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Exactly solvable nonlinear model for a Smith-Purcell free-electron laser
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We present a model for a Smith-Purcell free-electron laser, including nonlinear effects, that
can be solved in closed form. The model is shown to obey the pendulum equation. The aver-
age electron efficiency calculated by means of this model is compared with that obtained from
an exact numerical calculation and from a simpler "phase-space" model for a wide range of
physical parameters.

In recent years, efforts have been made to extend
the usefulness of laser, maser, and microwave tube
technologies to make accessible a greater portion of
the electromagnetic spectrum. These efforts have
spawned a variety of devices based on electron beams
interacting synchronously with periodic structures,
known collectively as free electron -lasers '' In t.his
Communication we discuss a device in thig category
referred to in the literature as a Smith-Purcell free-
electron laser or orotron4 (also referred to as a ieda
tron or diffraction radiation generator p), present a
model for its operation that includes crucial nonlinear
effects, and perform calculations related to the exper-
iment described in the preceding paper. '

The laser consists of three basic elements: an elec-
tron beam, a metal grating over which it passes, and
a resonant cavity around the beam and grating. Its
operation is based on the Smith-Purcell effect. ~ 9

Electrons in the beam induce image charges in the
grating teeth; since these charges are, in effect,
bound by the metal surface, they radiate energy by
virtue of their constrained motion. Because the grat-
ing can absorb momentum from the beam, the ordi-
nary resonant condition for beam-radiation interac-
tion, tp- k v, becomes cp-(4+K) V, where tp is
the frequency of the radiation, k is its wave vector,
v is the beam velocity, and K -2rrny/I is a "recipro-
cal lattice vector" for a grating of period I in the y
direction, where n is an integer. This equation can be
rewritten as n A. - l(c/v —cosa), for a beam velocity
v ~y", where A. is the radiation wavelength and 8 is
the angle between k and y. In this form, the equa-
tion is referred to as the Smith-Purcell condition.

The Smith-Purcell effect is essentially a one-
electron effect, and indeed the orotrons that have
been constructed to date~ 7 utilize low-density beams.
The energy supplied to the radiation field is thus
largely kinetic energy of the electrons, and plasma ef-
fects are negligible; it is therefore possible to treat the
motion of a single electron and then average over an
ensemble of initial conditions for this electron to get
the behavior of the beam. A linearized theroretical
treatment of the orotron (based on the collisionless

my' = eE(y,t)— (2)

where E is the y component of the experimentally ob-
served' mode of the grating-resonator system, which
is given by (suppressing the dependence on the coor-
dinates transverse to the electron motion —see Ref. 9)

w2E(y, t) =Epe r " costpt Xa„cosnKy, (3)

where w is a width parameter determined by the cavi-
ty dimensions, a„are coefficients characteristic of the
slow-wave structure, and K 2 pm/I By making . suit-
able approximations, we may convert Eq. (2) into a
form for which a closed-form solution is possible,
even in the nonlinear regime. To this end, we re-
place the Gaussian in Eq. (3) by a rectangle whose
amplitude is equal to 0.751EO and whose effective
width is L =1.98w (as determined by requiring a best
fit of the rectangle to the Gaussian in a least-squares
sense). Further, we consider the initial velocity vp

near the Smith-Purcell condition for vertical radiation
on the fundamental (n - I ), vp —tpl/2pr - cp/E, and
we discard all Fourier components in Eq. (3) except
the fundamental and make the approximation

Boltzmann equation) can be found in Ref. 8. For the
purposes of this Communication, we note that the
crucial figure of merit to be extracted from any
model of the elect."onic motion is the electron efficien
cy, defined by considering an electron arriving at one
end of the grating at time t to with velocity vo and
exiting the interaction region with velocity vf. The
efficiency for that electron is given by the fractional
change in its kinetic energy or, in the nonrelativistic
regime,

~(tp) =I—vf(tp)'
i)0

To get q(tp), we assume that there exists a static
magnetic field along the direction of electron motion
that is sufficiently strong to constrain the electron
motion to one dimension, which we call y. Then
Newton's second law becomes
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cosKy cospit =-, cos(Ky —rut); i.e., we neglect the

backward-traveling component of the standing wave
(these approximations are based on results of "ex-
act" calculations, to be discussed later). Finally, we
shift the origin of time by (KL —m )/2pi and the ori-
gin of position by L/2 and introduce the new in-

dependent variable $ =Ky —pit to obtain

~+ eEK
m

(4)

for 0 «y «L, where E =0.375aiEp. This is the pen-
dulum equation. Together with the initial conditions
y(rp) =0 and y(tp) = vp, or 4bp=d(tp) pirp an—d

imp ib(rp) = K iPp pi [i.e., an electron arrives at one
end of the grating (y =0) at time rp with velocity up],
this equation is exactly solvable in terms of elliptic
functions.

At a time t& determined by the electron motion,
the electron reaches the end of the grating y = L.
Then, if we know y (r;tp, vp) [or equivalently
p(t;rp, vp) ], then rj can be determined as the solu-
tion of L =y(tr, tp, vp) [or KL pirr —ib(tr , tp, vp)']

and v~ is then equal to y (t&, tp, vp) [or vf [pl
+@(rf rp, vp) ]/K). Then it( rp) is determined from
Eq. (I). The ensemble average for the beam then
yields the device efficiency (denoted by q without ar-
guments):

t
2e/tpb

J~l chp v)(rp)
2m

The solutions of Eq. (4) can be either periodic or
apepiodic, corresponding to the usual picture of a
pendulum swinging back and forth or executing full
360' rotations. The former motion corresponds to
electrons-that move, on the average, with the phase
velocity of the wave and are "trapped" in wave

troughs, while the latter describes electrons that are
"above" the wave crests and are relatively unaffected
by the wave. To see this more clearly, we define the
quantities I=K vp/pi —-I, X'-eEpK/m pi', and
Mt = ht/4+ b2sin2(pp/2). Then the motion is

aperiodic for (5( & )2h. cos(imp/2) ( and periodic for
)5) ( (2}icos(pbp/2)]. In the aperiod(ic case, the velo-
city can be written as

5 dn(M pit ( b.'/M') —X'/M sinqbp sn(M pit ( b.'/M') cn(M pit (
X'/M )y= —1+

K 1 —(X /M~) sin (qbp/2) sn (Mpit[b, /M )
(6)

while in the periodic case,

4 cn(tapir ] M'/X') —X sinqhp sn(spit (M'/X') dn() pir (M'/h').y= —1+
K I —sini(gp/2) sn (scut ~M /X )

where sn, cn, and dn are the usual Jacobi elliptic
functions. ' These expressions show that the elec-
tron motion depends on Qp and on the parameter
p = 2k/h. We can discuss the two limiting cases:

(a)
~
p

~
(( 1. This corresponds to either a weak

field or a large deviation from the Smith-Purcell con-
dition. In this case, the motion is aperiodic for all

values of qbp, and indeed y reduces simply to vo as
~ ~0.

(b)
~ p~ && 1.This is the strongly nonlinear regime.

It also corresponds to a beam that nearly satisfies the
Smith-Purcell condition and hence is the case of
nearly complete trapping in the sense that if b, =0
(p= m) an electron executes periodic motion for any
initial condition qbp. In this case, the solution be-
comes

sn(spit ~sin'(imp/2))
y =—1 —

A, sinqhp
dn(Apir ~sin'(qbp/2))

I

behavior with field. If these oscillations are ignored,
a simple description of the average efficiency can be
given. Assume that only the trapped electrons are
effective in contributing to q and that these arrive at
the end of the grating with the phase velocity of the
wave, pi/K, regardless of their time of departure.

~O

4

unless 4tbp is very close to zero. It is not hard to show
that in this case the efficiency approaches zero.

In general, the evaluation of the average efficiency
is hampered by the implicit nature of the dependence
of q(tp) on ip The integra. l in Eq. (5) is performed
numerically, and g shows a characteristic oscillatory
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FIG. 1. Average electron efficiency vs electric field ampli-
tude aiEp for (a) "exact" Gaussian model, (b) pendulum
model, and (c}phase-space model. The electron velocity is
vp-3. 08 x10 m/s.
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FIG. 2. Average electron efficiency vs electron velocity vp

for (a) "exact" Gaussian model, (b) pendulum model, and
(c) phase-space model. The electric field amplitude is

aiEp 10 V/m (E=3.75 X10 V/m).

Epa~ (105 V/m)

FIG, 3. Efficiency vs electric field amplitude for a variety
of electron velocities in the pendulum model: (a)
vp=3. 06 X10 m/s, (b) vp-3. 07 X10 m/s, and (c)
op=3.08 X10 m/s.

Then q depends only on how many electrons are
trapped, i.e., the available phase space, and is given
explicitly by

(a)/E)' F
vi

2 C0

7T Evp
i !

I'

Evp
cos ' — —1, (9)

C0

where F is the fraction of electrons that are trapped.
A detailed numerical study has been made of the

efficiency q for both the exact and the approximate
models of the electron motion. The results are
presented in Figs. 1—3 for an orotron with the fol-
lowing physical parameters, appropriate for the oro-
tron experiment at Harry Diamond Laboratories':
grating period I =0.4 mm (E =1.57 x 104 m '); ef-
fective grating length L =19.8 mm (w =10 mm);
cavity center frequency f= 75 GHz (ra =4.7 x 10"
s '); and wave p'hase velocity m/E =3 x 10' m/s.
In Fig. 1, we compare the calculated efficiencies for
(a) the model with a Gaussian envelope [Egiven by
Eq. (3), solved by direct numerical integrationl, (b)
the pendulum model, and (c) the "phase-space" cal-
culation, Eq. (9), as a function of the electric field,
aiEp, the beam velocity is 3.08 && 10' m/s, and so
LL-0.0267. On this plot, the parameter A. ranges
from 0 to 0.07; hence, the range of values of ~ corre-
sponding to mostly trapped to entirely untrapped

electrons is well covered. Curve (a), the Gaussian
envelope model, seems to exhibit much stronger os-
cillations than curve (b), the pendulum model. This
behavior suggests that the Gaussian tail is more im-
portant than one might expect. Apart from its lack
of oscillatory behavior, curve (c), the phase space
model, gives reasonable quantitative agreement with
the pendulum curve.

Figure 2 is a plot of q against vp for an electric
field E =3.75 x 104 V/m (a iEO =10' V/m) for the
same three models. Again, the Gaussian yields a
higher efficiency. The oscillations in E are present
also in the vp plot for the pendulum model, again re-
flecting the dependence of rt on X/A. This duality is
not preserved in the more exact treatment. Again,
the phase-space curve gives the correct order-of-
magnitude behavior. In Fig. 3, both E and vp are
varied for the pendulum model; for high fields, a
weak dependence of the oscillation period on vp is
evident. As a further test of the model's validity, we
examined the dependence of the velocity vj on @p for
the pendulum model and for the standing-wave form
of E, E ~cosEy cosset. It was found that the two
models agreed extraordinarily well. In particular,
both exhibit a striking near discontinuity for that ini-
tial condition for which the motion goes from trapped
to untrapped. Further, we demonstrated that the
solution is not sensitive to the addition of higher har-
monics in Eq. (3). A similar pendulum model has
been discussed" ' for the Stanford free-electron-
laser experiment with a wiggler magnet.
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