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Equilibrium polymerization of a monomer to long-chain polymers can be usefully described by the n—0 limit of
the n-vector model of magnetism in a small magnetic field. In the molecular-field approximation, the n—0 vector
model becomes identical to the earlier Tobolsky-Eisenberg theory of equilibrium polymerization. An error in an
earlier analysis of the n—0 vector model is corrected and the consequences for polymerization and polymer
solutions are discussed. A curiosity of the n—0 vector model—that its free energy does not everywhere satisfy the
usual convexity requirements of thermodynamic stability—is also discussed. In an appendix the n—0 limit of the
cubic discrete n-vector model (Hillhorst model) is also shown to be equivalent in mean field to the Tobolsky-

Eisenberg theory of equilibrium polymerization.

I. INTRODUCTION

The formal z- 0 limit of the n-vector model
of magnetism has been used as a model for the
behavior of single polymers! and of polymer solu-
tions.? The polymerization of monomers into
long-chain polymers under conditions of chemical
equilibrium®* constitutes a polymer solution in
which interesting transition phenomena can oc-
cur.*® The equilibrium polymerization of sulfur®
and of e-caprolactam and vinyl monomers* are
examples of inorganic and organic compounds
that undergo such polymerization. The equili-
brium polymerization of proteins” such as actin®
and tubulin® into large supramolecular structures
of biological interest also shows transition phe-
nomena reminiscent of second-order phase transi
tions.

Recently, we have argued'® that the n- 0 vector
model in a small magnetic field provides a useful
description of equilibrium polymerization and
that evidence of the nonclassical critical behavior
to be expected for the - 0 vector model can be
seen in the equilibrium polymerization of liquid
sulfur. We based our treatment upon the analysis
of the n- 0 vector model by Sarma, ! and showed
that the earlier, very successful treatment of
Tobolsky and Eisenberg® (TE) was a mean-field
approximation in the vicinity of the critical point.
Following the acceptance of that letter we dis-
covered an error in Sarma’s analysis that neces-
sitates a slight reformulation of our model of
equilibrium polymerization, as well as that of
the conventional treatment of polymer solutions.
As a result of this reformulation, the »— 0 vector
model provides an even more elegant description
of equilibrium polymerization.
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In this paper we present a corrected analysis
of the n— 0 vector model along the lines of Sarma’s
treatment that leads to an altered expression for
the partition function, distinct from that given by
Sarma' and used in Ref. 10, but consistent with
the earlier treatment by Bowers and McKerrell.!?
We also present a minor modification of our model
for equilibrium polymerization that is identical
to the n— 0 vector model under the corrected ana-
lysis. We show that the molecular-field approxi-
mation to the n-vector model becomes identical,
in the n- 0 limit, to the Tobolsky-Eisenberg®
theory of equilibrium polymerization. This re-
sult holds true not just close to the critical point,
but identically in the independent variables under
an appropriate and physically sensible identifica-
tion of the variables. The required modifications
of our polymerization model are so slight that
they have almost no effect upon the results quoted
in Ref. 10. In particular the results in Figs. 1
and 2 of Ref. 10 are unchanged, and the equation
of state and the results quoted in Eqs. (7)-(13)
of that paper are unchanged except for the re-
placement everywhere of K, by 2K,.

In Sec. II we define the Hamiltonian, partition
function and free energy per spin of the n-vector
model and state our corrected formula for the
partition function of the » - 0 limit. We then de-
fine our slightly modified model of equilibrium
polymerization, obtain the partition function ap-
propriate to it, and give the identification of vari-
ables under which it is identical to the - 0 vector
model. We also briefly review the essentials
of the Tobolsky-Eisenberg theory of equilibrium
polymerization. In Sec. III we obtain the molecu-
lar -field approximation to the n-vector model
in the - 0 limit and show that it is identical to
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the TE theory under an appropriate identification
of variables. We also discuss there, in the con-
text of the molecular-field approximation a cur-
iosity of the »—- 0 limit—that the free energy per
spin does not satisfy the usual convexity require-
ments of thermodynamic stability. This is a quite
general feature of the - 0 vector model, not
limited to the molecular-field approximation, a
point that is pursued further in Sec. V. In Sec. IV
we present the corrected analysis of the partition
function and free energy of the n - 0 vector model.
Section V contains a discussion of the significance
of our results for the application of the n -~ 0 vec-
tor model to equilibrium polymerization and poly-
mer solutions. We also present there a conjecture
on the region of convexity of the free energy per
spin of the - 0 vector model if nonclassical criti-
cal phenomena and scaling describe the critical
point,

Completely analogous behavior is obtained for
the cubically discrete n-vector model introduced
by Hillhorst.!® In the limit n— 0 it gives a model
of equilibrium polymerization identical with that
presented here. In mean-field theory it also be-
comes identical, as n- 0, to the theory of Tobol-
sky and Eisenberg. These results are outlined
in Appendix A.

II. THE n—0 VECTOR MODEL AND EQUILIBRIUM
POLYMERIZATION

Consider first a system of N classical vector
“spins” located on the sites of a regular d=3 di-
mensional lattice and interacting through the Ham-
iltonian

K==Jd 2, § 8 -mH Y S, (2.1)
(i, i

where the sums 33, and }7, , are over all sites
and all distinet nearest-neighbor pairs (i, j) of
sites, and where S is a classical n-component
vector spin of norm vz,

1817= 3> ()=, (2.2)
a=1
and S® is its component parallel to the field H.
We define the partition function and free energy
of this model as

Z=e" =(e™) = Tr(e"™), 2.3)

where B=1/kT (¢ is Boltzmann’s constant and 7
is the temperature of the z-vector model) and
()4~ is the angular average of every spin over
all solid angles in » dimensions. For spin ; this
average is

© _JdePC) _ _ fdape)
A7 faeP) RmM7/r(0/2)]"

(2.4)

The use of the average rather than the simple
integral over all solid angles as the “trace” opera-
tor Tr(*) in Eq. (2.3) corresponds to the addition
of a constant to the Gibbs function per spin f.

In the limit n~ 0 this constant diverges, but it
does not depend upon the variables T or H, and
so has no effect on the magnetization or energy
of the system as functions of T and H. It is con-
venient to define the dimensionless magnetization
and energy per spin, » and e, by

m=N'1Tr(pz‘: S‘,") 2(%5)3’ (2.5)

e=N"Tr(p§) §,-§,) =(§§)h, (2.6)
where

p = exp(—B3c)/Tr [exp(- Bxc)] (2.7)
and

h=moH/kT, J =J/kT. (2.8)

We show in Sec. IV that the partition function Z
in (2.3) is given, in the limit n—~ 0 by the expres-
sion

z=3 T 3 (T V(s (ST (N,, Ny, Nyy N, (2.9)

Ny My Ny

where T'(N,, N,, Ny, N) is the number of distin-
guishable ways of placing N, self-avoiding and
mutually avoiding open walks (linear “polymers”
with excluded volume) containing a total of N,
steps or bonds on a lattice-N sites when exactly
N, of the walks or polymers are single-site walks
with no bonds. Equation (2.9) differs from that

of Sarma'! in that it contains single-site walks
and these are weighted by an extra factor of 3
compared with all other walks. We use the term
“walk” here as synonymous with “linear polymer”,
that is, without regard to which end of the walk
is the start or finish.

Now consider the following model of equilibrium
polymerization. The volume consists of N cells,
each of volume v, about equal to a molecular vol-
ume, centered on the sites of the regular lattice
considered above. Each cell contains a monomer
unit (an S, ring in the case of sulfur) that may be
either inactive (closed S, ring) or active (open

'Sg unit), in which case it is to be thought of as

part of a polymer chain of some length, possibly
of length 1. Suppose that the opening of a sulfur
ring (activation of monomer) costs an energy (or
enthalpy; these are indistinguishable in our lattice
model) A H,, but leads to an increased number

of internal configurations resulting in an entropy
contribution AS,. Suppose further that the opening
of a sulfur ring together with its attachment to
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the end of an already open sulfur chain in an adja-
cent cell costs energy A H, and results in an en-
tropy contribution AS; due to an increased number
of internal configurations. We anticipate that
AH;>»>AH,>0and AS,>AS;>0. It should be noted
that AS; does not contain contributions from the
number of ways to arrange chains of open S; units
(monomers) on a lattice. These are accounted
for in I" in Eq. (2.12), below. This is a significant
difference between the model considered here and
in Ref. 10 and that of Tobolsky and Eisenberg.®
The statistical weight of any given linear polymer
consisting of s monomers (and therefore -1
bonds) with a specific (self-avoiding) embedding
in the lattice is taken to be

K, f m=1, 2.10)
2K, (K} if m>1,

where
K,=exp[(TAS, -AH,)/kT], @.11)

K, =exp[(TAS, - AH,)/kT].

The prime on K, and AS, serves as a reminder
that these quantities differ from those in the TE
theory in that they do not include contributions
from the number of ways to arrange chains of S,
units on a lattice. The statistical weight of any
closed-loop polymer containing more than one
monomer is taken to be zero. This is in keeping
with the Tobolsky-Eisenberg theory and is re-
quired for the correspondence with the - 0 vec-
tor model. Inclusion of closed rings in a Tobolsky-
Eisenberg-type theory introduces a small concen-
tration of low molecular weight rings, but does
not significantly alter the transition.

The factor of 2 in Eq. (2.10) for m>1 is re-
quired for the correspondence with the - 0 vec-
tor model. It is equivalent to taking the value
of K, for the first propagation step to be twice
‘that for all others. This may be rationalized as
follows. In the first propagation step the newly
opened ring may be connected to either end of
the already opened ring in the adjacent cell,
whereas in every subsequent propagation step
the newly opened ring has only one active end
of 2 monomer unit in the next cell to which it can
connect. This argument helps to make the factor
of 2 in (2.10) plausible, but its ultimate justifica-
tion is that it makes possible the exact corre-
spondence with the n—- 0 vector model.

The (semi-grand) partition function appropriate
to this model of equilibrium polymerization can
be written as
Y=2, 2. 3 Ko (K)¥sGWID(N,, Ny, Ny, N),

Np Np N
(2.12)

%

where N,, Ny, N, and T'(N,, N,, N;, N) have the same
significance as in Eq. (2.9). We thus see that
with the identifications

J=K} (2.13)

and

$h®=K,, (2.14)
the expressions for Z and Y are identical.

Apart from a trivial change of concentration
units from number densities to mole fractions,
the only change in the correspondence between
the »—- 0 vector model and equilibrium polymeri-
zation from that given in Ref. 10 is the factor of
2 in Eq. (2.10) and the corresponding factor of 3
in Eq. (2.14) compared with the corresponding
expressions in Ref. 10. Of course, the change
in the expression for the partition function of
each, embodied in Eqgs. (2.9) and (2.12) compared
with Eq. (4) of Ref. 10, may have far reaching
consequences, but it does not affect the corre-
spondence once the factor of 2 is incorporated.

" The average values of N, and N, are given by

9 1Inz
aJ /.’

_1,{9InZ
=i (a2 ),

(N;) =j<
(2.15)

The corresponding fraction of monomers incor-
porated in polymers ¢,, and the fraction remain-
ing as monomers ¢,, are

¢u=<ivb;_Nb2=je+éhm, (2.16)
dr=1-0,. (2.17)

In the Tobolsky -Eisenberg theory of sulfur,
concentrations rather than mole fractions are
used, but this presents no difficulties. If ¢,
is the initial concentration of S, rings (monomer)
and ¢, is the concentration of S; rings remaining
at equilibrium, c, is the concentration of poly-
mers, and c,, is the concentration of monomers
encorporated in polymers, then

Lo -, (2.18)
Coo
E.L:d)p, (2.19)
Coo

and
S N1y (2.20)
Coo N

[The quantities . and ¢ defined in Eqgs. (2.5) and
(2.6) differ from those in Ref. 10 by a factor v,.]
The degree of polymerization P is given by
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p=Sm=14+ 2% (2.21)
N zhm

The results of Tobolsky-Eisenberg theory can
be summarized by the equations

K

¢u= (1 —K,(P)‘)z ’ (222)

c, _ K,

c_'; =3 N (2.23)
and

P=(1-K,$))7, (2.24)

where K, in Eqs. (2.22)-(2 24) differs from that
of Tobolsky and Eisenberg by the constant factor
Cqo that accounts for the change in standard state
from concentration units to mole fractions. The
conservation equation (2.17) leads to the “equation
of state” for the Tobolsky-Eisenberg theory:

' K
(‘Pu +¢)‘)=1=¢)\(1+ (_]-—"—I_(:W) (2.25)

In Sec. III we show that with an appropriate iden-
tification of variables the molecular-field approxi-
mation to the n-vector model becomes identical,
in the n—~ 0 limit, with the theory of Tobolsky and
Eisenberg.

IIl. MOLECULAR-FIELD APPROXIMATION
TO THE n—~> 0 VECTOR MODEL
In order to obtain the molecular-field approxi-
mation to the n-vector model, we follow the treat-
ment of Blume, Emery, and Griffiths!* (BEG) and
use the variational principle

- kTNf <N¢ =Tr(p3)+kTTr(pInp), (3.1)

where, according to (2.3), the angular average
over all spins constitutes the trace operation Tr(*).
Equality obtains in Eq. (3.1) if p is given by Eq.
(2.7). The molecular-field approximation con-
sists of approximating p by

p=poEI:IP:, (3.2)

with p; = p,, independently of i, Substituting (2.1)
into (3.1) with (3.2) gives for ¢ =8¢

-fo= ¢==3¢J(Trp,SV)? = h(Trp,s{)
+Tr(Pllnp1), (3.3)

where J and % are given by (2.8) and ¢ is the
coordination number of the underlying lattice
(g=6 for the three-dimensional simple cubic lat-
tice). Minimizing ¢ with respect to p,, subject

to the constraint that Trp, =1, we obtain, following
(BEG),

p,=exp(- Bh,)/Trexp(- Bh,), (3.4)
with
h,= - (gJm+m H)SY (3.5)

where m is given by (2.5) and can also be written
m= Tr(plsi‘)). (3.6)

In all of Eqgs. (3.3)—(3.6) the trace operation is
given by the angular average in (2.4).

Our development in Eqgs. (3.1)-(3.6) closely
parallels that in Sec. III of (BEG). It should be
noted that in writing (3.3)-(3.6) we have assumed
that (Tr p,S,) is a vector pointing in the direction
of the magnetic field so that

(Trp,S,)) *(Trp,S,)= (Trp,S{VY (3.7)
and
(Trp,S,) * §,= (Trp,sW) sV,

This is a reasonable assumption given the iso-
tropic interaction term in (2.1).
From (3.3)-(3.5) we obtain, for ¢,

$=1qIm? —In(Tre ), (3.8)
where
Tre'g"1=(exp[(qjm+h)Sf”])A (3.9)

and the angular average (), is given by (2.4).

The average in (3.9) can be evaluated explicitely
by expanding the exponential and evaluating the re-
sulting averages of (Sf”)’. The averages are zero
for odd powers of Sf‘) and the averages for even
powers are found to be (see Appendix B)

((S1y) ,=2 r(n2+2>r<2k2+1) n®V  (3.10)

ry 2

If we now take the formal limit »—~ 0 in (3.10) for
k=0,1,2,..., we obtain the well-known'! result
for the n— 0 vector model that
1 (k=0,1)

0 (k>1).

<(S§”)2“>A={ (3.11)

Inserting this into the expansion of (3.9) we obtain
Tr(e 8*1)=1+5(gJm+h)?, (3.12)

and evaluating ¢ in (3.8) and 7 and e in (2.5) and
(2.6) we obtain

¢ =%qJm? - 1n[1+3(gdm+h)?], (3.13)
___qJm+h
m= 1+ (gdm+h)? ’ (3.14)

e=3qm?. (3.15)
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Alternatively, the molecular-field approximation
to the n-vector model can be obtained exactly
for all values of 7z in terms of Bessel functions.
The n- 0 limit gives the same results. This is
shown in Appendix C.

Apparent in Eq. (3.14) is a curious and apparent-
ly ubiquitous!® feature of the n— 0 limit: the free
energy f(J, 2) does not satisfy the usual convexity
requirements of thermodynamic stability. Specifi-
cally, m decreases with # as 2 -, varying as
m ~2/h. We discuss this feature at greater length
at the end of this section and in Sec. V. Here we
merely remark that this causes no difficulties in
working out the properties of the - 0 vector
model as a function of J and % and is not reflected
in any nonphysical instability in the corresponding
model of equilibrium polymerization.

Equation (3.14) can be solved for % as a function
of mand J. The solution can be expressed in the
form

2m =

h__—7_11(1—2m2)‘ 5 —qJm, (3.16)
where the + sign is appropriate for small # and
qJ, specifically when

|h]<V2(1-1qJ). (3.17)
Alternatively, (3.16) may be written

(qjm+h)=im[1;(1-zm2)l/2], (3.18)
where the upper or lower sign is chosen in ac-
cordance with (3.16).

According to (2.16), together with (3.15), ¢, is
given by

by =3smlgIm+h). (3.19)
With (3.18) and (2.17), this gives

¢, =3[1F (1 -2m?)/?], (3.20)

by =5[1% (1 =2m?)/?], (3.21)

We now make the identification [cf. Eqs. (2.13)
and (2.14)] |
aJ(=qK})=K,, $h*=K,, (3.22)

and show that Eq. (3.16) for the » — 0 vector model
is equivalent to Eqs. (2.22) and (2.25) for the Tob-
olsky-Eisenberg theory. With (3.22), Eq. (3.16)
may be written as

1/2_K1=m(1—-f’2*) , (3.23)
p Y
where we have used (3.21). Equations (3.20) and
(3.21) imply that ¢,+ ¢, =1 and that

P b, =zm?>. (3.24)

Squaring both sides of (3.23) and using (3.24) we

recover (2.22), which implies (2.25). Similarly,
using (3.22) and (3.23) we easily obtain (2.23) and
(2.24).

This completes the demonstration that the mole-
cular-field approximation to the n-vector model
in the n» - 0 limit is identical with the Tobolsky-
Eisenberg theory of equilibrium polymerization
under the indentification (3.22). The identification
of K, in (3.22) is identical with that in (2.14). The
identification of q¢7 =gK, with K, of TE theory is
equivalent to the assertion that the number of
self-avoiding walks of b bonds starting from the
origin is ~¢°. This is, of course, incorrect, the
correct number being of the form!21® ~p? 12
where u<g, but this estimate is in keeping with
the molecular-field approximation which neglects
correlations between spins. '

We return now to the lack of convexity of f(e7 Jh).
The approximate potential f= ~¢, defined by (3.1)
with (3.2) is to be thought of as a function of the
independent variables J and %, and is given by
(3.13) with the understanding that m is to be de-
termined by J and % through (3.14). If more than
one solution exists for given J, %, then the one(s)
giving the minimum value of ¢ is (are) to
be chosen. With this understanding, ¢, m, and
e are well defined continuous functions of J and
h, except at £=0, qj> 1, where m is discontinu-
ous. The failure of the resulting fo(j , k) to satisfy
convexity leads to no difficulty in locating the
phase transition nor to any ambiguity about the
properties of the model, although some of the
properties are rather unusual. For example,
the spontaneous magnetization is found by setting
k=0 in (3.16) and dividing by m (m#0). The re-
sult is

my=£{2(gd) 1 = (gI)]P/2. (3.25)

The spontaneous magnetization passes through
a maximum value of 271/2 at gJ=2, and falls to
zero as T~ 0 as well as at 7,=¢J/k. [Equation
(3.25) is that of an ellipse in the m, gJ plane.]
The lack of convexity of f(J, %) leads to no corre-
sponding instability in the polymer problem. Itre-
sults from the very different role played by J and &
in the two interpretations of the model: In the
magnet, J and £ play the role of thermodynamic
field variables, analogous to chemical potentials
(strictly, to u/kT), while in the polymer problem
they play a role analogous to activities exp(u/kT).
As a ferromegnetic model the n -~ 0 vector model
is only a formal mathematical limit and need not
have a thermodynamic interpretation in terms
of J and %, as field variables, while in terms of
the polymer variables it is a bona-fide statistical
mechanical model of a physical system. If the
independent field variables InJ and Ink are used,
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then f, becomes the potential appropriate to the
equilibrium polymerization model in terms of
the variables AH,/kT and AH,/kT, and convexity
is restored.

The lack of convexity of f(J, k) is not restricted
to the limit n—~ 0. It appears as soon as » is léss
than 1. This is shown (for the molecular-field
approximation) in Appendices A and C for the
Hillhorst model and our model, respectively.

Although the failure of f,= —J) to satisfy convex-
ity causes no problems when J and 4 are used
as independent variables, caution must be used
when changing independent variables. If one per-
forms the “Legendre transform”

B, m)=d+hm, (3.26)

with % given by (3.16) or (3.18), the resulting free
energy,

=17 (1 = 2m?) 2+ Inf3[1 £ (1 = 2m?/ 2} =5qIm?

(3.27)

is double valued for all J,m, with the branch
corresponding to the lower sign giving the lower
free energy. This branch is nowhere convex

in m. If the conventional free energy minimiza-
tion procedures are applied, the (absurd) con-
clusion is reached that the system attains nega-
tively infinite free energy by splitting into two
“phases,” one having infinite magnetic field,
the other finite. The problem lies in the fact
that although ¢ contains the same information
whether viewed as a function of % or Ink, its
Legendre transform possesses a totally differ-
ent structure depending or:. the choice of indepen-
dent variable. All of the original information is

still present in 'é(;f ,m), but it does not have a ther-

modynamic interpretation as a free energy.
Figure 1 shows the free energy 9 as a function
of m for various values of J correspondmg to
T=2T,, 4T,, and 4T,. Between T=%, and 7=4T,
the free energy exhlblts a shallow minimum in
the upper branch, corresponding to 2=0, at m

=mo(T) given by Eq. (3.26). At T = 4T, the condition

h=0is met at m=2 /2 the maximum value of
m. Below T—zTc, m (T) is given by the local
maximum in @ on the lower branch.

In Fig. 2 we show the regions in which f,= -¢
does and does not satisfy convexity. The region
in which convexity is satisfied is given by the
inequality (3.17) and is indicated in Fig. 2 by
shadowing.

IV. PARTITION FUNCTION OF THE n -0 VECTOR
MODEL

In this section we argue that Eq. (2.9) gives
the partition function of the n-vector model in

1055
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FIG. 1. The thermodynamic potential 6(J, m), defined
by Eq. (3.27), as a function of m for three values of T
in the molecular-field approximation.

the n— 0 limit. The average in (2.3) of the Hamil-
tonian in (2.1) can be expressed in the form

Z=<H (1+3§1-§,+-21—1-(3§1-§,)2+-- )

iy 9)
1
x Iil (1+ hSS‘)+ﬁh2(S§”)z+ .. .))AN , (4.1)

where the product II; is over all sites and II;,
is over all distinct nearest-neighbor pairs of sites

/////////

FIG. 2. Regions of convexity (shaded) and nonconvex-
ity of f(J, k) in the molecular-field approximation. Also
shown is the coexistence curve (heavy line) and critical
point. The region of convexity is given by Eq. (3.17).

=
o
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and + - .- indicates the remaining terms in the
Taylor series for the exponential function. Ex-
panding out the products in (4.1) leads to a sum
of averages of products of powers of spin com-
ponents. Since the average ( )~ treats spins on
distinct sites independently, only averages of
the form

Q‘[(sf‘”)“a% (4.2)

need to be calculated, where ( ), is defined by
(2.4). The curious feature of the n— 0 limit is
that the only averages of the form (4.2) that
survive are

(S 4= () u=1. (4.3)

This result may be obtained by the elegant genera-
ting function argument of Ref. 11. Alternatively,
the angular averages may be evaluated explicitly
in #» dimensions. The result (derived in Appendix

(o)) )
(4.4)

where I'(x) is the usual gamma function. [The
average in (4.2) is zero if any %, in (4.2) is odd.]
If, for any particular choice of a set of %, , the
right-hand side of (4.4) is evaluated as a function
of » and the formal limit »—~ 0 is then taken, the
result is that the only averages that do not vanish
proportionally to some positive integer power of
n are those given in (4.3). :

Because most of the averages in the expansion
of (4.1) vanigh, the sum is greatly simplified.
Only a very limited number of kinds of products
can possibly lead to a nonzero average. A sim-
ple non-self-intersecting closed loop arises from
an appropriate product of terms jS‘,’S'}‘ (¢,7 nearest
neighbors), leading to a contribution, for an -
site loop,

2 SN (4.5)
1

If the loop were to cross itself there would result
a higher power of S for some i and the average
would vanish as n~ 0. Unless @ is the same in
each factor (JS“S“) there will appear an average
of the form (S“S“)A that will vanish as n— 0. Fi-
nally, there will be » contributions of the form
(4.5) (one from each value of a) arising from the
products S, - §, that produce it, so that the total
weight of a closed loop (polymeric ring) of length
1 will be nJ*. In the formal limit n~ O this vani-
shes, in agreement with the conclusions of Sarma.
This same argument applies to the contributions
from “two-site loops”, of the form

3(JS;-8,7, (4.6)
which come from the second-order term in the
first product in (4.1). All higher-order terms
from this product also vanish as n~ 0.

A class of nonvanishing terms arises when a
“chain” is initiated by a factor 4S{*’, then propa-
gated by a set of factors JS{s{t’ and terminated
by a factor hS‘“ This leads to a contribution
(for an [-site walk)

hzj“'“n((sf“)z>,4- (4.7)
=1

Each such walk of =1 -1 bonds that does not
intersect either itself or any other walk makes
a contribution of

P (4.8)

to the partition function. The second-order term
in the second product in (4.1) can contribute non-
vanishing single-site, zero-bond terms of the
form

(ST 4= 3K (I (4.9)

provided no other chain visits site ;. These terms
appear to have been overlooked in the treatment
in Ref. 11. They lead to nonvanishing contribu-
tions to the susceptibility in the - 0 limit that
are accounted for in the treatment of Bowers and
McKerrel.!?

Examination of the possible contributions to (4.1)
in the formal limit »~ 0 reveals that the mutually
avoiding and self- avoiding walks (with single sites
included) exhaust the nonvanishing contributions.
The contribution of a single-site walk in (4.9)
is of the same form as that of a two- or more-~
site walk in (4.8) except for the factor of 5. The
contribution from all nonvanishing averages can
thus be expressed as the sum in Eq. (2.9).

The argument given above is in much the same
style as that given by Sarma and is clearly quite
informal. Its primary purpose is to show that
if any expression of the form of our Eq. (2.9)
or Sarma’s'(®) Eq. (A19) gives the properties
of the n~ 0 vector model correctly, then it must
be our Eq. (2.9) rather than Sarma’s Eq. (A19).
This motivates the choice of the polymer statis-
tical weights in (2.10) which leads to the partition
function (2.12) for polymerization. It should be
noted, however, that the use of an argument on
the partition function Z rather than on the limi-
ting free energy per spin, f=1lim,. ,N?InZ amounts
to an interchange of the usual order of the limits
N—-= and n—~0. The free energy per spin obtained
from taking the thermodynamic limit of the par-
tition function in Eq. (2.9) is
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f,=lim{Nn[limZ (,N)]},
N-® n-0
whereas the usual convention would dictate the
opposite order of limits:

f,=lim[limN™ InZ (n,N] .
n0 N-w

There would seem to be no great difficulty in
showing that the expansions of f, and f, in powers
of J and & agree whenever J and % are sufficiently
small that these expansions converge. In particu-
lar, we note that the zero-field high-temperature
free energy and susceptibility series implied by
Eq. (2.9) (i.e., obtained from f,) are identical with
those obtained by Bowers and McKerrel!? (from
f,) when the difference in the normalization of
magnetic field is accounted for. Series expan-
sions for f, in powers of J and k are well known
and much studied'” for n=1, 2, 3, ... and extra-
polation of the results to »=0 gives answers in
good agreement with direct counting estimates
for polymers. On the other hand, our expression
for Z in Eq. (2.9) is valid at fixed N and »~0
for all values of J and %, and leads to a well-de-
fined thermodynamic limit for fl(j ,h). By Eq.
(2.12), this limiting free energy is necessarily
intimately related to the properties of polymers
and polymerization. Whether f.(J, k) agrees with
f1(J,h) outside of the radius of convergence of its
expansion in powers of J and % is a more diffi-
cult question.

In this regard it should be noted that the exact
equivalence between the Tobolsky-Eisenberg theory
of polymerization and the molecular-field approxi-
mation to the n-vector model of magnetism in
the n~ 0 limit depends only upon the identification
of variables in (3.20—(3.22) and not upon Eq. (2.9).
[The identifications (3.20) and (3.21) together with
Eq. (3.16) imply Eqgs. (2.16) and (2.17).] More-
over, in obtaining the molecular-field approxi-
mation, the limit N—« is taken first and then
the limit n~ 0, so that it is an approximation to
£, that is obtained. The equivalence of this ap-
proximation in the limit » -~ 0 with the Tobolsky-
Eisenberg theory of polymerization (for all val-
ues of J and k) suggests that the free energy f,
of the n— 0 vector model usefully describes poly-
mers and polymerization even outside of the radius
of convergence of f, in powers of J and %, and
thus suggests the identity of f, and f, for all J
and k. Proof of the identity of f, and f, throughout
the J,k plane (or a counter proof) would be of
considerable interest.

V. DISCUSSION

The correspondence between a model of equil-
ibrium polymerization (even though highly ideal-

ized) and the much studied n-vector model of
ferromagnetism (even in the formal -0 limit)
provides an illuminating analogy that has been
sought for some time. It has long been clear that
the behavior of sulfur near 159 °C exhibits many
features characteristic of critical phenomena,®%°
and attempts have been made to analyze the be-
havior of sulfur in terms of the thermodynamics
of phase transitions and critical phenomena.*

On the other hand, it has also been clear? that
sulfur is not likely to exhibit a mathematically
sharp transition at 159 °C. The analogy of equil-
ibrium polymerization with a magnet in a very
small magnetic field makes it clear, in a partic-
ularly simple and familiar context, how equili-
brium polymerization can fail to exhibit a mathe-
matically sharp transition, yet still exhibit criti-
cal phenomena. The effect of a small magnetic
field on the critical behavior of a magnet has been
studied in some detail.?®

The fact that the molecular-field approximation
to the n—~ 0 vector model is identical with the
successful Tobolsky-Eisenberg theory of equil-
ibrium polymerization lends confidence in the
applicability of the n— 0 vector model to equil-
ibrium polymerization, and strongly suggests
that the nonclassical critical behavior of the
n-vector model will, in the formal n- 0 limit,
provide useful information about the deviations
of liquid sulfur, and other monomer-polymer
systems with very small K,, from the classical
TE theory.

The equivalence of the n—~ 0 vector model with
our model of equilibrium polymerization empha-
sizes certain limitations on the conventional in-
terpretation®!! of the n—~ 0 vector model in terms
of nonreactive polymer solutions. The modifica-
tions implied by our corrected analysis do not
by themselves present any serious difficulty.

If c, and c,, are the concentrations of polymers
and of monomers in polymers, and if Il is the
osmotic pressure of the polymer solutions, then
the identifications

—I}el;-?=f, (5.1)
k(L
2,-2 (3£). 5.2)
and

c,,,-c,=;j: (%)h y (5.3)

give the connection between the polymer solution
and the n-vector model, where v, is the volume
of a unit cell centered on the lattice site. These
differ from the conventional treatment only in
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the replacement of ¢, by ¢, —c, in Eq. (5.2). For
polymers of high molecular weight, c,>c, and
this modification has virtually no effect. The
interpretation of the model is now that sites,
rather than bonds, are the monomers. The quan-
tity 42 plays the role of an activity of polymers,
while J is a parameter that, together with &, de-
termines the average molecular weight. By ad-
justing J, the average molecular weight can be
maintained constant while the concentration of
polymers (and thereby the osmotic pressure II)
is varied.

According to the TE theory of equilibrium poly-
merization the molecular weights of the polymeric
species are distributed exponentially. If ¢, is
the concentration of polymers of length n, then
according to TE,

K -
voc,,=1?:(K,¢,‘)”~Ae bn (5.4)

When the average molecular weight is very large,
this implies a very small value of b, and a very
broad, exponential distribution. While nonclassi-
cal critical behavior of the »- 0 vector model
may alter this mean-field prediction somewhat,
it seems likely that the very broad distribution
will persist. Thus, the n— 0 vector model is not
appropriate for describing solutions of polymers
with molecular weight narrowly distributed about
some large mean value. On the other hand, it
may be quite appropriate for discussing solutions
of polymers prepared by random termination, for
which the molecular weight distribution is nearly
exponential. ®*

The curiosity of the n— 0 vector model noted
in Sec. IlI—that f(J,%) is not everwhere convex—
is not peculiar to the molecular-field approxima-
tion. We have recently shown' that if the n—0
vector model satisfies a scaling equation of state,
then its free energy necessarily fails to satisfy
the usual convexity requirements of thermodynamic
stability, but the corresponding polymer problem
exhibits no such instability in terms of polymer
variables. Another example of this lack of con-
vexity in the n—- 0 vector model is the negatively
infinite susceptibility at the coexistence curve
predicted by renormalization-group calculations,?®
and arising from the continuation to n=0 of the
effect of Goldstone modes at n=2, 3, etc.

The diagram in Fig. 2 of the convex and non-
convex regions of f is appropriate for the mole-
cular-field approximation to the n— 0 vector
model. If the n— 0 vector model exhibits nonclass-
ical critical behavior (which seems very likely?®)
and is described by a scaling equation of state
(which is more conjectural, but plausible), then
we have shown'® that f(J, k) fails to satisfy con-

vexity even in the vicinity of the critical point.
Based on that analysis it seems likely that the
true boundary between convexity and nonconvexity
of f(J,k) in the n—~ 0 vector model is more nearly
as shown in Fig. 3. Here the region of convexity
of f is a narrow wedge restricted to 7> 7, and
bounded by the curves of the form

o |~(T - T)" (5.5)

with A given?® approximately by 1.46.

The n-vector model exployed here and in Ref.
10 uses continuously variable vector spins of
fixed length located at discrete lattice points in
d=3 dimensional space. This model may be gen-
eralized or altered in a variety of ways without
affecting the essential results. Methods are well
known?” for replacing discrete spins by a spin den-
sity continuously variable in space by Fourier-
transform techniques, and for replacing the con-
straint of fixed length spins with a distribution
of spin lengths determined by a probability density.
The formal n— 0 limit of these models has long
been employed in the study of polymers.!-?®:2®
In the opposite direction, one can replace the
continuously variable vector spin with a cubically
symmetric discretely variable spin in z spin di-

‘mensions and, following Hillhorst,'? take the

formal n— 0 limit to obtain information about
polymers. It is shown in Appendix A that the
mean-field approximation to this discrete vector
model also becomes identical to the Tobolsky-
Eisenberg theory in the n— 0 limit. This suggests
that real-space renormalization-group calcula-
tions of the critical properties of this discrete

n- 0 vector model, such as those carried out by
Hillhorst,' but in three spatial dimensions, may
be useful in describing the critical behavior ob-

FIG. 3. Regions of convexity (shaded) and nonconvexity
of f(J, n) if scaling is obeyed at the critical point. The
boundary is given by Eq. (5.5).
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served in equilibrium polymerization. We are
currently pursuing this possibility.

The model can be generalized in other ways. We
have examined® a dilute n-vector model in the
n- 0 limit and shown that it is equivalent to a
model for equilibrium polymerization in a solvent.
In the molecular-field approximation it becomes
identical to the earlier theory of Scott®! for the
phase equilibria in liquid sulfur solutions. Ac-
cording to this model, the lower critical solution
temperature observed in certain sulfur solutions
is intimately associated with the tricritical point
found in models for dilute magnets, metamagnets
in a field, and *He-*He mixtures.

It seems likely that still other useful generaliza-
tions'remain to be discovered. Inclusion of the
possibility of cross linking between polymers
may provide a connection with the theories of -
gels and percolation which have been the focus of
much interest recently.®

Note added in proof. P. D. Gujrati [Phys. Rev.
B (to be published); Phys. Rev. A (to be pub-
lished)] has apparently independently discovered
the error in the earlier analysis (Ref. 11) of the
n- 0 vector model. Gujrati gives the corrected
partition function in a form that is different from
but equivalent to ours. His transcription to the
polymer problem appears quite different from
ours but this is due simply to a different interpre-
tation of the polymer problem. He counts as
polymers only those objects that would in our
model be called dimers, trimers, tetramers, etc.
Either interpretation seems acceptable as a de-
scription of polymer solutions, and the two de-
scriptions become indistinguishable from each
other (and from the earlier treatment in Ref. 11)
in the limit of very dilute solutions of very high
molecular weight polymers.
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APPENDIX A: THE HILLHORST MODEL AND
EQUILIBRIUM POLYMERIZATION

Consider a system of N cubically n-component
discrete spins G; located on the sites of a regular
d=3 dimensional lattice and interacting through
the Hamiltonian

=—d D, 55— moH 90, (A1)
{1,7? i

where the sums 2, and Z(c,j) are over all sites
and all distinct nearest-neighbor pairs (, j) of

sites and G, is a cubically discrete n-component
spin of norm Vn, that is, §,=(0,0,...,n'2,...,0),
which can point in any of 2» directions.

We define the partition function and free energy
of this model as

Z=e=@n)¥ Y exp(ic/kT). (A2)
{5}

Following Hillhorst®® it is easy to show that the
partition function Z in (A2) is given, in the limit
n- 0, by expression (2.9) for the n— 0 continuous
n-vector model. The two models are equivalent
in both limits »— 0 and =1, We shall now treat
this model in the molecular-field approximation
and show that we again recover the Tobolsky-
Eisenberg theory.

In the nonzero field H, the average value of
ol is given by (})=m+0 and (¢ =0 if @+ 1. The
molecular-field approximation is equivalent to
replacing the Hamiltonian in (A1) by the Hamil-
tonian

.= E(qu+moH)o}+%qm2NJ. (A3)
1

The constant term in (A3) is chosen so that the
mean total energy is equal to E,= — N(3 gJm?
+mgmH). Performing the sum over all possible
spin configurations we obtain, for the magnetiza-
tion,

m=%(2n)'”{§} oV exp(-3¢/kT)
i

__Vn sinh[Vn(gdm+h)]
" n-1+cosh[Vn (gJm+n)] ’

where J=J/kT and h =m H/kT. Similarly, we
obtain

(A4)

1

-f=

=3 ¢Im? - In{(n - 1) + cosh[Vn (¢Jm+h)]} ,

(A5)
e=<%§—)h=%qm2. ”

These results can also be obtained by the mini-
mization procedure used in Sec. III. Expressions
(A4) and (A5) are valid for all values of #. In the
limit »—~ 0 we recover expressions (3.13)-(3.15)
already obtained for the molecular-field theory
of the n—-0 vector model.

From expression (A4) we see that the spontan-
eous magnetization in the zero field is anomalous
as soon as n<1: As T goes from zero to T, the
magnetization starts at vz, increases to maxi-
mum, and then decreases to reach zero at 7,.
When gfm+h is large (either h~ = or T— 0), then
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m=n*?{1+2(1 —n)exp[-n(gim+h)]+---}. (A6)

This shows that m increases when T increases and
that m decreases when % increases so that the
susceptibility is negative for a sufficiently high
field.

" APPENDIX B: ANGULAR AVERAGES IN n DIMENSIONS

A vector of length V7 in n dimensions can be
represented by polar coordindtes in the form
]

SW=Vn cosé,,
S$®@) =V sin6,cosé,,
$®) =V siné,sinb,cosé,,

: (B1)

$®1=Vn siné,sing, - -
S™=Vn sin6,siné, * - -

+ sin6,.,cos6,.,,
sinf,.,sinb,.,.

The integration over all solid angles takes the form

fdg(")(.)= f"dol f“dez coe jo-wde,,-z f"de,,- (sin6,)""%(sing,)" "3+ - - (sin‘e,‘-z)(-). (B2)

It is readily verified by d1rect integration that
this gives
. 21"72
A= f dom= To/2) (B3)

Evaluation for integer » gives A =2, A,=27, A,
=4m, etc. It is interesting that (A3) not only re-
produces the familiar results in two and three
dimensions, but also the correct n=1 result:
2:,1=2. Asn—0 it gives the formal limit A,~n.

Inspection of the form (B2) shows that the
average in (3.10) can be written in the form

" I¥(cosb,)**(sin )" 246,

<(s(1))2k)A= n"((cosﬂ)zk),\ =
{X(sin6,)""2d6,

_ apf2k+1 n-1>/ (1 n-l)
=n B( 5 03 B 2’ 3 , (B4)
|

¢

where B(x, y) is the standard beta function

(y/2)n

B(x,y)=2 f sin® "¢ cos® ¢ d¢

=T(x)T(y)/T(x+Y). (B5)

Evaluation of (B4) using (B5) and the properties
of the gamma function gives (3.10).

Equation (4.4) may be obtained by using (B1)
to express [1(S)?e in terms of 6, 6,., and z
and then evaluating the resulting average in the
manner of (B4). The result is

Lt Yy Ly (n-ot=1+2k, ,  +%**+2k,) 2k
(ke _ (, /7 (sin6,) ) ) (cosby)*adb,
(T )= o “’I,,=II< T(sine, Y

21: ks: 3+kgy

) . (B6)

n=1l
= (nzka) ( B—ou 1
!;Il B(n a
2’ 2
Inserting the expression for B(x, y) in terms
of gamma functions in (B5) and canceling com-

mon terms in the numerator and denominator
gives (4.4).

APPENDIX C: MEAN-FIELD n-VECTOR MODEL
FOR GENERAL

The magnetization of the n-vector model in the
molecular-field approximation can be expressed
(cf. Appendix B) in the form

_ Jd92™expl(gIm +h W n cos6]Vn cosé
fdQ""expT(qui»h)*/—cosG]

I expl(gJm+h)Vn cos6]Vn cosé(sinb)" >d6
IT expl(gJm +hWn cos6(sin6)" 2dé

(c1)

Using standard identities for Bessel functions we
have
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Fi@)= [ e emosin6a6= T+ HIGIE2) " Lke),
° (c2)

fz(x) Efﬂ e;cos esinzvo COS9 dG:f;(z)
1y oLyl v 7 v
= T+ H T ) (1) - £1,(2)

=T(v+3)T(3)(32) 71, ,(2),

where the prime denotes differentiation with re-
spect to z, and I, is the Bessel function given by

TRV N ¢ V.5 S
LE@=(2) L e D) (c3)
Combining the results in (C2) we have
. \/_I_zz[f—(qjm +h)] (1)

Ippey [r(qu+h)]
For n=1, standard expressions for I.,,, give
m =tanh(gJm +h),

the usual result for the Ising model. Using the
expansion in (C3) for nonzero » in the numerator
and denominator of (C4) and then letting -0, we
obtain (3.14).

In a similar fashion we obtain for Tr(e ) in
(3.9),

. ., [Vn(gdm +h)]
oo r(an)lgfj;(q.lmh)lﬂz-
(C5)

This may be combined with (3.8) to give 4: In the
limit n—-0, (3.12) is recovered for Tre 8% and so
(3.13) for d). The result (3.15) for e is an identity
for all z in the molecular-field approximation.
The failure of f(J,%) to be convex arises im-
mediately below =1, as in the discrete case
(cf. Appendix A). To see this, consider (C4)
when (gJm+#k) is large (either because 4 is large
or because J is large) and 7 is fixed. The asymp-
totic expression

et p=1 (-1} (p-9)
I”(z)~(21rz)v2 (1- 8z + 21(8z)%

for large z, where u=41?, gives for m,

e (1 a7l (i) ) @

*tovn (qu+h)
For h very large at fixed T, the magnetization
approaches V7 and is a decreasing function of
h as h—=. For k=0 the spontaneous magnetiza-
tion approaches vz as T~ 0 and is an increasing

function of T near T=0.

+"')(cts)
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