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The Landau-deoennes theory is used to study the isotropic-nematic phase transition of a semi-infinite system
having a wa11 which induces local nematic order. Analytic solutions are obtained and it is found that I 1j for sufficient

surface order, the birefringence-induced optical phase shift diverges at the transition rather than at the supercooling
limit, and (2) the regions of superheating and supercooling are severely restricted.

The boundary conditions and nature of the mole-
cular ordering and interaction at a surface have
been a matter of interest in liquid-crystal systems
for years. ' It has long been known that a variety
of substrate treatments, including rubbing, sur-
factant films, ion bombardment, and'Si-0 deposi-
tion, can select a direction at the surface along
which the liquid-crystal molecules will preferen-
tially orient. The way in which the local ordering
thus created at the surface evolves spatially and

the effect of this ordering on the pretransitional
behavior near the bulk first-order isotropic-
nematic phase transition of a semi-infinite sample
are investigated in this work, using the Landau-
deGennes theory." The results are that the
surface-induced ordering does not shift the tran-
sition temperature from that of the infinite system,
but restricts the possible ranges of superheating
and supercooling, essentially acting like a spon-
taneous nucleation site for the stable phase.
Further, if the surface ordering is sufficiently
high, the spontaneous spread of the local ordering
away from the surface as the bulk transition tem-
perature T~ is approached from above results in

a logarithmic divergence of the optical retardation
at T~ rather than at the bulk supercooling limit.
W'e believe this to be the first example of pretran-
sitional divergence at the temperature of a first-
order transition.

The primary motivation for this work has been
the birefringence measurements of Miyano' and
his numerical analysis based on the same model
used here. In addition to birefringence experi-
ments to measure the temperature dependence of
the divergence at T~, light-scattering experiments
should show enhanced scattering from the nuclea-

tion. Other experiments such as static dielectric-
constant measurements should also be of interest.
Thus it is expected that the behavior predicted
here can be quantitatively tested.

We begin by assuming the Landau-deoennes
theory for the isotropic-nematic transition, which
has been widely used and gives a phenomenological
expression for the free-energy density. For
systems in which the director may be assumed
fixed, the free-energy density reduces to a function
of a single parameter, Q, equivalent to the Maier-
Saupe order parameter. ' Macroscopically, Q may
be related to the anisotropy of the magnetic or
electric susceptibilities while microscopically Q
is determined by the degree of local orientational
order. If we assume the wall to be the plane
located at z = 0 and the sample to fill the infinite
half-space z &0, the free-energy density varies
spatially only with z and is given by

dQ A 2 B s C L dQ
' dz 2 3 4 2 dz

Equilibrium or metastabie values of Q(z) are
those which minimize the total free energy [i.e. ,
the integral of Eq. (1) over the volume of the
sample].

The coefficient A is assumed to be A,(T —T*)
where T is the temperature and T~ the bulk super-
cooling limit, while B, C, and I are positive
constants. Numerical values for A„T*, B, C,
and L may be obtained by comparison with experi-
ment. ' A final characteristic quantity is the zero-
temperature coherence length, $„defined by $', =

L/AOT4 ~

Solutions for the equilibrium and metastable
states of Eq. (1) are well known for an infinite
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FIG. 1. For a semi-infinite system, the existence and

stability of various solutions for the nematic ordex' de-
pend on the boundary value Qo and temperature. For

Q =0, solutions are stable in regions I and II, and

metastable in III. Solutions for vrhich Q„=@2& 0 are
metastable in region II but stable in regions III and IV.

as z goes to infinity. Equation (4) can be solved
analytically to obtain the following solutions which
are summarized in Fig. 1.

(1) An equilibrium solution which deca, ys from
Q (8 = 0) = Qo to Q(~ ) = @i= 0, valid for Tc & T and
any boundary value of Q, is

q A fj/I
' 1+ B~sinh — + E~) (5)

C C i 0

Here 8, = A/Ac —1~~, f=(T- T*)/T*', and
e, =sinh fjf(QcA/Q, Ac) —1]/B,). N«e that as T
goes to Tc, the phase shift q, goes to -~ if Q, & pc
b« to+~ if q, &gc. For Q, &pc, this results in
the spontaneous growth of a "knee" in Q(g) as
T T~. This is illustrated in Fig. 2, and describes
the nucleation of the nematic phase by the surface.
The width of the nucleated nematic layer is given
by the new characteristic length, ~q, ~

f„whi ch,
although it scales as f„diverges at T~ rather
than at T*, the divergence temperature of the
usual coherence length, (=- f,f '@, describing
second-order transitions.

(2) A metastable supercooled solution which
decays from Qo to 0 and is valid for T & Tc and
Q,/pc&1 -ft, is

Q A
L+ Rg cosh --+ q

C C 0

sample with no surface, and their regions of exis-
tence are shown in Fig. 1. The order parameter
Q is independent of s and the equilibrium value
jumps discontinuously from 0 to 2B/SC = Qc as the
temperature decreases to Tc= T*+ 2B'/9AOC. The
equilibrium expressions for Q are

Q =0, T&T~
(2)

92=4 Qc(1+ 4)~ T&Tc.

~ I ~ I ~ \ ~ ~ I I ~ ~ 7 I \ ~ t ~ I ~ 0 v w I I ~ t 7

Here @ Ls (1-L4/9Ac)~' and A/Ac=(T —T )/(Tc-
T*). The supercooled metastable sta«» Q~ f»
T~ & T & T~ while the superheated metastable state
is Qa for Tc&T&Tsa= T~+ I(Tc- T~)

For the case of the semi-infinite system, the
Euler-LaGrange equation for Q is obtained by
minimizing the volume integral of Eq. (1), result-
ing 1D

This form may be multiplied by dQ/dz and inte-
grated over z to obtain the simpler form

f(Q, o) -f(Q-, o),
L I'dq '

(4)

where q is Q(s=~) and it is assumed that Q(z)
approaches Q„asymptotically with (dQ/da)„= 0

8:. C:.
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FIG. 2 Illustrated are curves shovving equilibNum

staRs of Q(z} at a series of temperatuxes when Qogz
=1.1. As A/A~ decreases, the plateau in Q(z) grovrs
x'esulting in a smooth crossover to a finite Q„atA. /Az
=1. For curves', B, C, and D the coxresponding
A/Az values are 1.001, 1.0001, 1.00001, and 0.999.
Values of Ao, B, and C are for 5 CB {Bef.6).
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FIG. 3. Equilibrium and metastable states for Q (z)
with Qp/@&=0. 9 are shown. Curves A, B, E, and G
are stable solutions havingA/Az values of 1.1, 1.01,
0.9, and 0.8, respectively. Curves C, D, and E are
metastable and correspond to A/A~ equal to 0.99, 1.1,
and 1.01, respectively. Ap, B, and C are the same as
in Fig. 2.

E E

0.5 1.0 1.5
T-T") /(Tc -T")

FIG. 4. Optical retardation, 4, versus reduced tem-
perature for various values of Qp/Q&. For Qp/Q&
greater than one, 4 diverges logarithmically at T = T&,
while for Qp/Q& less than one, it does not diverge but
has a square root cusp at the supercooling limit. Values
of Q p/Q& are 0.35, 0.5, 1.1, and 1.5 for curves A, B,
C, and D, respectively, and $p is assumed to be 6 A.

where e, = cosh '[[(QcA/Q, Ac) —1]/R,}. We stress
that no supercooled solution exists for Q, /Qc& 1—
Ag Thus, as shown in Fig. 1, there is no supe r-
cooling for Q, &Q~, while for Qo&Qg there is
restricted supercooling depending upon Q, . A
typical solution is shown in Fig. 3.

(3) A metastable superheated solution which has
Q„=Q, and is valid for T~& T&T,„and
Q, /Qc &-,'(1 —SP)+-,'(1 —SP)'/' is

Q 3 9 0(1+ 4) az=
4

(1+ Q)+
2 (Sy 1}

—1+R,cosh
~

+ e3 j

q 3 9p(/+1)-
q 4 2 (3/+1)
—=-(1+ y}+- -1+8,sinh —+ q~

(8)

where &, = sinh '(+R, /R, ) and the upper and lower
signs apply in the same manner as previously.
See Fig. 2.

Finally, the mean-field behavior of the optical
retardation is easily found by considering the
phase difference, 4, between the ordinary and
extraordinary waves transmitted through a slab of
thickness D,

where R, = ~1 —9P(1+ Q)!(34+ 1)' ~, &'=94(1+ 0)
x(Tc —T*)/4T*, e, =cosh '(M, /R, ), and

R, = 1+ 9p(1+ p}/{2(3$+ 1)[QO/Qc —3(1+ 0)]).

The upper (+ ) sign is used if Q, &Q, while the
lower (-) sign is relevant for Qo&q, . Here we
find restricted superheating for Q, &Q, depending
upon Q~, as shown in Fig. 1. A characteristic
solution is shown in Fig. 3.

(4) An equilibrium solution which has Q = Q, and
is valid for T&T~ and any boundary value is

"D
(n. —n, )dz, (9)

where n and n, are the indices of refraction of
the extraordinary and ordinary waves, respec-
tively. If it is assumed that the independent mole-
cule model is adequate so that the system polari-
zability is simply related to the molecular polari-
zability (i.e. , local-field corrections are not too
severe), then it is readily found that n, -n, is
proportional to Q(z}. Thus the phase shift may be
found by analytically integrating Eq. (9). Using
Eq. (5) for Q(z) and taking the limit D-~, the
result for T&T„ is
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T+ ~ [1+ (1+ It')'l2 ~][(1+R2)~ - tanh(q, /2)+ ft
-1+ R~ 1+ R~ + tanh E, 2 -R~

For q, &q, q, - -~ as T-Tc, and the knee deve-

lops, leading to a divergence of 4, while for
Qo&Q~, ~, -+~ and 6 remains finite. Expanding

for small R,' and Qo &Q~ we find 4~ —ln R~.
Therefore, 6 is expected to diverge logarithmic-
ally as T -T~ but only for Q, & Q ~, as shown in

Fig. 4.
If Q, (Qc, q, -+~ as T-Tc, and b continues

smoothly below T~ as Q enters onto the supercooled
branch as shown in Fig. 4. As the limit of super-
cooling is approached, dQ/dg goes to zero at the
surface and 6 has a divergent derivative (a cusp),
but no divergence. In particular, ~ =E,
—K, ) T —T, ~

'~' soda /dT has a square-root cusp at
T=T„ thesupercooling limit for Q, &gc. T, is
defined by Q~/pc=1-R„and K, and K, are con-
stants.

In conclusion, we have discussed a system in

which there is a pretransitional divergence at the
temperature of a first-order phase transition.
The usual coherence length is still finite and the
divergence is related to the second characteristic

cleated nematic layer. We stress that the experi-
mental data of Miyano strongly suggest a diver-
gence at T~. It would be interesting to know
whether his data are consistent with a divergence
which is both logarithmic and located at the bulk
first-order transition temperature. Our calcula-
tion is valid only in the mean-field regime and the
divergence may be altered if critical fluctuations
are important.
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