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Complementary variational principles in the Thomas-Fermi theory
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The relative merits of the complementary variational principles for the upper and lower bounds to the exact

Thomas-Fermi energy of a neutral atom, and of a suggestion of Anderson, Arthurs, and Robinson for the

determination of the parameters in a variational function from the minimization of the difference between the upper

and lower bounds, are examined by applying these to two variational functions. It appears that the variational

principle for the lower bound is of the most practical value. The suggestion of Anderson et a1. appears to have little

merit.

In a paper with the same title as the present
one, Csavinszky' has emphasized the importance
of the. normalization of the electron density as-
sociated with approximate variational solutions
of the Thomas-Fermi (TF} equation for normal
atoms, and has also discussed a suggestion of
Anderson, Arthurs, and Robinson for the deter-
mination of the parameters in a variational func-
tion from the minimization of the difference be-
tween the complementary upper and lower bounds

to the exact TF energy of a neutral. atom. In the
present paper we discuss the relative merits of the
two complementary bounds and of the suggestion
of Anderson et gl. by applying these to two varia-
tional. functions.

Firsov2 formulated complementary variational
principles for a TF atom. If we consider a neutral
atom, using atomic units, the compl. ementary var-
iational principles establish an upper bound J and

a lower bound Q for a particular approximate solu-
tion of the TF equation in such a manner that the
exact TF energy E of the atom lies in the interval

G «( p/Z') E «Z,

where Z is the atomic number, and p =-,'(Sw/4)'"
xg ' '. In the TF theory, p, is involved in the de-
finition of a dimensionless variable x, which is
given by x =r/p, .

The complementary bounds G and J are defined
as (using opt for optimum}

(2a)

G(P) = -- —--g'"x '" dx
d tIe) 2

2dx 5
(Sa)

xl /3

+ 2 @5/2x-1/2

then we get the TF equation

(Sb}

In Eqs. (3a) and (Sb), the function P is a trial
function depending on a number of parameters
which are determined by maximizing G(Q} and

minimizing Z(dg/dx); the respective optimized
trial functions shall be denoted by Q~ and ~t)~. The
trial functions may be chosen to be different for
determining G and Z. Equations (Sa) and (Sb) were
generalized by Arthurs and Robinson' for a sys-
tem containing an arbitrary number of electrons
RIll nuclei.

The variational principle for calculating the
lower bound G, Eq. (Sa}, appears to have been
first given by Wesselow' and independently by
Flugge and Marschal. l.' This variational principle
has a direct connection with TF equation. If the
negative of the integral of Eq. (Sa) is substituted
into the Euler-Lagrange equation, '

J=J— (2b)
d 2@ y3/2

dx' x'"
where G(g) and Z(dP/dx) are given'~ by the ex-
pressions

The variational. principle for the upper bound J
does not have such a direct interpretation. Also,
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while the variational principle for bound G is ex-
act, that for bound J is only approximate, in the
sense that in obtaining Eq. (3b) certain terms
have been neglected. ' Anderson et al.4 have sug-
gested that the closest approximation to the exact
solution of P is that which is obtained by minimiz-
ing H(P), where

(5)

We note here'that this suggestion, while intuitively
appealing, is not a proven variational principle
and can only be considered a,s a plausible conjec-
ture. The optimum value of Np) shall be denoted

by H and the corresponding optimized trial function

by Ps. Anderson et &.' applied Eqs. (3a), (3b),
and (5} to a single-parameter trial function sug-
gested by Roberts. ' However, as pointed out by
Csavinszky, ' single-parameter trial functions, in

general, cannot satisfy simultaneously both the
requirement of the normalization of the electron
density and the requirement of extremalization of
one of Eqs. (3a), (3b), and (5). In view of the fact
that the trial function for P used by Anderson et
a/. ' is not associated with a normalized electron
density, no definite conclusions are possible from
their results.

From a practical point of view, one would like to
know: (a) which one of the two equations, (3a) or
(3b), is more useful for calculating E, and (b}
which one of the three equations, (3a), (3b), or
(5), will give the closest approximation to the
screening function Q.

We consider here two different multiparameter
variational functions for Q and calculate the values
of G, J, and H therefrom. We compare G and J
with the exact value of i|E/Z'. The resulting Q's
are compared with the exact P and also between
themselves.

The first variational function examined in this
paper is due to Csavinszky ' who proposed the
following variational function for Q:

g+b =1,

in order to satisfy the boundary condition,

P(0) =1.
The parameters in Eq. (6) were determined by
extremalizing G($) with respect to these param-
eters subject to the subsidiary condition that the
electron density be normalized:

pdv =N, (6)

where N is the number of electrons, dg is the
volume element, and p is the electron density
which is related to Q by

The values of the parameters determined by
Csavinszky together with the value of G are shown

in Table I. The number of significant figures in

G has been truncated.
For the second function, we assume

e-ax

1+br ' (9)

0
(loa,}

2 y 5/2x -1 /2 d2 Y
0

(10b)

xx'"i, dx.
0

(10c}

where a and b are parameters. This type of func-
tion was first proposed by Qlsp&" to represent
Z~/Z, where Z~e is the effective charge in the
usual notation of the self-consistent field theory.

There are three integrals involved in the evalua-
tion of G($), J(dg/dx}, and H(P). We shall find it
convenient to represent them by

(ge lÃx+ Qe sx)~

where g, b, ~, and P are parameters; g and b

are related by

(6}
The integrals L, and L, for the function in Eq.

(6) have been analytically evaluated by Csavinszky. '
It is possible to evaluate analytically these two
integrals for the Gdspdr function, Eq. (9), also.

TABLE I. Optimized values of the parameters in the Csavinszky function and the corres-
ponding values of G, J, and H.

From G (P) 0.721 833 7 0.278166 3 0.178 2559 1.759 339 G =-0.681 964 81
From Jgp/dx) 0.908 3 0.0917 0.256 5 5.002 J= -0.61657
From H(P) 0.8851 0.1149 0 245 4.189 H = 0.070 69



COMMENTS 1125

The final expressions are as follows:

a b a' g' „, "e'
L, =-+--—+,e"~~

2, 5g5~b»
1-——~+~+, , $3 +k)+/1+k) —/~5 k) —ln-5a 5a ~'

J
(12)

where U(o, P, x) is the confluent hypergeometric function, and gx) is the digamma function, defined by
gx) = I"(x)/I'(x). From the subsidiary condition, Eq. (8), we obtain

I'(3/2) 3 3al N
b'" 2 ' '2b] Z

or

2 ~ I'(v +~k)[2/1+k) —QYs+k) —ln(3a/2b)] 3a ' N
(kl}' 2b Z (13}

For neutral atoms, the right-hand side of Eq. (13)
is equal to one. The expression for G(Q) was maxi-
mized with respect to the parameter b, the other
parameter, a, being determined from Eq. (13).
The resulting values of g, b, and G are given in
Table II.

The integral L, cannot be evaluated analytically
for either of functions (6) or (9); consequently,
numerical integration was resorted to for calcu-
lating this integral. Both, for the Csavinszky
and the adapter function, J(dg/dx) and H(P) were
minimized separately, subject to condition (8),
and the parameters in the two functions thus de-
termined are shown in Tables I and II, respective-
ly, together with the corresponding values of J
and H.

An accurate value of pE/Z' can be found from
the numerical solution' ' of the TF equation, and
1s

p,E/Z~ = -0.6806.

A comparison of this value with the values of G
and J in Table I and II shows that for both the trial
functions, G is much closer to the exact value
than J. It would appear that for calculating E, Eq.
(3a) provides a better approximation than Eq. (3b).

To compare the different Q's with the exact"
P (represented by P»), in Fig. 1, we show the

TABLE II. Optimized values of the parameters in the
Gaspar function and the corresponding values of 6, J, .

and H.

I

ratio p (Csavinszky}/p» as a function of x for
the three sets of parameters obtained from opti-
mizing G(P), J(dg/dx), and H(P). It will be noticed
from Fig. 1 that Qo is the best of the three. Also,
Q~ and Q~ are rather close.

A similar comparison for the Gaspar function
is made in Fig. 2. The TF theory is considered
to be most valid for small values of x. Thus to
compare the various curves, we shall confine
ourselves, somewhat arbitrarily, to x &15. Here
also, in Fig. 2, we notice that P~ is the best of
the three. However, contrary to the Csavinszky
case, here Q~ and Q„are rather different.

It is of interest to compare the two variational
functions, Eqs. (6} and (9). In Fig. 3, we show a
plot of Qo(Csavinszky), Qo(Gaspar), and QTr against
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From G (@) 0.11432 1.1455 Q =-0.681 2755
From Jgg/dx) 0.075 06 1.412 J= -0.607 91
From H(P) 0.088 77 1.366 H = 0.07620

FIG. 1. Ratio ft)(Csavinszky)/t'p~ as a function of ~.
The labels G, J, and H correspond to the parameters
obtained from optimizing Eqs. (3a), (3b), and (5),
respectively.
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FIG. 2. Ratio p(Gaspar)/It)~ as a function of x. The
labels Q, J, and H correspond to the parameters ob-
tained from optimizing Eqs. (3a), (3b), and (5), respec-
tively.

It is noticed that the Gasp& function is closer
to the exact TF function than the Csavinszky func-
tion. To give an idea of what this figure means
in physical terms, we note that. up to about z =8,
the exact TF, the Csavinszky and the Gkspir
solutions just about coincide. For a moderately
heavy atom, such as Kr, this limit corresponds
to r=2. la~, the "interior" of the atom.

Some years ago, Umeda'4 had proposed a mea-
sure for the "closeness" of an approximate solu-
tion of f to the exact one. He proposed that the
smaller the value of (-G), the better the approxi-
mate solution of Q is. The results obtained here
from Eq. (3a} support Umeda's suggestion. The
value of (-G} for the Gdspdr function is smaller
than that for the Csavinszky function, and as noted
above, Pe(Gaspar) is closer to Qrr than Po(Csavin-
szky). We may note here that several other ap-
proximations" to the TF function, besides those
of Csavinszky and Gksplr, "have been proposed.

IO
0 IO 20 30

FIG. 3. Comparison of the functions $&(Csavinszky),
Pg(Glspir), and PTF.
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In conclusion, we find that the G(P) variational
principle is the best, both for obtaining the ener-
gy as well as for obtaining an approximate solution
for Q. The K(Q) minimization conjecture, Eq. (5),
appears to have little merit.
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