
PHYSICAL REVIEW A VOLUME 24, NUMBER 2 AUGUST 1981

Dynamics of defects in Rayleigh-Benard convection
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The behavior of an extra roll extending into an otherwise regular convection pattern is studied as a function of
Rayleigh number, Prandtl number, P, and wavelength, by means of a fully resolved numerical simulation of the

Boussinesq equations with free-slip boundary conditions. For .reduced Rayleigh numbers of order one or less and

P &40, numerical simulations of the lowest-order amplitude equations reproduce the Boussinesq results

semiquantitatively. In particular, we find that when this class of defects is stable, they move with constant velocity v,

parallel to the roll axis and give rise to a slow modulation of the roll pattern of the form f(x,y —vt). Both f and v

have been calculated analytically within a linearized theory. The envelope function fdepends in an essential way on

v such that the limit v~ 0 cannot be sensibly taken.

I. INTRODUCTION

The onset of thermal convection in a layer of
fluid heated from below is probably the best
understood example of symmetry breaking and

pattern formation in a nonequilibrium system. '2
The bifurcation is a forward or reversible one
that permits one to treat the competition among
various patterns analytically by a two-scale or
Ginzburg-Landau-type perturbation theory in
terms of a slowly varying amplitude function. '
Near onset, within the Boussinesq approximation,
it has been shown that the only stable convection
patterns in an infinite system consist of a periodic
array of two-dimensional roll pairs of opposite
circulations. These patterns, for a given fluid,
are uniquely characterized by a reduced Rayleigh
number e =(R —R,)/R„where R, is the minimum

value of R for which convection persists and a
wave number q defined such that 2w/q is the spat-
ial period. These conclusions are unchanged
when the container is finite but periodically con-
tinued except that q is quantized.

Anyone who examines pictures of convection in

large aspect ratio cells at moderate Rayleigh
numbers, when the initial conditions are not
controlled, would find a very disordered and in
general nonstationary pattern. " There is an
obvious analogy here to the defects one sees in
certain liquid crystals or solids, though in nat-
ural convection it is often difficult to tell where
one defect ends and the next one begins. The
simplest type of defect discernible in convection
is an extra roll pair inserted into an otherwise
ideal pattern. The position of this so-called dis-
location is taken to be the point where the extra
roll terminates. A number of authors have
noted that dislocations can move into or out of
a patch of ordered rolls and thereby provide a
bulk mechanism for the adjustment of q. Our
intent here is to study the dynamics of disloca-

tions in a sufficiently idealized setting where
numerical and analytical calculations can be
quantitatively compared.

There are several reasons for undertaking such
an investigation beyond the very qualitative com-
parisons that might be made with the above ex-
periments and the possibility of exploring how q
is adjusted in bulk. Whitehead has done a con-
trolled series of measurements in a large rec-
tangular cell where he induced initially two dom-
ains of rolls with parallel axes and wavelengths
in a ratio of 3:2.' The domain with the larger
wavelength expanded at constant velocity at the
expense of the other, while maintaining the inter-
face between the two domains straight and per-
pendicular to the roll axis. The velocity in units
of v/d, where z is the thermal diffusivity and d

the layer depth, varied approximately linearly
with R-R, and inversely with the Prandtl number
P= p/&, where v is the kinematic viscosity.

A second reason for investigating defects is to
better understand the dynamics of convection for
small a where a perturbative analytic theory is
believed to apply. It is well known that the ampli-
tude equations of Ref. 4 that describe the long-
wavelength dynamics of an ordered roll pattern,
do not allow for the generation of vertical vortic-
ity, „and are unchanged if the nonlinear terms
in the Navier-Stokes equations are omitted. It is
also known that the convective terms in the
Navier-Stokes equations vanish in the limit P- ~,
/(' finite, i.e., ~, tends to zero with I '. Now a
dislocation at finite P certainly generates verti-
cal vorticity near its core; and in view of White-
head's experiments, which showed its velocity
to vanish with P ', one could reasonably infer
that the presence of co, was necessary for any
motion to occur. Higher-order terms in the amp-
litude expansion would then be required to account
for the dislocation's velocity.

Both the production of co, and defects are
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thought y although for slightly different reasons,
to be relevant to the very low-frequency noise
observed in large cells for P c 1 and at Rayleigh
numbers where conventional stability analysis
for an infinite system predicts no time-depen-
dent motions. ' The lateral boundaries almost
certainly play some role in these phenomena, and
one suspects that the patterns are nonideal, per-
haps shifting, and contain defects. ' Large scale
changes in pattern seem to require vertical
vorticity. Lastly, a component of u&, appears at
the bifurcation to oscillatory convection studied
by Busse, and Clever and Busse. '2

Contrary to our expectations, we found that the
amplitude equation of Ref. 4 accounts at least
semiquantitatively for the motion of an isolated
dislocation near onset provided it is stable.
There is no qualitative effect that can be attri-
buted to ~, and a finite P, although the variation
in velocity with P for Ps 60 is much greater than
the amplitude expansion can account for. None of
our results are in direct conflict with White-
head's experiments. However, for parameters
other than those that were directly measured,
the dislocation motion is very different from
what one would have inferred. Irrespective of
any relationship to experiments, we believe it
is still of interest to present a quantitative com-
parison between a full numerical simulation of
both the Boussinesq and the amplitude equations,
and analytic calculations for a nontrivial flow.

In Sec. I, we present our simulations of the
amplitude and the Boussinesq equations under
identical boundary conditions. Since both codes
can be xun with the same input paxameters,
geometrical effects can be factored out of the
comparison. Section III contains our analytic
solution of the linearized amplitude equations for
an isolated dislocation in a large container and
comparison with numerical results. In the con-
clusion, we return to the experiments, and com-
ment on the possible effects of lateral boundar-
ies.

II. NUMERICAL PROCEDURES AND RESULTS

Our numerical sixnulations have all been per-
formed with free-slip boundary conditions top
and bottom and periodic ones laterally. These
assumptions both simplify the numerical algor-
ithms as well as facilitate comparison with an-
alytic theory. Since our goal is to understand the
motion of an isolated dislocation near onset, per-
iodic lateral boundary conditions are more effec-
tive than rigid ones in minimizing the influence
of the "walls" on the bulk for a fixed investment

of computer time. The form of the amplitude
equation in Ref. 4 is independent of whether the
top and bottom surfaces are rigid or free slip. '
However, higher-order terms have only been
calculated for the free-slip problem, which argues
in favor of using the same boundary conditions in
the numerical simulations. ' It is relatively easy
to impose rigid lateral boundary conditi. ons on
the amplitude equations, and with the understand-
ing we have achieved about the behavior of de-
fects in isolation, it would make good sense to
include wall effects at the level of the amplitude
equations. %'e will always work in units for
which the depth of the fluid layer d and the thermal
diffusivity ~ equal one.

The Boussinesq equations were fully simulated
with a pseudospectral code of conventional con-
struction. For 2-P &20 four vertical modes,
sin(nvz) or cos(nrem), n=0, 1, 2, 3, were judged
adequate for z 0.5 and marginal for &=1. For
larger P, one could go a factor of 2 higher in
& with the same vertical resolution. In the lateral
directions, 6-8 Fourier modes per roll pair,
i.e. , 3 or 4 harmonics of the basic wave number,
were adequate to completely describe the flow
and eliminate aliasing. The defect velocity, tem-
peratuxe and velocity spectra, and the tempera-
ture and vorticity fields in real space, were all
compared for the same flow under a variety of dif-
ferent resolutions to ensure against errors from
this source. At a marginal resolution, with four
modes in g and P = 20, & = 2, the mean-square tem-
perature (velocity) variance that would otherwise
fall in higher modes was 0.5/0 (O.l /0) of the total
while the defect velocity was in error by a few
percent. The maximal allowed time step increased
as g decreased until & =0.5 whereupon it satu-
rated.

At infinite P, the nonlinear and time deriva-
tive terms, which in dimensionless units are
multiplied by P, can be dropped from the Nav-
ier-Stokes equations so that the velocity be-
comes an instantaneous function of the temper-
ature. In comparison with P= 100, our memory
requirements are nearly halved and the coxnputa-
tion time necessary to simulate one unit of phy-
sical time is decreased by a factor of order 10.
Most of the last factor came from a 1arger time
step. About 5 h of Cray time were spent on this
project and the largest runs required 4x10
woxds of memory.

The amplitude equation, for complex A, was
simulated in dimensionless scaled form, '
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TABLE I. The scaling factors required to convert the
length and time scales in Eq. (2.1) (denoted by an overbar) to
physicalunits with e=d =1 (Refs. 4and 5). We define%
= x/$)), g =g/$g, ~ =t/T, E = (R -R, )/R„and $~= $»/(2qo),
where qo is the wave vector of the first unstable mode
at R=R .

qo 4»

free slip w/W [8/(3~ e)j ~ (1 +P)/(1. 5m eP)
rigid 3.117 (0.148/e)'~ (0.5117+P)/(19.65' P)

BA 5F
Bt 5A~ ' (2 2)

with

2 2

FlA) f( /A/ +
.

—-'m +-'. /A/')d*dy.
Bg By

(2.3)
In the functional derivative in (2.2), A and A~ are
considered independent variables.

Equation (2.1) was again time stepped with the
usual pseudospectral scheme. The gradients
were computed in Fourier space by multiplying
by the wave vector, and the cubic term was as-
sembled in real space. The time stepping was
fully implicit with respect to the linear. terms.
We ran (2.1) for e ~ 1 and in boxes that contained
as few as four roll pairs. It was then necessary
to use up to eight Fourier modes per roll pair to
quantitatively simulate the motion of a disloca-
tion, yet all of the spectral weight was in modes
with q sq, /2. &s always, the requisite resolu-
tion was established by continually increasing it
until no further changes occurred. We suspect
that most of the modes beyond qp/2 were not re-
quired to resolve the defect but to control alias-
ing in the cubic term.

The parameter space we have to explore has
axes corresponding to z=(R R-)/R, P„and
geometry which includes both the box size and

To return to physical variables for either rigid or
free-slip boundary conditions, one has merely
to restore the scaling factors listed in Table I.
The reduced Rayleigh number e only enters (2.1)

. implicitly through the initial conditions and a
scaled box size. The physical fields such as
the temperature may be recovered from relations
of the form

T(», V, &) =~e'"Re[A(»/~„, V/~„f/7)e"p*]

x sin(wz) + O(e),

where X is a numerical factor dependent on the
boundary conditions and x, y, z and t are in physi-
cal units, z=d=1. It will be very convenient
in what follows to recast (2.1) in the form

initial conditions. . The dimensions of the periodic
box will be denoted by I.„and L„and the rolls will
always lie parallel to the y axis. When used as
input to (2.1), the dimensions of the box become
L,/(„and L,/(, . Initially, an extra roll pair
segment is introduced into the center of a box
already containing n roll pairs. Since the pair
of defects will move so as to either lengthen or
shorten the added segment, we can characterize
our runs as n+1-n or n-m+1. The last para-
meter we will need to introduce and the one most
relevant to describing defect motion is the wave
vector q of the rolls. It can logically be defined
in the presence of a defect as either 2»n/L, or
2»(n+ 1)/L„although we will find that the second
definition better reduces a variety of different
runs to a common form. The conducting state
first becomes unstable at q = q, = w/v 2 for free-
slip boundaries. The corresponding wavelength
ls Xp = 2w/qp.

Near onset, for»&1 the range of q for which
stable convection persj. sts is limited to q —qo Q go@'

by the Eckhaus instability and to q & q() by the
zigzag instability. The cross roll instability
actually occurs somewhat before Eckhaus in the
Boussinesq equations but is absent from (2.1)
since we have not allowed for a second amplitude
in the perpendicular direction. Since q is quan-
tized in units of 2 /Lz„ in order to vary q ap-
preciably in a given box, e can not be made too
small. In fact, just to insist that convection with
both ~ and yg+ I rolls in a particular box is stable,
sets a lower bound on &.

The Boussinesq code was initialized with zero
velocity and a temperature field proportional to
cos(q») sin(zz) where q was a multiple of 2»/L,
that varied with y so as to introduce the desired
number of rolls. For Eq. (2.1) we simply set
A proportional to e" '0'" in appropriate units
initially. A single dislocation does not give rise
to a naturally periodic flow in the y direction.
To avoid any question of convergence in the
Fourier series, we always worked with pairs of
dislocations arranged vertically so that the flow
was symmetric under reflection in the line y= L„/2. Irrespective of whatever secondary in-
stabilities occur at later times, the velocity and
temperature fields invariably settled down on
times of order d /z to the patterns shown in Fig.
1 in the neighborhood of the core. In a larger
box, the contours of co, would be somewhat more
extended laterally but the temperature and hor-
izontal vorticity fields would be indistinguishable.

Several comments on the graphical output are
in order. For all P ~20 and E ~ 2, while the.dis-
location remained reasonably well formed, in
excess of 99%%u() of the kinetic energy resided in
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FIG. 1. (a)-{c)A solution to the Boussinesq equations for free-slip boundary conditions in the neighborhood of a de-
fect after the initial conditions have relaxed. Periodic boundary conditions are assumed laterally and only the lower
half of the Qow field is shown. Horizontal sections were taken for z=0.5. The vectors in the second figure indicate,
to scale, the magnitude and direction of the horizontal vorticity (d„,u„. The contour lines in the remaining figures are
equally spaced with negative regions indicated by dashes. Except for changes in scale, these figures are insensitive to
the values of P, e, and q provided one remains within the stable region.

the modes with z dependence -sin(wz) or cos(vz)
and with a horizontal wave number between 2vn/

L, and 2v(n+1)/L„. Similarly, 9IPp of the temp-
erature variance was either in the above modes
or the laterally uniform mode proportional to
sin(2wz).

& plot of the temperature field for z =0.5 elim-
inates the uniform mode, that is responsible for
the heat transport, and picks up the remaining
modes that are closely correlated near onset to
the kinetic degrees of freedom. %e have found it
most advantageous tp display these in terms of
the horizontal components of the vorticity, since

in the absence of a defect, the vorticity is par-
allel to the v axis. The vertical vorticity is al-
most entirely concentrated in modhs with no de-
pendence on z which is, of course, a particularity
of the free-slip boundary conditions.

Even for the parameters for which the disloca-
tion is at least quasistable and ~, is largest, & = 2.0
and P=20, one finds (ra', )/(~,')&0.01. For &=100
and &=0.5, the same ratio is -3x 10 '. Al-
though the averages, denoted by brackets in the
preceding line, are taken over the entire fluid,
(d„and rd, are only nonzero near the defect. Thus
the most pronounced effect of the defect on the
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qp, Figure 2 is indicative of what happened. The
initial defect broke down so rapidly that it was
felt impossible to suppress the instability by going
to smaller e and yet remain within a box of rea-
sonable size. A number of runs were then made
with the same parameters for various values of
q but with an ordered planform in order to check
stability. By comparison with the earlier runs,
in which an additional roll was introduced into a
periodic field of n others, either q =2wn/L, or
q =2m(n+ 1)/L„appeared unstable if only weakly.
There is thus no evidence for these parameters
that the dislocation triggered a finite amplitude
instability that was otherwise inaccessible. The
instability appeared first at long wavelengths in
the y direction. Since we were well away from
where the well-known high P secondary insta-

bilities occur, we infer that the threshold for ei-
ther the skewed varicose or oscillatory instability
was exceeded. "'~ Unfortunately, the only analytic
results that we are aware of for this shear in-
stability under free-slip boundary conditions are
strictly valid only for P(&1.

For P = 20, e =0.5, L,= L„/2 =8&2 (i.e. , 4gl.,)
and 5-4 rolls, the shear instability was largely
suppressed. The two defects moved symmetric-
ally parallel to the y axis toward y =L„/2 with
nearly uniform velocities. Instead of anni-
hilating at the center, they stopped and two new
defects of opposite sign (i.e. , a roll was elimin-
iated) were created along the @=0, or L, line.
They then moved toward y = 0 and L,. The later
stages of a run with the same z, P, but L„=L,
=16&2 and 9- 8 rolls are shown in Fig. 3. It is
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FIG. 3. (a)—(c) Contour plots of the temperature for a=0.5, P=20, L„=L„=8XOand at times of 5.0, 10.9, and 17.8.
The instability appears qualitatively similar to Fig. 2 but takes much longer to develop.
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TABLE II. The Prandtl number dependence of the de-
fect velocity for L„=L„/2=4Ão. An extra roll segment
was introduced into a background of 4 rolls at q =qo. The
Rayleigh number corresponded to e = 0.5 except for the
two bracketed velocities under P = 100 and ~ that were
determined for a=1.0 and 2.0, respectively.

Prandtl No. 20 40 60 100 OO

Velocity 0.90 0.67 0.60 0.57 0.52
(0.73, 1.20) (0.57, 0.82)

TABLE III. The velocity of a defect in physical uriits
obtained from a numerical integration of the Boussinesq
equations and the amplitude equations (2.1) as a function
-of reduced Rayleigh number e, the number of rolls in
the undisturbed pattern pg, and their wavenumber q. The
periodic computational box had lateral dimensions of
L„=2m/q and L„=2L„forn ~~6, L„=L„forn =12, and
L„=L~/2 for n ~24.

Velocity
Boussinesq Eq. (2.1)

a bit difficult to imagine a shear instability oc-
curring for these parameters but clearly the
presence of the defect led to a breakdown of the
pattern. A second run at P = 20 and a = 2 broke
down in a manner similar to Fig. 2 at P =2, e
=0.5.

A Prandtl number of 40 was the first in which
for c =0.5. L,= IJ2 = 8&2 and oo =4, a defect
pair proceeded all the way to y = LJ2 and annihil-
ated without exciting any secondary instabilities.
However, when the same flow pattern with a single
defect pair was rerun in a larger box, L,=48&2
and L„=24' 2, a transverse undulation at a wave-
vector of 2s/L, developed in the rolls well away
from the defect. The velocity of the defect was
distinctly nonuniform.

In Table II we collect data on the Prandtl num-
ber dependence of the velocity for a fixed, though
relatively small box. After an initial transient,
the velocity was constant to within about 5/0, al-
though there was a small negative acceleration
that became more pronounced near V

= LQ2.
Once initial transients had relaxed and prior to
annihilation, the velocity and temperature fields
in the neighborhood of either defect invariably
assumed the form f(x, y vt) provide-d no secondary
instabilities occurred. Comparative velocity data
were extracted for similar ranges of y.

The existence of appreciable defect motion at
P= ~ clearly rules out any explanation based
solely on the nonlinear terms in the Navier-Stokes
equation or the existence of a vertical vorticity.
The remaining runs were designed to clarify the
dependence of v on geometry and a, and were
performed at infinite Prandtl number both because
of the considerable economies in computer time
thereby obtained, and the enhanced range of Ray-
leigh numbers that could be explored without in-
terference from secondary instabilities. On the
most naive level, however, the vertical vorticity
could account for the difference between the P
=20 and P= entries in Table II. The amplitude
equation only predicts a 5'f() variation in velocity
over this range of P (Table I). The velocities
at & =1.0 and 2.0 at P=100 and ~ suggest that
the approach to the infinite Prandtl number limit
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may not be uniform in e.
The dependence of the velocity on q was largely

explored at e =0.5 which was a compromise be-
tween the competing requirements of proximity
to onset and freedom from secondary instabilities
for as wide a range of q as possible (Table III).
When one scans the data for n-g+1 rolls with
L,=2vtt/qo the velocity clearly tends to zero as
n increases, ' although from the complete numeri-
cal data, it was apparent that the initial relax-
ation time before a constant velocity was achieved
also grew. To see when the defect velocity would
change sign, a number of runs were made with
the 7- 6 roll pattern for L, /Xo = 6.0, 6.5, and 7.0.
The defect reversed direction between the last two
runs but its velocity was by no means constant.

The next set of entries in Table III shows that
the velocity in a small box can be mimicked by
compressing an infinite system, i.e. , letting
2'/L, exceed qo. A bit of calculation shows that
the be'st way to collapse data for different boxes
and compressions is to work in terms of the wave
number defined with the defect present, i.e. ,
s=2v(~+ I)/L,
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Our analytic theory is confined to a solution of
the amplitude equations (2.1) in the limit of a
large box, small compression, and e -0. Since
it is virtually impossible to convincingly simulate
the Boussinesq equations in this limit, our num-
erical solutions of (2.1) serve as a bridge between
the simulations and what can be done analytically.
We can then make comparisons between simula-
tions in the same box with the knowledge that the
geometry is treated correctly and, in addition,
compare the initial transients which are difficult
to calculate analytically. It is of some importance
to establish that the lowest-order amplitude equa-
tions quantitatively describe dislocation motion
even if they could not be treated analytically.

To set the scale for what can be expected quan-
titatively from Eq. (2.1), it is useful to cite in
physical units the values it gives with an ideal
pattern for the Nusselt number, N=1+2e, the
mean-square vorticity along the roll axis (uP)
= —", g'&, and the ratio of the mean-square temper-
ature in the fundamental mode to (ur,), 9v /2.
The correct numbers are 1.33, 272.0, and 44.4
for g =0.2, and 1.67, 712.0, and 44.4 for g =0.5.
One does quite well on the vorticity or velocity but

rather poorly on the Nusselt number, especially
since one should compare N-1.

The defect position as a function of time is
shown in Fig. 4 for E =0.5 and 13 -12 rolls.
For t ~ 1, the two codes gave quite different re-
sults since they were initialized differently. The
deaccelerating motion for 2 ~ t& 7 looks quite
similar in that a shift of y(0) and a change in
scale would bring the curves into coincidence.
The velocity is effectively constant in both cases
for t&7, and it is these numbers that appear in
Table III. For the more compressed systems
such as 5-4 rolls, the velocity is constant for
t &2.

When the entries in Table III are inspected,
the accuracy of Eq. (2.1) obviously improves as
L, increases for small &. The agreement at
E = 1.0 for 5-4 rolls is obviously fortuitous.
Any of the discrepancies in Table III could be
rationalized, it appears, by supposing that
higher-order terms in e modify the coefficients
in Eq. (2.1) yet preserve the feature that it is
derivable from a potential. More elaborate ex-
pansions would be justified in our view only if
there was clear evidence that the motion was not
relaxational in the sense of Eqs. (2.2) and (2.3).

III. ANALYTIC SOLUTION OF THE AMPLITUDE
EQUATION

The numerical simulations in the preceding sec-
tion brought to light two qualitative features of a

IO

time
20

FIG. 4. Plot of position y vs time for the lower of a
pair of defects placed in a box with. a=0.5, P„=~, and
L„=L„=24&2=12+. The pattern into which the addition-
al roll was introduced contained 12 rolls across, i.e. ,
q= qo. The upper curve is from a numerical solution of
the amplitude equation (2.1) and the lower one was de-
rived from the Boussinesq equations.

dislocation's motion that merit explanation, '

namely, that the velocity is nearly constant and
independent of a for E c 1. The former property
might suggest that the dynamics is generated
locally, i.e. , in the core region and is indepen-
dent of any "interaction" the defect might have
with its counterpart within the box or their images
created by the periodic boundary conditions. The
insensitivity to 6 is surprising since one expects
all motions to become more sluggish as &-0.

Let us assume that the lowest-order amplitude
equation correctly describes a defect near onset
and imagine working in an infinite system with
some compression 5q = q —qa &0. (A negative
compression 5q&0 for p» 1 leads to an instability
of the basic roll pattern. ) Actually if e and 5q are the

only parameters to enter the amplitude equation,
and if the defect velocity v is independent of e,
v must vary as 5q . In this section we will
demonstrate this relationship, and show under
what circumstances the interaction with other
defects and walls is indeed negligible. Within a
linearized theory we will calculate the numerical
value of v and the envelope of the perturbed flow
field around the defect.

The nature of the mathematical problem we face
is to go from a nonlinear field theory, which in
principle contains everything known about the
dynamics outside of the core region, to equations
of motion for the point defects. In other situa-
tions where this type of problem arises, such as
in the representation of the two-dimensional
Euler equations by point vortices, the equation
of motion for the points follows from their con-
vection by the local velocity field. In crystals
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f 8A 1 BE
~

—
~

dxdy=- ——,
2 at

(3.1}

where A(z, y, i) is a solution to (2.1) and F is the
numerical value of the functional in (2.3) evalua-
ted for A =A(x, y, t). If F were interpreted as
twice an energy, then (3.1) simply says that for
overdamped motion, the rate of energy dissipa-
tipn equals the rate of decrease of potential en-
ergy. If, furthermore, E depends on t only
through y+- y, then BF/Bt = 2vBF/B(y. -y) (v-
&0) which is merely the statement that power
equals force times velocity.

Since Eq. (2.1) is relaxational in character,
it is natural to suppose that if v could be made
small enough, the surfaces of constant F in
function space would contain a pronounced valley
with a gently sloping floor. The position of the
defect parameterizes points along the valley and
as v-0, all other degrees of freedom relax to
values conditioned by the presence of a station-
ary defect. Elements of this picture will emerge
in the analysis to follow.

In the absence of defects, the stationary solu-
tion of Eq. (2.1) is A, = (1 —5q )'~ e'"*. When a
dislocation is present we set A = A,e'e'*"' [1
+u(x, y, t)], where 9 and u are real fields. We
assume that Ve and I are small sufficiently far

where dislocation motion is of some technical
importance, the applicable theory assumes re-
laxational motion in response to an elastic strain
energy. The closest analog to our problem,
and one that has not been addressed to the best
of our knowledge, arises in magnetic systems
where the dynamics of the local spin density is
known at the level of mode coupling. One could
then ask from this field theory, how do topological
singularities in the spin configuration move about.

In analogy to our numerical work, let us special-
ize to the case of two defects at @=0, y = y, in an
infinite compressed roll pattern. When 5q &0,
they will move toward each other with velocities
Byj'Bf = vv. The second defect is more a conven-
ience than a necessity, and a distant wall would
serve equally well. Our initial configuration
could be created by inserting an extra roll pair
of length y, —y into an ordered array. To simp-
lify the analysis we will assume 5q «1 and 5q

'
«y+- y . We will work in the dimensionless
scaled units of (2.1) until a final form for v is ob-
tained, whereupon the dimensional scales appro-
priate to rigid or free-slip boundary conditions
from Table I will be restored [see (3.11b}].

Our solution proceeds in two steps. We first
find the perturbed flow field around a defect re-
taining v as a parameter and then determine v

from the formally exact equation:

from the defect and linearize Eq. (2.1) around
Ap'.

Bu =-2(1—5q )u —25q B„+1„~,89

Bu B'9 B29 B49

(3.2a)

(s.2b)

&9 dl = +2m, (3.3)

implying that an extra roll pair was inserted
between y =y, . To work with a single-valued
function 6 it is convenient to introduce a branch
cut along y ~y ~y+, x= 0. The function 9 ex-
hibits a jump discontinuity of size 2v across the
cut.

In the limit 5q-0 the coupling to u in (3.2b) which
gives rise to the Eckhaus instability for 1-35q
=0 may be omitted. We have finally

89 8 9 8'9 8'9
~t ex2 +25q 2

—
4By Qy

B5(z)
[&(y-y )-n(y-y-)]ex (s.4)

The singular term involving the step function g,
[p(y &0) =0, p(y &0) = 1] was inserted to make 9
single valued and facilitate the use of Fourier
transforms. Equation (3.4) clearly is the super-
position of contributions from two defects with
opposite signs at y =y, .

It will be useful in what follows to display the
static deformation 9(x, y) due to a single defect
at x= y = 0 obtained by setting B9/Bt =0 in (3.4).
For y» 5q or x» 5q

(S.sa}

i.e. , 9 is just the angle itself measured in scaled
units. In the other limit,

9= —sgn(x) erf +1
&4txI (3.5b)

We shall refer to the first regime as the x- y
limit and to Eq. (3.5b) as the smectic limit. The
crossover between these two regimes is illus-

A. number of higher-order gradients that will be
irrelevant t:o the linearized analysis for 5q-0
were omitted in (3.2a) and (3.2b). The nonlinear
terms in V9, T», will be discussed below.

While A must be single valued throughout space,
9 need not be; and J„(V9)'dl counts the number
of rolls traversed on a path from A to B, reckoned
with respect to the compressed background. Thus,
for a path encircling either of the defects at y,
one finds, respectively,
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X-f

FIG. 5. An illustration of the x-y and smectic domains
for the envelope of flow field around a defect at x=y =0.
Nonlinear terms cannot be neglected near either of the
crossover lines, yv6q- 1 or x5q-1. In addition, non-
linear terms are important below the parabola, y =4g,
for 1«x «aq~.

trated in Fig. 5.
Equation (3.4} can be solved in a number of

ways, ' in particular, one can invert the homogen-
eous part of the equation onto the inhomogeneous
term and express 8 as an integral over y, at
earlier times. For our purposes, it will be
easier to assume y,(t) is linear in f and examine
the validity of this ansatz later,

y,(t) = ~y p ~ vt . (3.6}

f'( y} f ( -y}. (s.vb)

Equation (3.4) may then be rescaled so as to elim-
inate 5q, i.e, let »-»/5q, y-y/5q', and t
-t/5q, whereupon we find that v only occurs in

the combination v/5q / . This reduction continues
to hold in the presence of nonlinear terms in Ve
as is apparent from the form of the gradients in
(2.3).

The left-hand side of (3.1}is most easily der-
ived from (3.4) by Fourier transforming in both
space and time. One finds,

Equations (3.4) and (3.6) then allow for solutions,
which can be written as the superposition of con-
tributions from two defects, each depending on
time only through y,(t), i.e. ,

e(» y ~) =f'(» y
—y.(&))+f (» y

—y-(&)) (3 7a}

with

The term arising from J (su/st), as well as the
higher gradients that were omitted from (3.4) are
of higher order in 5q than the terms we retained
in (3.8). Note that for 5q -0, the integral in (3.6)
is naturally limited to wave numbers «qp so that
the amplitude equations should apply quantitatively
throughout the range of integration. Retention of
the fourth-order derivative S /sy, in (3.2b) was
necessary to guarantee the convergence of (3.8b}
for large momenta. Similarly, if v were set to
zero in (3.8b), the integral would diverge at
long wavelengths. This divergence is in part a
manifestation of the diffusive form of Eq. (2.1),
which implies that no matter how slowly the de-
fect moves, there'will always be slower modes
present in the surrounding medium at long wave-

lengths.
To the same order as (3.4), E becomes

(S.Sa)

18F SU(y. —y }
2 Bt

--—= 4m5qv —2v
s(y. —y-}

(3.9b)

The linear term, proportional to 5q in (3.9b) is
analogous to what one would find in an elastic solid
under a positive external pressure if an extra row

of atoms was inserted. It arises because se/s»
is singular at »=0 for y ~y ~y„ i.e. , se/8»
=22/5(»}I2)(y —y,) —2)(y —y )]. (Alternatively, one

could dispense with the singularity by introducing

a branch cut between y = y, to keep 8 single val-
ued. The contribution to F is of course un-

changed. ) The potential U in (3.9b} arises from
the quadratic terms in (3.9a) and will be displayed
below. The defect's velocity v is not constant
only when the potential term is comparable to
the first term in (3.9b) which in practice means

(y, —
y }5q'/ -1. During most of our simulations,

and certainly whenever we extracted a velocity,
the potential term in (3.9b) was no more than

5-10%%uo of the total.
If U can be neglected, if follows from (3.1)

(3.Sb), and (3.9b) that n = v /(85q ) satisfies the

equation

J
f 8+ Be

dxdy = —dxdy (S.sa,)
et Bt

=2v 2 k dkdp
(k +25qp +p ) +v p

2v - k dkdp
V'25q (k'+ P +P ) + v p /(S5q )

(3.Sb)

or

dg
Q2 ~ f

4 + [f
2 + (p2 + f 4)2]2/2}1 /2 =

v =P5q

p=1.4V .

(s.10)

(3.11a,)
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The value of p given in (3.1la) was derived from
(3.10) and is distinctly different from P =0.84
found from the numerical solutions of (2.1). In
physical units, z=d= 1, we then find from Table I
for either free-slip or rigid boundaries

v = P('„5q' '/(v'2qo&) . (3.11b)

Note that v is positive in (3.11b), i.e. , 5q &0
and the defects approach each other. In addition,
the dependence of the length and time scale fac-
tors on e cancels in (3.11b}. The best fit of P to
the simulations of (2.1) will be discussed below,
but is listed below (3.1la) for completeness.

It follows from Eq. (3.10) and the scaling,
v-5q in (3.11a), that it is not possible to elim-
inate v from (3.8b) or in fact treat the correc-
tions to the static solution perturbatively by let-
ting 5q-0.

Within the linearized theory defined by (3.4}, it
is of some interest to explicitly calculate e(x, y, t)
and hence the envelope function A =
(1-5q ) t e'~"e'e for a single defect in isolation
or about either member of the pair considered
above, provided (y, -y }5q't »1. With a suit-
able choice of origin and assuming an extra roll
was inserted along y&0 at t=0, we can write
e(x, y, t) =f (x, y —vt), with v &0 (3.7). It is
then convenient to define x=25qx, y = v'25q(y —vt},
and v = (25q)' 'v a and to calculate

" exp[- iyl (k'+ a/4)'"], -dk
(k2+ a/4)i ~2

(S.ISa)

,'v-'"-a'"xy '"exp[-Wa(y+ ~y ~)/2].

(3.14)

Thus, in the direction the defect is advancing,
BI/sx is exponentially small, whereas it decays
algebraically in the region diametrically oppo-
site. Equation (3.14) should be contrasted with
the static solution

8I -x
8» «2+ «2x x y

(3.15)

which applies for all x, y» 1. Ahead of the ad-
vancing defect e is effectively zero, while behind
it is larger than the static solution.

For the calculation of the. potential U in Eq.
(3.9b) the time-dependent envelope function
e(x, y, t) should be used. It is then convenient to
perform a partial integration,

I=exp[-(y+ )x))Ma/2]

J ig' sin[ly I (X +0 eX) ]
&& e, 2+~,, t2 d& ) (3.13b)

0 (A. + nX)

which facilitate the development of asymptotic
expansions.

F» lxl" lyl one finds

where

aI
By Bg (S.12b)

t'8' a' a4
2 +2&q 2

—
4ev ~y

(3.16a)

(3.16b)

We again note that 5q does not appear in (3.12a)
and there is no physically reasonable way to re-
move v from the envelope f since a= p /8 is a
numerical constant, (3.11a).

When x, y «1 or k, ti» 1, it is clear from (3.12}
that derivatives of e revert to the smectic solu-
tion (3.5) with the substitution y - y

—vt. The en-
velope is, however, sensibly different from the
static solution in the long-wavelength or x- y
limit. When either x»1 or y»1 it is possible
to drop ti from the denominator of (3.12a) and
rewrite I in either of the following two equivalent
forms,

(S.17a)U= U) + U2,

Ui —--', dx(f +f )2v (x)—
ax

&& [i)(y —y,(t)) —i)(y —y (t))], (3.17b)

U2
——~ dx +f v — -f

By
(3.17c)

Actually only the derivative s U/s(y, —y-) is
needed for our calculations. The first contribu-
tion,

and use Eq. (3.4) and (3.7) to rewrite U in the fol-
lowing way:

sUi 8
dy, „,, [f'n(y-y (t})+f&(y-y, «}}]- (3.18)

is negligible in the limit (y, —y )»5q, since the integration in Eq. (3.18) covers only those regions
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where the envelope f (f') is reduced by an exponential factor exp[-v'2a5q(y —
y }jfor y &y (exp[-42a5q(y,

—y)j for y &y. ). Therefore, the second term

8 U, f (fB-)(sf'l~

dominates the potential U. It is easily evaluated in the x- y limit with the result

8U 8U,
s(y. —

y ) s(y, —y ) t(y. —y ))

(3.19)

(3.20)

If instead of the time-dependent envelope function we had used the static solution to calculate the po-
tential, we would have found

s U (25q+ p )p, ~(,, , )

( )
——-2v™ dp (25 + )

(3.21)

For (y, —y ) &0 the contour of integration has to
be chosen such that 0 &arg p &w/4. In the x-y
limit one recovers from (3.21) the well-known
logarithmic interaction, i.e. ,

8U — 1
( )

=-2vv 25q
( )

(3.22)

As compared with Eq. (3.20), the static interac-
tion falls off more rapidly by a factor (y, —

y ) ~ .
In the smectic limit the static potential U-0. It
seems plausible that this result also holds for the
potential calculated with the time-dependent en-
velope, since in the limit x, y «1 the solution
should become independent of Wa [see for ex-
ample, Eq. (3.12a)j.

While the linearized equation (3.4} permitted us
to arrive at an explicit solution, it is not internally
consistent. Among the nonlinear terms omitted
from (3.4) are those involving v8 in (3.2b},

898e Bg 88 89 8e
8& 8y 8y 8&8y 8y 8y

(3.23)

If we use the linear solution (3.5) to estimate
(3.23) in the smectic limit x«1, y /x&1, and
x, y» 1, one finds (88/sy) (s 8/sxsy) exceeds the
linear terms we retained while (88/sy} (s'8/sy')
is of the same order. In the g-y limit g, y» 1, the
nonlinear terms are indeed smaller than those
we retained and (3.12a) stands. For x-0, y &0,
(3.23) is of the same order as the next to leading
term in (3.14). When the left-hand side of (3.1)
is computed from f ( S8/tS) dxdy, the regions
z-1 or y -1 about each defect dominate the in-
tegral and one must suppose that if the correct
nonlinear solution were used in place of (3.4), the
integral in (3.8b) would change by an amount of
order 1. The other side of (3.1) will be un-
changed to the extent that F is dominated by the
linear term 4v5q(y, —y ). The dimensionless fac-
tor P in (S.lla) is thus only approximate and not

systematic in any small parameter. The scal-
ing of v, contained in (3.10)-(3.11), we again
remind the reader, remains unaltered, if non-
linear terms are taken into account.

Our analytic solution is of course only valid in
the limit 5q «1 while to compare with any of our
numerical simulations, one must also insist that
5q» 2v(„/L, The se. cond restriction could be
lifted if the analytic theory were redone with per-
iodic boundary conditions in x. This has not
been done systematically, though it is plausible
that the coefficient of the term in F linear in
y. —y will be enhanced when the boundary condi-
tions prevent the roll pattern from relaxing fully
in the x direction. It is less obvious how the
5q ~ factor from (3.8b) is modified by periodic
boundary conditions.

%e have found empirically that the best fit to
the velocity data from the amplitude equation is
obtained if we set 5q+qo ——2v(n+ I)/L, in (3.11b).
This definition was then used to extract the num-
erical value of p cited below (3.11a}from the datain
Table IV. Even though the largest compressions
tabulated there are not much below the cutoff im-
posed by the Eckhaus instability, the relation v- 5q remains valid.

To summarize then, we have shown that the de-
fect velocity scales as 5q and is independent of
4 even when the nonlinear terms in Ve are in-
cluded. Our theory does not rule out a dependence
of the velocity, in physical units, on c when 5q

TABLE IV. The dependence of the defect velocity,
in physical units K =d=1, on compression from simu-
lations of the amplitude equation for e= 0.5 and L
= 32k,p. The wave number of the pattern before the
defect is introduced is sq0/32 and dq + q 0

——(S + 1)qo/$2.
A comparable run with I &= 12Xp and + + 1= 13 14, 15
gave v/5qs 1 13» 1,60s 1 57 ~

n +1 34 35 36 37 38 39
p/Qq 1.61 1.60 1.61 1.64 1.68 1.72



l048 ERIC D. SIGGIA AND ANNETTE ZIPPELIUS 24

is not small, for instance near the point of Eck-
haus instability, although numerically this did not
occur. The key step in the demonstration was the
observation that the compressional term in BE/
8(y, —y ) dominated the remaining terms that de-
pended explicitly on the separation. By the same
token, interaction effects that would lead to a
variable v are small. A correct calculation of
the coefficient of proportionality between v and
5q requires the solution of a nonlinear equation
and has not been attempted. In order to compare
with laboratory experiments, one should use
(3.lib) with the constant P determined numerically
from Table IV and the scale factors appropriate
to rigid boundaries from Table I.

It is not out of the question that the Prandtl num-
ber dependence of v could also be established
analytically. By continuing the expansion that
gave rise to (2.1), one would eventually find the
field &u, generated by a defect solution to (2.1).
Since only one bifurcation has taken place, there
can be only one free-envelope function. To un-
derstand how ~, reacts back on the defect of
course requires the higher-order corrections to
(2.1) which are no longer purely relaxational in
character. Clearly, convective effects must
enter. There are in fact well-known propagating,
solitonlike solutions to the two-dimensional Euler
equations consisting of two blobs of vorticity of
opposite sign that rather resemble v, in Fig. 1. '
The familiar problem of two-point vortices of
opposite sign is simply one limit of these more
general finite area vortex solutions. Some way
has to be found for a single envelope solution,
A(x, y —vt), to decompose v into a convective
piece that would follow from co, and the potential
contribution (3.11) that has already been found.

IV. CONCLUSION

Our numerical experiments and theory leave one
with a rather different understanding of the mech-
anism and systematics of dislocation motion than
what one might have inferred from Whitehead's
experiments alone. ' Several remarks are in or-
der . Whitehead worked in the range 1 & e ~ 20 and
had appreciable scatter at the lower end of this
seal. e, whereas we concentrated on e ~ 1 in order
to compare with analytic theory. Our velocities
in Table III for e = 1,2, 4 are, however, by no
means linear though our values are comparable to
Whitehead's for e -1, P -100. There is no hard
argument why free-slip and rigid boundary condi-
tions should give similar results except at low e
where an amplitude expansion is valid. For large
P', however, we see no physical reason for a
qualitative difference that could be attributed to

the boundary conditions below e of order 10, at
which point other secondary instabilities occur.

It is also possible that convective effects as-
sociated with the vertical vorticity determine the
defect velocity for moderate P and e ~ 1 as White-
head conjectured. The amplitude equation clearly
cannot account for the Prandtl number dependence
of the velocities for P ~ 60 and a=0.5 in Table II.
There is also evidence that the infinite Prandtl
number limit is not approached uniformly in &.

The most obvious difference between our exper-
iments and Whitehead's is the choice of initial
conditions. Some care is required for e -1 to
obtain two wavelengths in the ratio of 2:3 that are
both stable. Our attempts in this direction for P
=~ while not systematic, gave much lower veloc-
ities than we otherwise found- and more in line
with Whitehead's numbers at P =10' scaled down
to e -1. We interpret our results by analogy to
what we found in a larger system, 7++6 rolls,
when the background was dilated. There, the
velocity decreased and ultimately changed sign
which we take as an indication that there is some
wavelength that minimizes the potential F. The
system will add or expel an extra roll if it can
thereby lower F. When we ran 3~2 rolls, the
two wavelengths involved, we infer, simply strad-
dled the optimal one and resulted in a small vel-
ocity. This explanation will not suffice for Whit—
head's data, since a rather large range of e was
explored, but clearly the initial configuration is
an important determinant of the subsequent be-
havior and it would be interesting to see this para-
meter varied in future laboratory experiments.

Our defects were always observed to move par-
allel to the local roll axis. In the metallurgical
literature this motion would be termed climb while
motion perpendicular to the axis of the extra roll
is called glide. ' Glide motion could possibly be
observed by preparing an initial configuration,
which could only relax by dislocation glide.

Any laboratory experiment is necessarily per-
formed in a finite container with rigid sidewalls.
It has recently been shown that the presence of
lateral boundaries severely restricts the possible
stationary states of convection in two dimensions. '4
The dynamical means of adjusting the roll wave-
length implicit in Ref. 14 is lateral, diffusion fol-
lowed by annihilation or creation of a roll at the
wal. l. To lowest order in e, the theory of Ref. 14
predicts a unique state at q =q, + p(Wc) while our
calculation, to the same order in e, suggests that
a defect will move in such a direction so as to
push the roll pattern toward q=qo Our analytic
calculation in Sec. III should also apply to an ex-
tra roll segment normal to a wall provided it ex-
ceeds (, in length.
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To next order in g'i" for large &, Ref. 14 pre-
dicts there will be a band of stationary states with

q —q, -o(e) that, bracketq, . To this order in',
the dynamics are no longer purely relaxational
and we have no analytical evidence for how the

sign of the dislocation's velocity depends on q —qo.
A. Priori, we see no reason why the defect must

push the system toward the stationary states found

in two dimensions. " To the extent it does not,
and if a way can be found to nucleate new defects,
one might conceivably have a source of low-fre-
quency noise 's

It does seem clear that starting from imposed
initial conditions, the presence of walls is only

manifest on the scale of a lateral diffusion time.
Since defects move ballistically, there should be
a window of times in a large container during

which defects can be studied free of interference
from the walls. To compare with theory, it
seems essential to control the initial conditions by

imposing an ordered roll pattern with a fixed
wavelength as discussed by Chen and Whitehead. "
It would also be quite sensible to study defects in

the presence of walls numerically by solving the

amplitude equations with appropriate boundary
conditions .

Several experimental groups have searched for
systems analogous to Rayleigh-Benard convection
that wouM enable them to observe pattern changes

on shorter time scales than is possible with the

Boussinesq equations and to work with larger as-
pect ratios." We claim, however, that if one is
willing to initialize with an imposed planform,
there is a range of interesting effects to be seen

on times of order several hundred vertical ther-

mal diffusion times. In particular, the defect
velocities we found. in Eq. (3.11b) for rigid bound-

aries, v=1.05q'~' with P=0.84, P=~, and in

units a =d= 1, should be readily observable for a
wide range of parameters. Laboratory verifi-
cation of (3.11b) would be a more sensitive test of

the amplitude equations than other recent experi-
ments have provided. " It also seems quite feasi-
ble to build a well regulated cell that is compara-
ble in size to what we could comfortably simulate
numerically near onset, 68 x 34 & 1. The strongest
argument in favor of convection is 100 years of

experience with the wealth of phenomena that can
arise from such a simple statically stressed non-

linear system.
Note added in proof. We have recently shown

that the amplitude equation to the order considered
in Ref. 4 is incomplete and misleading for free-
slip boundaries and small to moderate Prandtl
numbers. The theory of Sec. III is only correct
for large P.
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