction of Hamiltonians such as (1.3). He
points out that the implicit constraint of retaining
only positive-energy orbitals results in only
small errors in the single-particle energies for
small values of Zn. The reason is that A", or A~
differ from unity by only small amounts w'hen act-
ing on the basically nonrelativistic Hartree-Fock
orbitals. The development given above goes even
further: The Hartree-Fock reduction of (1.1) re-
sults in exactly the same single-particle energies
as the Hartree-Fock reduction of the more cor-
rect Hamiltonian, (1.3) with Af replaced by Asr.

HI. THE ELEMENTARY TWO-ELECTRON
INTERACTION

The usual method, ' used for the approximate de-
coupling of'the matter and radiation field, involves
a series of unitary transformations from the
Schrodinger to the interaction representation and
back. They can be condensed' to a single unitary
transformation of the form

(3.1)

s(~) = sgn(&), ($.3)

Hz(v) = e'so'Hze ~&o'. (3.4)

Hz is the coupling between matter and transverse
photons [Eg. (2.6)] and H, is usually taken to be
the "zero-order Hamiltonian" &„+H,. This
transformation, as we shaB see, yields an infin-
ite series of terms for the Hamiltonian. The low-
est two-electron term has intermediate states, in
which the propagation of the electrons is defined
by &,. In the usual case, they then propagate in
single-particle eigenstates of k [Eg. (1.2)]. This
would seem to be inappropriate for the many-
electron case where H, [Eg. (2.9)] is expected to
be as important as V„. We therefore generalize
the usual method so that

H =H„+H„+H (3.5)

C„[o,H]=[o, C„,[o,H],
Co[o,H] H . (3.V)

The series in the last two terms of (3.6) are ex-
pansions in powers of Bz, which is an expansion
in the number of transverse photons exchanged.
If we first consider the Coulomb contribution, it
is

Z
Hc+[& Hc]+—[o [& Hc]j+ "

The first term is the Coulomb part of the elec-
tron-electron interaction and mill be retained.
The second term is an interference between
Coulomb and transverse terms, which is of the
order es and off diagonal in the photon number.
Its lowest contribution to a potential comes from
its appearance in the second order, which is of
the order e, and so it is dropped here. The third
term is of the order e4, diagona1 in the photon
number, and it contains three-body potentials" as
mell as radiative corrections to the two-body po-
tentials. It is too small to be included here. Sub-
sequent terms of the series are dropped for the
same reason.

The last term of (3.6) is the purely transverse
part of the interaction. The first few terms are

The unitary transformation defined by (3.1)-($.5)
then generates a new Hamiltonian of the form

. ~fl sf/

H=H„+Hs+Q —C,[o,Ho]+Q- C„[o,Hqj,„.0 n't „, n+1
(3.6)

where C„ is defined by

o = ——,
' dr Hi(v)s(v), ' (3.2)

~Q 03

-[o.Ha]+ —[o~ [&~Hajj+—[o, [o»sj]+ "
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The first term is the one-photon part of the trans-
verse interaction, which will be considered below.
The remaining terms of the series are dropped

for reasons similar to those given for higher
terms of (3.8).

The leading transverse interaction is

-[o,Hi] = —— dry (t) [Hi(T), HI ]

d'r d'r'dec (v)[j,(r, r),j,(r')],[A (r,&),A, (r')]+ [j,(r,r),j~(r')][A,(r, r), A,(r')]), (3.10)

where

A (r,r) =e'e&A (r)e ~eR (3.11)

I

and & can be approximated by a single-particle
Fock-space Hamiltonian given by

A

Hsr= N d'rd'r'gt(r)hcs(r, r')(C}(r')

(W, (CH} —hc„)s}„(CH)=0, (3.14)
I

j,(r,r)=e~ (add'ec}~j, (r)e (' "

The nem feature of this interaction is the appear-
ance of Hc in the exponents of (3.12). Without it, j,
(r, r) would be a single-particle operator and the
commutator [j,j~], in the last term of (3.10),
mould also be a single-particle operator of the
order e', and so negligible compared to Vn. How-

ever, j, is a many-body operator due to the cor-
relations induced by H~, and this commutator is
also a many-body operator for this reason.

Exact evaluation of the time evolution operators
in (8.12) is equivalent to a solution of the many-
body problem with the Hamiltonian &&+&~, which

is beyond our current capabilities. It can be ap-
proximated by an optimized single-particle form,
which. is the Hartree-Fock Hamiltonian. In order
to do this, we must solve a Hartree-Fock problem
for N electrons with the starting Hamiltonian

H' = NB„+H~, (3.18)

where the normal ordering of the first term ap-
pears here as it did in (2.12). The reduction of
(3.13) to its Hartree-Fock approximation can be
performed in exactly the same manner as was
given in the preceding section. The result is a
set of orbitals and eigenvalues, which we call
s}„(CH) and W„(CH), respectively, the CH indica-
ting that the. input two-body interaction is Coulomb
and it is treated by a Hartree-Fock reduction. If
hca is the (nonlocal) one-body Hamiltonian for
these, then

=N QW„(CH)bi(CH)b„(CH}, (3.15)

where

b„(CH} J d'rw„(CH, r}d(r}. (3.16)

2

r)(12) = dr e(r)e'c&""a"'

x D„(r„,(r)a', e ' cs "}' (3.18)

where the D function is the commutator of the
4 's and is given by'

SC
D~(r, r) = ——,i (5,~

kP~)e'" -sinckv .
(3.19)

Explicit use of (3.19) in (3.18) results in another
form

With this approximation the last term of (3.10) is
a one-electron potential of the -order e' and so is
dropped relative to V„. The first term of (3.10)
is retained, and its form is only slightly changed
from the elementary transverse interactions pre-
viously"' discussed. The one change is that the
electrons propagate in intermediate states under
the influence of the single-particle Hamiltonian

hc„ instead of h [Eq. (1.2)]. The result can then
be written by simply making this transcription.
The first term of (3.10) can then be written

Hr = —-,'(gi(1)g('(2), [q(12)+q(21)]}t}(2)4(1)], (3.1V)

where

2 W ~ CH r
d~r|dsr~(t}+r|)a, p„(r,)(t}i((r,)a~'p, (r2)(5,~V —V,V~)r», ,r» sin "",(3.20)1 2 1 g 1 g 2 & g 2 gg ff & 12 g7 CH 12 2c

where W„„(CH)= W„(CH) —W„(CH) and the P„are eigenfunctions of h [Eq. (2.17)]. Finally, the elementary
two-body interaction in (2.13) is specified by

Vng, n'g ' = Cng, n'g ' &ngen g ~ gne g n (8.21)
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where the Coulomb matrix element arises from the first term of (3.8) and is

C„,,„,~ =
~
y, (1)y,(2),—({[).(1)(j),~ (2) ~.&u )

(3.22}

The Hamiltonian specified above presents a lengthy calculational task necessary to extract numerical
results. One first has to obtain the Hartree-Fock states and energies for the N-electron problem with
only the Coulomb interaction among the electrons, (3.13). These then must be used to construct the ele-
mentary transverse two-body interaction (3.20), which are then inserted in the total two-body interaction
(3.21). This can then be substituted back into (2.23} to get the configuration-space Hamiltonian, which
usually must also be treated by a Hartree-Fock reduction. A simplification of this procedure is available,
which will probably not change the results significantly. The idea is that q is only significant when coupling
relativistic electrons. These ax'e the inner ones for which the dominant potential is the nuclear potential
with the scx'eening, due to Q, playing a lesser role. Therefore, it should not make much difference if
hcs in the intermediate state in (3.18) is replaced by the single-particle (Hartree-Fock) Hamiltonian
based upon the full two-body interaction (3.21), rather than just the Coulomb interaction. This would re-
place the II'„„(CH) by the full single-particle energies. The result would be a single nonlinear eigenvalue
problem instead of the px ocess described above which is that of two linear eigenvalue problems. The
nonlinear problem yields an equation of the form

e' e'
(('„(HF)5„,. - (n I/4 I+') -Q&'(' ———[f(w,„{HF),r„)+f(0,r„)) m)g=l k 12

e e+p «'j ———[f(Ip'„,(HF), r„)+f(W,„(HF),r„)]q«
~

= 0, (3.23)
12

where

(3.24)

The basic functions appearing here are s)„(HF), the final Hartree-Fock orbitals. From (3.24) it is evident
that the appearance of the eigenvalues W„(HF) in the potentials is a relativistic correction. In lowest order,
(c-~), these give the Breit interaction, and it is clear that further corrections will only be significant for
the inner orbitals. This will be discussed in a subsequent publication.
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APPENDIX

The transition from the Fock space to the configuration-space form of (2.22) will be discussed here.
The starting point, Hu~, is given in (2.12) and the state vector 4 in (2.21). The definition of the vacuum
[Eq. (2.19)] is based upon the projection operators A„which in turn are based upon the Hamiltonian K

[Eq. (2.1V)]. The normal ordering operator N in Hoso, [Eq. (2.12)], is also defined with respect to this
single-particle Hamiltonian. This makes the calculation much simpler. For example, the one-body part
of (2.12) will contribute to (2.22) a term

dye" dy.«," «.&zX'(yi" y.)A, (~i) "A,(y.)«l[((y,)" e(~.)iV[e'(z)&(z)e(z)]f'(z.)" e'(z, )l&&

x A.(z„)~ ~ A,(z,)X(z, ~ ~ z„). (A1)

The gt(z, ) are all creation operators because of the appearance of A,(z, ) snd (2.19). The negative-energy
part of Q(z) anticommutes with these and gives no contribution to (Al) because of the normal ordering
[Eq. (2.18)]. The positive-energy part of g(z), which annihilates the vacuum, (2.19), can also be moved to
the right through the g (z, ) with the use of (2.4), and it is the delta functions of (2.4) which gives the non-
vanishing contx'ibution. Thus,

4(zN'(z~) 0'(z, ) lo"&=+~(z-z )(-I)"0'(z ) "j * 0'( )~zo&, (A2)
j=l

where the notation j means that [() (zz) is to be omitted from the product This equ.ation is understood to
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apply only to the positive-energy components of all of the operators and this is exactly vrhat occurs in

(Al). The left-hand side of (Al),

&o IS(y ) 4(ys)4'(~)

(AS}

can be evaluated as the Hermitian conjugate of a form such as (A2). When this and (A2) are combined we

may use

&0I4(y }"tI (y )0'( )" 0'(,)I0&-d t I{}(y — ) I,
where the left-hand side of (A2) is an Nx N determinant, each of whose entries is a delta function. The

use of the fact that X must be antisymmetric, in any pair of its arguments, gives the result that this term
ls

Nf X 1 ~ ~ oNA, & ooog X jg &&+AD ~ ~ og NX 1 ~ ~ oN
f-"j,

In a similar fashion, the normalization inner product can be evaluated vrith the result

[@,@]=N((x, x).

(A4)

(A5)

(A7)

This yields a contribution

A.(1)" A, (N) gf(j)A.(1)" A.(N) (A6)

for the first term of the configuration-space Hamiltonian, (2.28). A similar analysis yields

A.(1) ~ ~ A, (N) g V(1,j)A.(1) ~ ~ A, (N)
i pj~l

for the second. The sum of these two is slightly more complicated than (2.22). However, it can be simpli-

fied with the result (2.22) by the use of

A, (j)X,(1 ~ N) = 0, j = 1 ~ ~ ~ N

which is a direct consequence of the Schrodinger equation (2.24).

(Aa}
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