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Collisions of very heavy ions at energies close to the Coulomb barrier are discussed as a unique tool to study the

behavior of the electron-positron field in the presence of strong external electromagnetic fields. To calculate the

excitation processes induced by the collision dynamics, a semiclassical model is employed and adapted to describe

the field-theoretical many-particle system. An expansion in the adiabatic molecular basis is chosen. Energies and

matrix elements are calculated using the monopole approximation. In a supercritical (Z, + Z, 173) quasiatomic

system the 1s level joins the antiparticle continuum and becomes a resonance, rendering the neutral vacuum state

unstable. Several methods of treating the corresponding time-dependent problem are discussed. A projection-

operator technique is introduced for a fully dynamical treatment of the resonance. Positron excitation rates in s»,
and p „,states are obtained by numerical solution of the coupled-channel equations and are compared with results

from first- plus second-order perturbation theory. Calculations are performed for subcritical and supercritical

collisions of Pb-Pb, Pb-U, U-U, and U-Cf. Strong relativistic deformations of the wave functions and the growing

contributions from inner-shell bound states lead to a very steep Z dependence of positron production. The results are

compared with available data from experiments done at GSI. Correlations between electrons and positrons are

briefly discussed.

I. INTRODUCTION

The peculiarities of the behavior of electrons in

strong external electromagnetic fields'~ have at-
tracted continuous interest ever since the beginn-
ings of relativistic quantum mechanics. 'The an-
omalous behavior of reflection and transmission
coefficients for electrons incident on a potential
barrier higher than 2mc' became known as Klein's
paradox. ' Responsible for this effect is the mixing
between positive- and negative-frequency solutions
which leads to the creation of electron-positron
pairs. ' " This is most simply understood in Di-
rac's hol'e picture: An electron from the totally
occupied negative continuum can be set free by
tunneling through the gap, leaving a hole, i.e. ,
positron behind. Strong electric fields which ex-
tend over a sufficiently large area of space can
continuously produce pairs. "

Related to this phenomenon is the problem of a
strong and localized potential well, the physics of
which has been fully understood for only a decade.
Let us think of the stationary potential well pro-
duced by the Coulomb field of an extended heavy
nucleus. With increasing strength of the potential
the energies of all bound states decrease steadily.
At Z = 150 (assuming normal nuclear density) the
1s state obtains negative total energy and at Z„
= 172 (Refs. 10 and 14-16) it enters the negative
energy continuum Eis~ mc'. At this point the
spectrum of eigenstates of the Dirac equation is
subject to a characteristic change. The 1s state

becomes a resonance, which decays spontaneously
by emission of two (due to spin degeneracy} posi-
trons if it were prepared empty. The new stable
ground state of the system consists of the nu-
cleus plus two electrons in the K shell; it is called
the charged vacuum. '"" 'The experimental ex-
ploration of this new phenomenon would constitute
an important test of the theory of quantum electro-
dynamics (@ED}in the region of strong fields.

Interest in this area was nourished by specula-
tions on the existence of superheavy nuclei. Un-
fortunately nuclei with sufficiently high charge
(Z& 172 for normal density, Z & 137 for pointlike
charge) have not been found and probably do not
exist. The only known way to assemble a super-
critical charge at least for a limited period of
time is in collisions of very heavy ions, where
charges up to Z, +Z, = 190 can be reached. In
such scattering experiments, however, the dy-
namics of the collision becomes extremely im-
portant. 'The time scale must be sufficiently long
to allow the electrons (positrons) to adjust to the
variation of the combined Coulomb field of the two
nuclei. Since typical velocities required to bring
the nuclei closely together are about v/c = 0.1, an
adiabatic description is meaningful only for fast
moving electrons. When the total nuclear charge
exceeds the inverse fine-structure constant
(Z, +Z,}n& 1 the electronic wave functions are
very sensitive to the internuclear distance R(t).
This is related to the well-known singularity of
the solutions of the relativistic point-nucleus
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problem at Z = I/o! = 137, where the wave functions
of all s, &, and pg]2 states are found to collapse
(for a further discussion of this problem see also
Ref. 19). Owing to this effect the nuclear motion
induces strong excitations which give rise to the
formation of inner-shell holes and to the emission
of 5 electrons and positrons.

Over the last several years various aspects of
the excitation process in collisions of very highly
charged systems have been investigated. The re-
sults of recent experiments, mostly performed at
GSI (Darmstadt), are in general agreement with
theoretical predictions. In the present article we
will concentrate on positron creation. In particu-
lar, our aim is to give an adequate description of
this process in collisions of very heavy ions.
Pair creation in charged-particle collisions has
been extensively investigated using Born approxi-
mation or the Weizsacker-Williams approxima-
tion which are applicable to collisions of light
particles or at highly relativistic energies. In
the case of heavy particles colliding at "low" ve-
locities, however, the use of the Born approxima-
tion is unjustified. This was demonstrated by the
experimental disproof of the validity of the Heitler-
Nordheim formula"'" in proton-nucleus colli-
sions. "'" As shown in Refs. 24 and 25 the nuclear
Coulomb repulsion greatly reduces pair cross
sections.

Even more important for our problem is the cor-
rect treatment of the distortion of electron and
positron states in the Coulomb field of the two nu-
clei as discussed above. As a consequence, the
'rate for direct. pair production grows very rapidly
with increasing nuclear charge in the superheavy
region. This has to be compared with the Z,'Z,'
dependence deduced from the lowest-order Feyn-
man diagram. Furthermore the role of inner-
shell bound states (in particular Is and 2p», }be-
comes increasingly important if Z, +Z, approaches
Z„. These may act as intermediate states in
multistep excitations or (in the still hypothetical
collisions of naked nuclei) be the dominant final
states for the created electron.

In the following we will first describe the quasi-
molecular model for electronic excitations using
the independent-electron approximation. - Proper-
ties of the resulting amplitudes are discussed and
their use in the calculation of pair creation is
demonstrated. In Sec. III we will discuss the
special problems arising in the case of supercri-
tical collisions (Z, +Z,&Z„). We introduce a
method to treat the time-dependent resonance
which is based on a projection-operator technique
(Sec. IV). Preliminary accounts of this theory
have been given in Refs. 26 and 2V. The final sec-
tions contain details of the model employed and

the numerical results for positron creation in sev-
eral collision systems, which are compared with
currently available experimental data. If not
stated otherwise, we will use natural units, 5= m,
=c=1, i.e., energies are measured in mujtiples
of 511.004 keg and lengths in multiples of the
Compton wavelength of the electron 386.159 fm.

II. ELECTRONIC EXCITATIONS IN THE ADIABATIC
PICTURE

A vast number of methods and approximation
schemes has been developed to calculate electron-
ic-excitation processes in atomic collisions (see,
e.g. , Refs. 28-30}. Until recently the theory of
excitations in collisions of very heavy ions has
received comparatively little attention due to com-
putational difficulties and lack of experimental
data. In the present work we are interested in the
creation of positrons in collisions of very heavy
ions at energies comparable to the nuclear Cou-
lomb barrier. As implied already in the motiva-
tion given in the first section, these collisions
are characterized by the coherent action of the
combined nuclear Coulomb centers. Under these
conditions first-order perturbational calculations
are not sufficient. In particular, a correct de-
scription of inner-shell bound states becomes
essential. Therefore we have to develop a theory
which treats electronic bound states and positrons
in a unified manner and allows for multiple exci-
tations.

'The nuclear motion will be treated classically
throughout, since the Bohr-Sommerfeld parame-
ter g =Z,Z,e'/Rv is very large compared to unity
for the envisaged systems. Furthermore the ener-
gy transferred to the electron-positron field can
be neglected compared to the nuclear kinetic en-
ergy. In the semiclassical approximation the nu-
clei are treated as sources of a time-dependent
external potential. Since the interesting excita-
tions occur predominantly at small internuclear
distances, Rutherford trajectories have to be
used to describe the nuclear motion. As usual,
the electronic wave function is expanded in a com-
plete set of basis states. The scattering problem
thereby is reduced to an infinite system of coupled
differential equations iri time, which may be
solved numerically after truncation of the basis.
For electrons moving relativistically the nuclear
motion is "slow", v/c c 0.1, so that an adiabatic
basis set of molecular two-center Dirac (TCD)
solutions will lead to the best convergence. The
actual calculations will be performed using the
monopole approximation to the two-center wave
functions.

In the following we will write the coupled differ-
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ential equations governing the time development
of the one-electron occupation amplitudes. Next,
various useful symmetry relations between these
amplitudes are discussed. Finally, using the
language of second quantization, we will demon-
strate how the single-particle amplitudes are re-
lated to production rates of electrons, holes, and
positrons.

iX—C,.(t}= H„,(R( i))e,.(f), (2.1)

with the two-center Hamiltonian

HTcn= n '
[p —eX(r, R(t))]+ eV(r, R(t))+Pm .

(2.2)

If the electron occupies a definite atomic state Q,.
before the collision, Eq. (2.1) has to be solved
with the boundary condition tfj(')(I - -~)- p;. The
final amplitude for the excitation of a particular
state is given by the overlap of its wave function
with 4,"(I ~). In the absence of incident photons
the electromagnetic potential (X,V) can be calcu-
lated from the current generated by the moving
nuclei, i.e. ,

(,dt)= fD (rt; ', t')j„( ',,t')d r dt , (2.3)'''
where D is the retarded Green's function of the
wave equation. In the Coulomb gauge the timelike
component reduces to the instantaneous interaction

(2.4)

assuming, for shortness, point nuclei. The mag-
netic" and retardation" effects contained in the
vector potential X will be neglected since they are
of higher order in 6/c. A further investigation of
X in the Coulomb gauge and the resulting polariza-
tion effects has been given in Ref. 33.

A direct integration of the dynamical two-center
Dirac problem analogous to the case of p-H colli-
sions for the Schrodinger equation" up to now has
not been attempted. It would be very demanding
numerically, particularly if one were interested
in the energy spectra of emitted particles.
Instead, the time-dependent wave function C, (t)
is expanded in some complete set of basis states
4,(i)

4' (i) = p .(i)e (~) (2.5)

A. The coupled-channel equations

The wave function of a single electron moving in
the externally prescribed time-dependent electro-
magnetic field generated by the colliding nuclei is
determined by the Dirac equation

(2.6)

The value of tp is arbitrary, it defines the overall
phase of the amplitudes.

The resulting system of coupled differential
equations for the expansion amplitudes equivalent
to (2.1) is

a,.j= -ga, ,(Qj
I
6/Bt+iHI Q, (t))e '(xD~j') . (2.7)

In general, therefore, excitations are caused by
two kinds of coupling operators: B/Bt acting on
the parametric time dependence of the wave func-
tion, and H which may be nondiagonal in the basis

The time-derivative operator in (2.7) may be
split in a radial and a rotational part B /Bt -It B /BH
-iz ' j, where j is the electronic angular momen-
tum operator and (d the angular velocity of the in-
ternuclear axis.

If the basis set is nonorthogonal, (2.7) is modi-
fied to

g (y
I
y ) e -2 (x)t xj )a

(2.8)

To solve for a,.~ the coupling matrix has to be
multiplied by the inverse of the overlap matrix.

While in principle the set of equations (2.7) is
still exact, it can be solved only by approximation
methods so that the outcome of practical calcu-
lations depends critically on the chosen basis Q, .
Two special choices have been widely used.

(1) The atomic picture where the eigenstates of
the target atom are disturbed by the time-depen-
dent Coulomb field of the passing projectile. Ex-
cept for recoil effects only potential coupling is
present. The SCA (semiclassical approximation)
model, which was pioneered by Bang and Han-
steen, "has been successful in describing highly
asymmetric collisions. For slow or symmetric
collisions the adiabatic relaxation of the wave
functions becomes important and can be included
only approximately by binding-energy and polar-
ization corrections. A model for symmetric col-
lisions was proposed by Briggs, "who uses the
stationary states of the united atom limit as a
basis.

The summation here and in the following is un-
derstood to include integration over the continuous
parts of the spectrum. The phase factor )(,(t) is
conveniently chosen so as to eliminate the diagonal
matrix element of the Hamiltonian, i.e. ,
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(2) In slow near-symmetric collisions the quasi
molecular picture becomes applicable. The basis
consists of the eigenstates of the stationary two-
center problem

can be deduced in a similar way. It guarantees
the completeness of the set 4~ at any time if one
starts from a complete basis p~.

(iii) In a time-symmetric collision one has
also

Hrco(% )Pa = E~(R)P~ (2.9)
a,~(~) =a~, (~). (2.14)

B. Properties of the excitation amplitudes

The amplitudes a, ~(t} describing the transition
of an electron from state i to state j in the course
of the collision satisfy several useful symmetry
relations. These may be used for the reduction
of computational effort and for checks of the nu-
merical accuracy. All relations given are exact
if the solutions of the coupled differential equa-
tions are inserted, irrespective of the choice
and size of the basis. We start from the observa-
tion that the coupling matrix

entering (2.7) is anti-Hermitian (if an orthonormal
basis set is used):

Mgg
= —Mp+j.

(i) The orthonormality condition

(2.10}

a)*q t a)~ t =5]~ (2.11)

can be verified by differentiation with respect
to time and use of (2.7) and (2.10). This condition
implies the orthogonality of the set of wave func-
tions 4& at every instant of time

(4q (t)(4 g(t)}= 6)~, (2.12)

which could have been expected from the unitarity
of the time-development operator.

(ii) The identity

evaluated at each internuclear distance. The coup-
lings in the PSS (perturbed stationary state) model
are solely due to the s/st operator; as discussed
at length in Sec. IV, this will change in super-
critical collision. There the adiabatic 1g state
becomes unstable even without the imposition
of an external time dependence.

In the present work we are interested in close
collisions of very heavy systems. The nuclear
motion can be regarded as slow compared to the
relativistic velocities of the electrons in the inner-
most bound states, '6 which speaks in favor of the
adiabatic picture. A more detailed study of this
problem is given in Ref. 37 where the "optimal"
basis having a minimal excitation strength is
found to follow closely the adiabatic basis.

In contrast to (2.12) and (2.13) this identity is
valid only in the limit ]-~. It reflects the prin-
ciple of detailed balance which equates the transi-
tion rates in both directions of a given reaction
if the interaction is invariant under time reflec-
tion. Thus (2.14) is valid only for collisions with

a symmetric nuclear trajectory, i.e. , R(t}=R(-t}
and ~(t) =&/(-t) which holds for Coulomb scatter-
ing neglecting loss of energy and angular momen-
tum. In this case the coupling matrix elements
between the monopole basis states discussed below
satisfy

Mgg(t) = —MP~(- t), (2.15)

which leads to (2.14) if inserted in the complex
conjugate of the differential equation (2.7). In

general (2.15} is correct only up to a phase factor
and (2.14) holds only for the absolute values. "
This restriction applies also if the phases g, (t)
are not chosen symmetric with respect to & =0.

(iv} a,~( ) =pa„(0}a»(0). (2.16)

and the identification W,z(0, —~) =a&, (0), proves
(2.16). The identity shows that it is sufficient to
calculate the excitation amplitudes a,~(0) for the
incoming branch of the trajectory only. Equation
(2.16) is immediately generalized for time-
asymmetric collisions; the sets a„(0) and a»(0)
then have to be calculated for different kinematics.
An extension of this formalism and its use for
the calculation of electronic excitations in deep
inelastic collisions and for muon-induced fission
recently has been discussed by Muller and Ober-
acker. "

C. Excitations of the many-electron system

This equation holds under the same conditions
as (2.14). It can be derived using the time-devel-
opment operator defined by a,&(t) =W»(t, t,}a„(t,).
Because of (2.15) and (2.7), W satisfies the sym-
metry relation

w„(t, 0) =wp (-t, 0),

which together with the unitarity condition

(2.13) The discussion up to now was concerned with
single-electron excitations only. This is clearly
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Q d(' 4( l+&+ Q b 4((+)

f&F
(2.17)

where Cf" denotes a complete set of unquantized
A) Jl

wave functions and df and b, are creation oper-
ators for holes and annihilation operators for
particles, respectively. They are defined with
respect to the "Fermi level" F, the boundary
between initially occupied and empty states.

The operators b„bf, d, , and d'f satisfy the usual
fermionic anticommutation r. elations. Their
action on the Heisenberg state IF) is

d(IF) =0 for i(F, b, IF) =0 for i&F. . (2.18}

The equation of motion reads

ze A A 8
b C". a-z —C'&

eg i k i eg k (2.19}

therefore, the b„df become constant if the basis
4'f+' is identified with the set of solutions of the
time-dependent single-particle Dirac equation
(2.7). Since the basis 4' satisfies the boundary

Ag A

condition at t- — the number operators d fd„
b, b, do not describe physically observable par-

insufficient since many atomic electrons are
usually present at the beginning of a heavy-ion
collision. Furthermore, if pair creation is to
be described the antiparticle continuum must be
treated properly. In Dirac's hole picture all states
of the lower continuum are occupied by electrons.

It turns out, however, that the presence of
many electrons does not lead to any additional
problems if the electron-electron interaction is
neglected (or approximated by an effective single-
particle potential, Thomas- Fermi, Hartree-
Fock, etc. ). Under this approximation the elec-
trons can influence each other through the Pauli
exclusion. principle only. But since the time-
dependent wave functions 4(f' of two electrons
initially in different states remain orthogonal
throughout the collision, cf. Eq. (2.12), the Pauli
principle has no effect on the excitation rates. ""
If one is not interested in correlations between
several particles or holes, the excitation rates
are given by an incoherent summation of single-
particle transition probabilities. This remains
true also if the electron-electron interaction is
approximated by a mean screening potential
common to all electrons.

The many-particle aspects are most conven-
iently described in the language of second quan-
tization. Working in the Heisenberg picture we
introduce a constant state vector IF) defined by
the preparation of the collision system. The field

A

operator 4((x, t} which contains the dependence
on time is expanded in a Fock decomposition

ticles after the collision. Instead, one has to
employ a set which asymptotically correlates to
a definite final state of the separated system.
Using 4(,. ', the dynamic solutions of (2.1) satisfying
outgoing boundary condition, one has the alternate
expansion

Q d( 4(((+ Q b 4,()
f&F f &F

(2.20)

&, =(FIpb IF)= Q ln, I'
a&F

(2.22)

and the number of holes in a state below the Fermi
level i&F is

0&F
(2.23)

These simple results contain a summation over
all possible many-electron configurations with a
particle (hole) in the level i. If one is interested
in more detailed information on the final-state
additional coherent terms arise. ""The number
of correlated particle-hole pairs is given by the
expectation value of the product of number op-
erators

=N,. N)+ aq,. aq)
k&F

(2.24}

The same formula holds also in the case of par-
ticle-particle and hole-hole correlations if the
plus sign is replaced by a minus sign. The first
term of (2.24) describes statistical coincidences
while the sum contains coherent correlation ef-
fects. When the excitation rates are low, the
second term becomes dominant since the prob-
ability for multiple excitations decreases rapidly.
To analyze experiments which do not distinguish
between several states (e.g. , spin degeneracy}
additional incoherent terms have to be added. "
Electron-positron coincidences are discussed in
more detail in the Appendix.

Equating (2.17) and (2.20) yields a canonical trans-
formation between the two sets of particle and
hole operators, where the expansion coefficients
(4,' '

l4 (,."& are just the amplitudes a,.z(~) discussed
above

dt= g data„, + g b, a„. for i&F
y&F y&F

(2.21)

b, =g data„, + P b~a~,. for i&F.
y&F

The number of particles created in a state above
the Fermi level i~F is
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III. DYNAMICAL TREATMENT OF SUPERCRITICAL
COLLISIONS

The theoretical discussion up to now has been
limited to subcritical collisons where the energy
eigenvalues of the adiabatic electronic bound states
a,re confined to the gap region -mc (E&mc . In

supercritical collisions, the deepest bound state
joins the lower continuum and becomes a reso-
nance. In the static limit, a hole brought into this
state will decay spontaneously by positron emis-
sion leaving a stable filled atomic K shell. ' The
lifetime of the resonance is of the order 10 "s
and therefore considerably larger than the col-
lision time (=2 x 10" s for U-U collisions with

r &R„) Exci.tations induced by the nuclear motion
will be of eminent importance. Therefore a for-
malism is required which describes dynamical
excitations and at the same time accounts for the
resonance character of the supercritical state.

The coupled differential equations (2.7) are not

directly applicable to this situation: In the region

if i
&t„ the 1so state together with its amplitude

disappears from the set of discrete states. In-
stead, the radial coupling matrix elements in-
volving the lower continuum develop very strong
and narrow (few keV) maxima near the (time-
dependent) position of the resonance. These cou-
plings are not suitable for numerical treatment.
In the following we will briefly discuss several
possible methods of t;reating excitations involving
the time-dependent resonance and illustrate the
difficulties encountered. A projection method
which seems to be best suited for practical cal-
culations will be introduced and developed in

detail in the next section.
(i) The static approximation. Here one assumes

an undisturbed decay of the resonance taking

place at each point of the trajectory. The transi-
tion rate is proportional to the decay width I'(t)
which is determined parametrically by the nuclear
motion. "" This approximation is insufficient;
it does not take into account the finite oscillations
of the phase factor in (2.7). Coherence of hole

excitation and positron emission and, most im-
portant, the consequences of dynamical broadening
may not be neglected.

(ii) Discretization of the continuum. When using
the adiabatic basis in the supercritical case the
1so state is represented by a narrow resonance
in the negative energy continuum. In any num-

erical calculation with a reasonable mesh size
the resonance position will only accidentally
coincide with a grid point making a straightforward
solution of the coupled-channel equations impos-
sible. To ensure the inclusion of the resonance
state at any internuclear distance R, the spec-

trum of the Dirac Hamiltonian could be dis-
cretized by imposing a boundary condition on the

wave functions at the surface of a sufficiently
large volume. As sketched schematically in Fig.
1, the 1so level then joins the lower continuum

as an additional state." Its wave function could
be traced by a series of avoided crossings with

very large radial coupling matrix elements. In

any collision with nonvanishing velocity a 1so
hole will follow the "diabatic" state. Only a minute
fraction of the number of holes will remain in

the continuum. Obviously it will be very difficult
to calculate this probability with any precision
using the discretized adiabatic basis.

(iii) Use of a subcritical basis Pr. oblems
associated with the dynamical treatment of the
resonance might be avoided by using a basis which

remains subcritical throughout the whole col-
lision. This is most easily achieved if one uses
not the adiabatic eigenstates of H(R(t)), but those
of a modified Hamiltonian H( p(t)), where p(f)
describes a trajectory satisfying p&R„. The
function p(f) may be chosen arbitrarily, the sim-
plest choice being p(f) =R(t) for it i

&t, and p(t)
=R, for it i

&t,. For R, =R„ this corresponds to
a switching from the adiabatic basis in the sub-
critical region to a frozen basis in. the supercri-
tical domain.

If the colliding nuclei approach to distances
R(t) closer than R„ there will arise potential
couplings due to the operator ~=ff(R(f)) -& (Ro).
The coupled-channel equations then are modified
according to

(3.1)

-fllC

FIG. 1. Schematic graph of the 1sa energy as a func-
tion of time in a supercritical collision assuming a
discretization of the spectrum.
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where P~-=$, (R(t,)) denotes the fixed basis states.
This description in principle is correct and the

couplings are easily numerically manageable.
It turns out, however, that it is very difficult to
achieve completeness in the modified basis Q~.
The nondiagonal matrix elements of 4H decrease
only very slowly with increasing energy separation
between initial and final states so that a for-
biddingly large number of channels would have
to be included in the calculation. As an example,
some radial and potential couplings from the 1s
state in the subcritical system Pb-Pb are given
in Table I. In the upper-half the completeness
relation

(3.2)

is tested. The summation includes eight bound
s, &, states (first line) and in addition the electron
continuum up to E, =6mc' (second line). The wave
functions have been calculated in monopole ap-
proximation, and the expectation value of S/SR
was obtained by numerical differentiation. In
view of the limited numerical accuracy Eq. (3.2)
is rather well fulfilled for the chosen basis. The
situation is drastically different for the potential
couplings (lower-half of Table I). Here the basis
wave functions Q,

' have been calculated for the
fixed distance R, =50 fm, the matrix elements
were evaluated at R =16 and 40 fm. In the com-
parison of (P~I(a&)'I@„)and +~I(P, IAHIQ~)I
the calculated value of the sum is much too small.
This demonstrates that it is necessary to include
electron states of very high energy if one tries to

expand the time-dependent electronic wave func-
tion in a subcritical basis.

IV. A PROJECTION METHOD FOR THE
SUPERCRITICAL RESONANCE STATE

A. General considerations

The methods used to describe excitations in
supercritical collisions discussed in the last sec-
tion all had some serious disadvantages making
them unsuitable for numericaL calculations. Now
we will develop a formalism" "which avoids
these difficulties and moreover has heuristic
value for the interpretation of the positron-crea-
tion process. We start from the observation that
the continuum wave function of the supercritical
system at resonance energy E~=E„ is quite sim-
ilar to the discrete 1so state in the subcritical
case. In addition to a strongly localized density
distribution having the extension of the atomic K
shell, the former exhibits an oscillating tail
(small in amplitude) reaching out to infinity (see
Fig. 2). This structure reflects the occurrence
of a tunneling process through the gap se-
parating the particle and antiparticle solutions
of the Dirac equation (cf. the problem of
Klein's paradox quoted in the introduction). Apart
from the asymptotic behavior the 1sv wave func-
tion retains much of its identity. Many proper-
ties, e.g. , the radial matrix elements for ion-
ization, may be continued smoothly to the super-
critical region just by neglecting the taiL of the
wave function. This procedure can be put on a
firmer basis. In a first step a "quasibound"
resonance state

~ @~) is defined as a reasonable

TABLE I. Check of the completeness relation using
the adiabatic basis (upper-half) and a basis frozen at
Ro =50 fm gower-half). The wave functions are calcu-
lated in monopole approximation for two internuclear
distances. Eight bound s~ i2 states and continuum elec-
trons up to 6mc2 are included. 0

10— 100 ~1000 r(fm

Resonance Wave function and Potential
/ / / / / / / / / / / / i / / / / / / / / / / / / / / / / / I / / i / / / i / / / / / / / / / / / / i i / / /

1

R =16 fm R =40 fm

14.9

27.3

32.2

3.70

7.23

8.34

~-2E

-3

T
Resonance Energy

V(rj

Y+mc

&Aim I &~& I k|s&

0.027

0.105

1.95

0.004

0.015

0.154

FIG. 2. The potential well V(r) in a U-U quasimole-
cule near nuclear contact (R=16 fm). Also shown are
the borders of the gap V(r) + mc, the energy of the 1sa
resonance, and the density of the positron continuum
wave function at resonance energy. The density is
drawn on a logarithmic scale covering ca. five orders
of magnitude.
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&C, IC,) =1 (4. 1)

and orthogonal to the states Ip„& outside the posi-
tron continuum

&A. lc„&= o,
where

I p & denotes all bound states and the elec-
tron continuum. The resonance now is to be ex-
tracted from the positron continuum I (Ie&s ) re-
sulting in a modified continuum I(}&s ) orthogonal
to the bound state

(4.2)

&e,, lc )=o
which still spans the same subspace.

This problem was solved in nuclear physics in

connection with the continuum shell model. ' '
The applied formalism makes use of projection
operators P and Q, introduced by Feshbach, '
projecting on "open" and "closed" channels. In

the subcritical case they will be defined to pro-
ject on the space of continuum positron states

(4. 3)

approximation to the 1sv state in the absence of
a penetrable tunneling barrier. In a second step
a new positron continuum I Q ) has to be con-
structed which excludes the resonance, is ortho-
gonal to I@„),and preserves completeness. This
is achieved with a projection-operator technique
which had been developed for applications in
nuclear physics. 4' The resulting set of modified
stationary states will be used as a basis for
expanding the time-dependent wave function in
analogy with Eq. (2.5}.

B. The projection method

We start from the assumption. that a "physically
reasonable" wave function

I 4&„& describing the
bound-state properties of the resonance has been
found (for a further discussion see below). This
state should be normalized

tical value the 1so state becomes a resonance in
the positron continuum thus entering P, space.
The aim now is to transfer the bound-state con-
tribution represented by the wave function Cz to
Q space. We define the new projection operators

9= .4. 4. +e e, ,

P=1 —Q: = de
(4.7}

(E, -PHP)l y„& =0 . (4.6)

Using (4.6), (4.7), and the orthogonality relations
(4.2) and (4.3), this equation may be transformed
to a more explicit form

(E, H)I y.,&=-&e„lHI -j,,&IC.& .
The modified continuum states satisfy the original
Dirac equation supplemented by an inhomogeneous
term containing an integral over the solution Q~ .
Fortunately the kernel is separable so that (4.9)
can be solved easily.

The formal solution of Eq. (4.9) using the
Green's function G with (E -H) G =1 has been
given in Refs. 47 and 52. Projecting the general
solution

I y, & =cI e, ) -&c„lHI @,,)Glc„& (4. 10)

on &4&„I and imposing the orthogonality relation
(4.3}we obtain

I @,&=c 1- 14 &&+'I
II @,) .

&e„IGle„&&

(4.11)

Under the assumption (4.2) the operators Q; P
again are orthogonal projectors. If @„was chosen
judiciously the newly defined modified continuum
(t&s will no longer show resonance behavior. The
I gs ) are eigenstates of the Hamiltonian restricted
to tie subspace P (Ref. 47), i. e. ,

Po= dip &It)~

and on its complement

(&.=Z I()(( I+ f a~, l(, &((., l

(4.4)
C is a normalization constant which depends on
the boundary conditions and has absolute value
of unity if the propagator for outgoing waves is
used. This is further discussed in Ref. 52.

Using the solution (4.11) it can be shown that

-=pl( &((. (4. 5)

P() PO) Qo Qo) POQO =0 .

If the strength of the potential exceeds the cri-

1(}&sp and I (t& ) are eigenstates of the Hamiltonian

H)

(Ep H)I (}& )=0 a,nd (E——H)I(t& )=0 (4.6}

so that P, and Q, satisfy the usual relations of
orthogonal proj ection operators

&e.; I e.,&
= 5(E; —E,) (4.12)

and also

&y;, I HI ys, & =E5(E; E,) . - (4. 13)

The modified continuum satisfies the same
orthonormality relations as the old one. Its phase
shift, however, is changed by a counter term
which cancels the steep variation near the position
of the resonance and leaves a smooth nonreson-
ating phase. 4'
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Equation (4.11) might be solved with the use of
the Green's function G represented in coordinate
space. For a spherically symmetric potential
(monopole approximation) with asymptotic 1/r
behavior G(r, )") expressed in terms of regular
and irregular solutions of the radial equation is
well known. ' On the other hand, the defining
equation (4. 9) can be solved directly by a straight-
forward integration procedure as reported by
Wang and Shakin. " It consists of the following
steps:

(i) Choose two different arbitrary constants y" &

and y
(ii) Solve the inhomogenous Dirac equations for

each constant

and the inhomogeneous Dirac equation (4.9) is gen-
eralized to

(E -H)
~ C,&

= -g
~
C, &&C, )

H
~ j,& (4.19)

which still is separable. The formal solution of
(4.18) is

N

le, &=cl&& —c Z le, &«e, lcle, &-,)&e, l)le, &,
t

(4.2o)

where the matrix (C,
~

G
~
C,& has to be inverted.

Similarly, the direct integration method can be
extended" to include several resonances. Setting
y"' =0 the inhomogeneous differential equations

(H-E)l y,'&=&"'IC,& . (4. 14) (H E)iy-,",&=&"'iC,& (4.21)

(iii) Represent the general solution by a linear
combination

lk,&= IC,"'&+blC,"'& .
(iv) The orthogonality requirement &C „~ Ce& =0

eliminates one of the constants

I C,&
= a I @,"'& -

&

'
(
@(.» I C

'"&
)

.
@R &E

(4. 15)

(v) The wave function is normalized asymptoti-
cally (r- ~).

The resulting pE is independent of the choice of
the constants y"'. The nondiagonal matrix ele-
ments of the Harniltonian follow as

t u) &C's~es& s)
C's Ce

(4.16)

The projection formalism is easily extended to
the case of several resonances. In the present
context this is not required since in heavy-ion
collisions apart from the 1so only the 2P,&,v
state becomes supercritical (at Z-185). In sym-
metric systems and generally if the monopole
approximation is used the p, &,o and s,&,o continua
do not couple and can be treated independently.
The 2se state dives at Z-245, which is far too
high to be reached in a collision of two heavy
ions. For completeness we will quote the results"
applicable to the case of several resonances.

We assume that N resonances have to be ex-
tracted from the continuum for which a suitable
set of resonance states ~C,) has been defined,
satisf ying

&c, ~e,&=5„, &C. ~c,&=o. (4.17)

have to be solved for all i =1, . . . , N. The ansatz

le &= le*&+pe Iet", ;&. (4.22)

C&, (t)=
~

dE,a, e Pe,e ' ' eg+a, „p„e '&
~m ~ e

gg&ls

+a, „4Re ' ls+
r lit

dEgP(, s &t&s e ' (4.24)

If the resonance energy E„is identified with
&Cs ~H~ C„) and the orthogonality relation (4.2) is
fulfilled, we obtain the old set of coupled dif-
ferential equations (2.7). There arises, h'ow-

ever, one important modification: Since the
resonance state

~
C&s& is not an eigenstate of H

it has an additional interaction with the continuum.
The coupling matrix elements 1so- E~ must be
replaced by

'qt Ep et Alp 4Ep t @R +~ %ED @R (4.25)

together with the orthogonality requirement (4.3)
leads to a system of N linear equations. The re-
sulting modified continuum state is

N

le*& e(le*& 2=«e le* »,,'&e, le, .&,le,"';&) . ,i.S=l

(4.23}

The resonance state
~
C„& and its associated

modified positron continuum
~
Cs& have to be de-

termined at all values of the internuclear distance
R&R . They will be used as a basis to expand
the time-dependent wave function in complete
analogy with the subcritical case (2.5), i.e.,

The projection operators now are

&&=('. Ie.&&e. I+/ le, &&e, l,

P=1 —Q,
(4.18)

A hole prepared in C R therefore will decay by
spontaneous positron emission in addition to the
dynamically induced transitions described by the
8/st coupling. In the static limit, R(t) = const,
this leads to an exponential decay with the width
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r=2v /g, ,fafC„) /',

where E~ is taken at the position of the resonance.
The developed formalism thus has led to the

emergence of "induced" and "spontaneous" posi-
tron couplings, the llutter resulting from the
presence of an unstable state 4» in the expansion
basis. It is difficult, however, to draw simple
conclusions from this fact. Both coupling matrix
elements enter via their Fourier transforms,
depending on the time development of the heavy-
ion collision. Their contributions have to be
added coherently so that in a given collision there
is no physical way to distinguish between them.
As discussed in Sec. V, significant deviations of
the positron-production rate in supercritical
collision systems are expected only under favor-
able conditions, i.e., in encounters with a pro-
longed interaction time.

(4.26)

( )-x] a
C =

~

r'dr dQ Qz, fs„,&l
(4.29)

so that (4.1) is fulfilled. The cut-off wave func-
tion (4.27) has been employed by Wang and Shakin~'

and others~ "to describe resonances in nuclear

C. Wave functions and matrix elements

The projection method for constructing a modi-
fied basis described in the last section starts
from the quasibound state

~
4s). We have to find

a prescription which generates a wave function

~4s) with the properties of a 1so state. In parti-
cular, its binding energy and the radial coupling
matrix elements to higher s-like bound and con-
tinuum states should increase in smooth continua-
tion of the values in the subcritical region R 8

The construction of ~4„), in principle, is quite
arbitrary. In a natural way this may be ac-
complished by defining a resonance wave packet
as a superposition of the old continuum states
Ps, integrated over a suitable energy interval
which contains the position of the resonance. Such
a definition was employed in Ref. 17 to study the
spontaneous decay of the 1s-hole state. In Ref. 6
the wave packet was used to obtain the density
distribution of the supercritical K shell. The
practical construction of ]4„), however, seems
to be quite tedious, if one wants to avoid further
approximations. In the following therefore we
will use another definition.

The most straightforward prescription is to
start from the positron continuum wave function

f+ at the energy of the resonance E~=E„„cut-
ting it off at large distances r &r,:

4s(r) =Cps (r)8(r. -r). (4.2V)

The normalization constant C is determined by

physics. The cut-off distance r, is a somewhat
arbitrary parameter which should be chosen to lie
within the region of the tunneling barrier defined
by r &r&r, with E„,—V(r+}+mc'=0. At larger
distances r the wavefunction P+ begins to oscil-
late. This is illustrated in Fig. 2 where the den-
sity of the positron wave function at E=E„,is
shown together with the gap of the Dirac equation
and the nuclear Coulomb potential V(r). The sys-
tem is U-U at internuclear distance R = 16 fm,
i.e., at nuclear contact.

To avoid problems associated with the discon-
tinuity of the wave function introduced by (4.2'I)

we have adopted a modified cut-off procedure for
the following calculations: C» will be defined as
an eigenfunction of the Dirac Hamiltonian with the
modified potential

V (r) =8(r, -r)V(r)+8(r —r,)V(r,) . (4.29)

For distances r &r„V agrees with the old poten-
tial V; at large distances the potential is kept
fixed so that the 1s energy remains inside the gap
region. This artifice produces a smoothly de-
creasing tail of Cz, while the wave function agrees
with Ps in the interior region.

The value of r, is defined by Es —V(r,) = -ymc',
and we will use y = 0.9 in the following calcula-
tions. With this prescription r, is close to the
outer turning point r, . As an illustration, Fig. 2
shows the potential V(r) and the resonance wave
function obtained by this procedure for the system
U-U at R =16 fm. Since r, becomes large for E&
close to the boundary of the continuum there is
a smooth transition from the subcritical region.
The distance r, is energy dependent, therefore
the binding energy E& and the wave function 4&
have to be obtained from a self-consistent solu-
tion of the Dirac equation

(8- Es)
I
&.) =0 (4.30}

where H= T+ V. As demonstrated in Table II,
. the value of E„agrees closely with the exact

resonance energy obtained from a phase-shift
analysis of the continuum wave function Qs . For
the potential V(r) we have taken the monopole
part of the two-center potential assuming homo-
geneously charged extended nuclei with radius
r~= 1.2A' fm. Owing to the high localization of
the wave function the effect of the finite nuclear
extension is not negligible at the close internu-
clear distances considered here. For instance,
the 1s energy and width are E&——-1.8533, I = 5.3
keV for U-U, and E„=-2.3597, I'=14.6 keV
for U-Cf at R=16 fm for two-point nuclei. Ob-
viously, the decrease of binding energies leads
to a substantial reduction of the decay width.

Using the smoothly cut-off resonance wave func-
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System R (fm) E,~(mc ) I'(keV) E&(mc ) I&(keV)

U+U

U+Cf

16 -1.589 4
20 -1.396 3
25 -1.208 40
30 —1.063 39

16 -2.016
20 -1.763 0
25 -1.520 8
30 -1.336 7

2.00
0.505
0.023
1(—6)
8.19
4.12
1.32
0.245

-1.590 6
-1.396 7
-1.208 44
-1.063 40

-2.011
-1.761
-1.519 9
-1.336 9

1.97
0.503
0.023
1.2 (-6)
8.19
4.10
1.31
0.244

tion 4„defined by (4.30) with potential (4. 29) we
have constructed the modified continuum Q~ .
We have numerically integrated the inhomoge-

(i)neous Dirac equation (4. 14) with p =0 and &' =1
(the result is independent of this special choice)
and obtained Ps from the superposition (4. 15).
The amplitude of the wave function was norma ize
to the analytic solution' at r=5000 fm. As an
example, Fig. 3 shows the large and small corn-
ponents of PE at resonance energy and the cut-off
wave function Cs (dotted lines). The lower part
of the figure displays the modified continuum Ps
which shows no resonance behavior. When study-
ing the properties of the modified continuum it is

TABLE II. Energy and width of the resonance in the
si/2 posisitron continuum of the quasimolecules U-U and

edU-Cf, calculated in monopole approximation for extende
nuclei. E,~ and l are determined by a phase-shift anal-
ysis of the continuum ft) z, Ez and I'z are defined by Eqs.
(4.30) and (4.26) using the truncated potential (4.29).

interesting to compare the phase shifts of PE and
in the vicinity of the resonance. For the U-UEI

system at R = 16 fm, Fig. 4 demonstrates the
absence of any structure in the phase shift 5,
while 5 sharply increases by m at E=E,. Thus
the resonance has been completely eliminated
from the continuum. Also shown in Fig. 4 is the
'resonance excess" of the wave function Q~ de-

fined as the ratio between the maximum and
a,symptotic value of u, (r), the large component of
the radial wave function. The narrow Breit-
Wigner-like maximum of this ratio characterizes
a sharp resonance, its high value is support for
the concept of defining a quasibound state by cut-
ting off PE,„

Particularly important are the results for the
decay width 1 of the state 4» as expressed by the
squared nondiagonal matrix element of the Ham-
iltonian at energy E=E, , cf. Eq. (4.26). The
values of I' were found to be largely independent
of the details of the cut-off procedure for 4„.
Figure 5 shows the curves I'(R) for the systems
U-U (Z=184) and U-Cf (Z=190). Note the strong
decrease of I' with growing two-center distance
and the high-Z dependence. This implies that it
will be necessary to study close collisions of very
heavy systems if any effects of the spontaneous
decay of the resonance are to be observed.

The projection method is substantially supported
by the results of a direct phase-shift analysis of
the continuum Q . Table II gives the values ofEI'
I' for several internuclear distances R. The
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FIG. 5. Decay width I' in keV of the isa resonance in

the system U-U and U-Cf as a function of internuclear
distance R, calculated in monopole approximation.

widths obtained from the two methods are in very
good agreement. Since the decay width I"
= 2II((ps ~H ~4„)

~

provides an adequate descrip-
tion of the positron emission process only in the
limit of infinite collision time we have to study
the properties of the coupling matrix elements

(Qs ~H ~Ca) and (ps ~8/BR~@a) in more detail.
Figure 6 shows the decay matrix element as a
function of positron energy for the systems U-U

and U-Cf. The increase with two-center distance
R, taken as a fixed parameter for each curve,
has been noted already in the special case of the
width. Aside from the Coulomb repulsion effect
at small kinetic positron energies the curves
show a broad maximum. The values at resonance
energy (E~=E,„)are well defined. The detailed
behavior of the energy dependence, however, in
particular, the change of sign at high energy,
depends rather sensitively on the employed cut-
off procedure for 4&.

The same is true for the radial coupling

(ps ~8/BR ~4„) between resonance state and posi-
tron continuum. The variation of the matrix ele-
ments with two-center distance is shown in Figs.
7(a) and 7(b) for the two systems under consid-
eration. The matrix elements have been calcu-
lated by numerical differentiation of the wave
function 4„. In contrast to the subcritical situa-

FIG. 6. The coupling matrix elements (pz (H)ez) asgp
a function of positron energy E& for the systems U-U
and U-Cf.

tion the Hellmann-Feynman identity is not appli-
cable directly since ~gs ) and (4„)are not eigen-
states of the same HamQtonian.

The value of (Qs
~

8/BR
~

4'z) joins smoothly with

(Qs
~

8/BR ~4„) at tke critical distance R =R„.
This had been postulated at the outset as a crite-
rion for the suitability of the projection method.
While the matrix elements increase monotonically
in the subcritical region, they reach a maximum
and fall off again at small internuclear distance
R. The position of the maximum shifts to smaller
R as the positron kinetic energy increases. It
seems to be correlated, but not identical, with
the distance where the resonance energy crosses
the energy of the positron state under considera-
tion. Except for the matrix elements joining 4„,
all further couplings to the modified continuum

show no structure, again demonstrating that
the resonance has 'been successfully extracted
from the continuum. To perform calculations of
positron creation, knowledge of the radial cou-
pling from Q~ to higher bound and continuum
states is required. In calculating the matrix ele-
ments (p ~8/BR ~4a) and (Qs

~

8/BR~ 4„), numeri-
cal differentiation of the resonance wave function
was required. The numerical differentiation of

can be avoided by using a modified form of
the Hellmann-Feynman identity. We take the
matrix element of the commutator [8/BR, H]
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tion. Numerically the first two terms on the rhs
of (4. 31) were found to be of the same order,
while the overlap correction amounts to less than

10/~. It will be neglected in the following calcu-
lations. The radial coupling among the states of
the positron continuum can be treated in a similar
manner. The resulting identity reads

~~BR ~j E'-E ~ 8R
~

p

E' 4E 8R R

+VE C~—
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FIG. 7. The radial coupling matrix elements
(Ps)8/8 R~ en ) as a function of internuclear distance

R for the systems U-U [part (a)) and U-Cf [part (b)].

= 8H/8R between the states (Q i
and

~
Qs ) ~

of (4. 9) leads to

g E E I R EP

—V ~ o @'a

(4.31)

with the abbreviation &s, =(@s~&its ).
tion to the usual 8H/8R term this expression con-
tains a correction proportional. to the decay ma-
trix element V~ and a nonorthogonality modifica-

(4.32)
A certain problem of the presented projection

formalism is the requirement of orthogonality
between the resonance wave function 4& and the
states P„(Q,

~

4's) =0. For an arbitrary choice
of 4& this condition will not be satisfied exactly.
When the operators P and Q of Eq. (4.7) are not

orthogonal pro jectors, the subsequent derivations
entail an approximation. The problem might be
circumvented by orthogonalizing 4„ to all states

, e.g. , by Schmidt's procedure. This is hardly
practical, however, since the set P contains the
continuum of electron states f~ . Alternatively

8
the states P might be treated in the same way
as the fIe)~ so that only 4& remains in Q space.
The higher states then will be modified to a set

satisfying the analog of the inhomogeneous
Dirac equation (4. 9). This would lead to addi-

tional nondiagonal couplings through the Hamil-
tonian H.

In the present work we will neglect all errors
introduced by the nonorthogonality (P

~

4»). For
the resonance state 4„defined according to
(4.29), the overlap to higher nso bound states
was found to be smaller than 1&&10 in the worst
case (U-Cf at R = 16 fm). The sum (Z„i (P„~4 „)

~

'

+f E,di(g ~sC„)i')"' did not exceed 2x10 '. The

corresponding overlap of the modified continuum

states $s can be reduced to (Q ~4a) using (4.9):

(q ~C,„) (4 33)
I p

According to the orthogonality assumption the

coupling matrix (2. 10) will be assumed anti-
Hermitian. Otherwise the variable overlap ma-
trix had to be included in the coupled differential
equations, see (2. 6).

V. NUMERICAL RESULTS

The formalism developed in Secs. II and IV has
been applied to calculate positron emission in
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various heavy- ion- collision processe s. The re-
quired amplitudes entering (2.22)- (2.24) were
calculated both in time-dependent perturbation
theory up to second order and by numerical solu-
tion of the coupled differential equations (2.7). In
the following we will first discuss the approxi-
mations inherent in our model and then briefly
discuss the perturbative results. The main em-
phasis will be placed on the subsequent presen-
tation of the coupled-channel calculations for pos-
itron creation in both subcritical and supercritical
collisions.

A. Approximations

In order to arrive at numerical results, several
approximations have been applied to the semi-
classical quasimolecular model under discussion.
They are as follows.

(1) While the (nonseparable) two-center Dirac
equation has been solved by Muller et al. for
bound states, "' no solutions are available at
present for the relativistic molecular continuum.
Detailed comparisons of binding energies and
coupling matrix elements have shown, however,
that up to internuclear distances &500 fm the in-
ner-shell states are well described by restriction
to the E =0 part in a multipole expansion of the
two-center potential. " Even for not too asym-
metric heavy-ion systems, ~Z, —Z, ~/(Z, +Z, )
& 0.2 the monopole term was found to be dominant.
For the spherically symmetric problem, both
bound and continuum states are easily generated.
Therefore all calculations presented in this paper
will be done by use of the monopole approximation.
Owing to the spherical symmetry of Vo(r, R), ro-
tational coupling acts only within angular momen-
tum multiplets and does not give rise to excita-
tions. Also electron promotion cannot be de-
scribed by the monopole approximation.

(2) The calculations are restricted to z = -1and+1
states (ns„, and np„,). Both sets are decoupled
since they have different parity. They are expec-
ted to be the dominant channels on theoretical
grounds, since in the superheavy systems under
consideration the wave fpnctions with

~

~
~

= 1 are
most severely distorted by the strong potential. ,
leading to large coupling matrix elements.

(3) It is well known'~ that the quasimolecular
(PSS) model suffers from spurious asymptotic
8/SR couplings: Since the basis states are cal-
culated under the assumption of fixed nuclei, they
do not satisfy the correct boundary conditions.
With respect to this basis, the nonvanishing nu-
clear velocity j) induces transitions at arbitrarily
large distance. This problem has been discussed
extensively in the literature. "" It may be

avoided by introducing electron translation fac-
tors, which asymptotically switch over tPe basis
to "traveling orbitals" correlated to either of the
moving nuclei. Various problems are associated
with this procedure, especially when continuum
states are involved. For a detailed discussion
compare the work of Heinz 68

In the present calculations we have simulated
translation effects in a crude manner: All coup-
ling matrix elements are damped off at separa-
tions R -1500, . . . , 2000 fm using a Gaussian fac-
tor. Compared to the nonrelativistic case (e.g. ,

p Hcoll-isions) relativistic quasimolecular sys-
tems exhibit a strong maximum of the radial
coupling matrix elements at small R where most
of the excitation takes place. Therefore trans-
lational effects should be somewhat less critical
here. The results of Ref. 68 indicate, however,
that future calculations have to carried out to
larger distances and employ more realistic as-
ymptotic corrections.

(4) We neglect all effects due to the electron-
electron interaction. Rihan et al."have argued
that the relaxation times for the nondiagonal part
of this interaction is larger than the collision
time. A reliable assessment of the diagonal part,
i.e. , screening effects, is difficult since the elec-
tron shells are dynamically excited in the course
of the collision and the outer electrons will not
be adiabatic. Fully relaxed molecular Hartree-
Fock calculations, which have been performed
recently for superheavy systems, "therefore may
overestimate the effect.

Investigations of inner-shell and positron excita-
tion in the framework of the presented model us-
ing a simple Thomas-Fermi screening function
lead to somewhat enhanced probabilities without
change of the general characteristics. " A sub-
stantial reduction of the critical distances" ""'"
due to electron screening has been found in Ref.
74 from relativistic Hartree-Fock-Slater calcu-
lations in the monopole approximation. The re-
sults presented below therefore are to be consid-
ered to give an "upper bound" for the influence of
level diving in supercritical collisions.

B. Time-dependent perturbation theory

Assuming weak coupling the solutions of the sys-
tem of differential equations (2.7) may be reduced
to simple time integrals. Taking g, , -1 and a, &«1 for i wj the amplitude at the rhs of (2.7) is
approximated by a constant and we obtain the
first-order result

(5.1)
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Thus the transition amplitude is a quasi-Fourier
t:ransform (generally with variable frequency) of
the coupling matrix element between the initial
and final. states. Since the integrand depends
parametrically on time via R(t}, the result is
sensitive to the nuclear trajectory.

Pair production according to (5.1}in the quasi-
molecular monopole mode1. was first calculated
in Ref. 75. Owing to the deformation of the con-
tinuum states at small internuclear distance,
rather high production rates and, above all, a
very strong dependence on nuclear charge a"
CC (Z, +Z,P' was predicted.

The general structure of the Fourier integral
(5.1) can be used for a qualitative understanding
of the excitation process as was first pointed out
by Bang and Hansteen. '4 For instance, the typical
collision frequency will be of the order v =v/Ro,
where Ro is the distance of closest approach and
e the bombarding velocity. The integral (5.1)can-
not be done analytically even in the monopole mod-
el but an approximate solution was given by Refs.
76. Similar, but slightly modified solutions were
later presented by 7'l, and VB (see also Ref. 79).
It turns out that the transition probability depends,
in good approximation, exponentially on the ratio
nE'„/k~ = ~,R,/gv, where nEO„ is the transition
energy at distance Ro. Upon integration over the
energy of the ejected electron, scaling laws can
be deduced for the excitation probability as a func-
tion of impact parameter and, after a further inte-
gration, for the excitation cross section.

The scaling behavior is well reflected in the ex-
perimental data on K-hole formation' "and pos-
itron creation. "" It gives insight into the kine-
matic aspects of the excitation mechanism. One
has to keep in mind, however, the failure of per-
turbation theory to account for the observed large
excitation rates. This is attributed to multistep
processes as discussed below.

Before we turn to the full coupled-channel cal-
culations we briefly discuss the extension of per-
turbation theory. Equation (5.1) describes tran-
sitions between the positron continuum and states
above the Fermi level, i.e., higher bound states
and continuum electrons. Inner-shell states do
not contribute in first order. Since the investi-
gation of the role they play in the positron produc-
tion process is a main goal of this work we have
pushed the analysis to higher (at least second)
order. By successive approximation the two-step
amplitude (intermediate state 0) reads

The total transition amplitude is given by the co-
herent sum over all contributions

(1& Y (2}9])—Q
g

+ ~Q (5.3)

Positron Ilplitudss
ill+ Q

-3-I

7$3$

two-step

In this approach we have calculated pair creation
in subcritical systems in the angular momentum
channels rr =-1 (s,») and rr =+1 (p„,). Direct and
two-step transitions via the three innermost bound
states for each e' have been added. An inclusion
of continuum intermediate states would mainly re-
sult in a shift of the electron spectrum. " The re-
sults were given in Refs. 92 and 26 and only the
main features shall be summarized here. "

(i) s (a'=-1) and p„, (rr =+1) waves contribute
roughly equally to positron production.

(ii) While the amplitudes a",
~

(~) are purely
imaginary (provided the phases }r, are chosen
symmetric with respect to t =0, the turning point
of the trajectory), the second-order amplitudes
g",. '.,(~) will have a real part. The relative phase
angle was found to increase with the binding en-
ergy of the intermediate state k." This is il-
lustrated in Fig. 8 for the six innermost s and

p„, states in a central 5.9 MeV/u Pb-Pb col-
lision. The displayed amplitudes have to be ad-
ded coherently, K=-1 and +1 separately.

(iii) Although being of higher order, the con-
tributions of the 1s and 2pg/2 states are compar-
able in magnitude to the direct pair-creation pro-
cess. They grow particularly fast with nuclear
charge and constitute the largest single com-
ponents for systems heavier than Z, +Z, -175.

(iv) The kinematic characteristics of direct and
two-step excitations do not differ much. In both
cases the same amount of energy has to be trans-
ferred in a similar region of space and time.

t
a'J, (t}=— dt'(Pq, +iB P )M QQ

x &-r Ex'(t')-xy(t )Ju(&& (f}' (5.2}

FIG. 8. The complex pair formation amplitudes in a
central 5.9 Mev/u Pb-Pb collision, calculated in first-
and second-order perturbation theory including several
intermediate states. Left half: g&&2 rvaves, right half:
pg/2 vfaves
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FIG. 11. (a) Emission probability of positrons in 5.9 MeV/u collisions as a function of distance of closest approach
R~~ (I' = 3). (b) Same as (a) for collisions of totally stripped heavy ions. The large enhancement is mainly due to the
contribution of the

ling

state.

parameter 5 by R „=a[1+(1+(b/a) )'~ ]. A nearly
perfect exponential decrease of the curves is
noted. The high value of the slope is understand-
able in terms of the energy transfer required to
produce a pair. Therefore the impact-parameter
dependence is much weaker in the case F=0
[Fig. 11(b)]where the gap between the lowest
empty state (1so) and the positron continuum be-
comes small or vanishes. For the collisions with
initially occupied inner shells the slope of
P"(R „}becomes steeper for the heavier systems.

D. Discussion of the results

The results displayed in the last two subsections
demonstrate remarkable features of the pair-
production mechanism in "slow" coll. isions of
highly charged nuclei. In particular, the large
excitation rates and their high sensitivity on total
nuclear charge in the region Z, + Z, =Z„, are
characteristic for the action of the time-depen-
dent strong Coulomb field.

One question must be studied in more detail:
What is the influence of the "diving" of the 1s level
in supercritical collisions on positron production?
The energy spectra and impact-parameter depen-
dence, depicted in Figs. 10 and 11, have already
shown that our theory does not predict any drastic

change of observables at the border of the super-
critical region, but rather a smooth increase of
production rates with Z. This seems to be at
variance with the results of Sec. IV C, where an
additional coupling between 1s state and positron
continuum emerged.

To study its influence more closely we have
performed calculations where the matrix element
(Q~ ~H~ C„) was artificially switched off. Figure
12 compares the resulting positron emission
probabilities in U-U and U-Cf collisions calcu-
lated with and without the spontaneous coupling.
At large scattering angles (small impact para-
meters} the values of P" are significantly re-
duced when this coupling is omitted. This be-
comes even more obvious in the positron spectra
which are shown for head-on collisions in Fig.
13. The dashed curves are much depressed in
the region of positron energies where, in the
supercritical phase of the collision, the resonance
is located. In the heavier system the shape of the
spectrum is also drastically altered.

In the first place, this result gives confidence
in the employed projection method; the superpos-
ition of two couplings which by themselves lead
to totally different results produces spectra and
excitation rates, which are a smooth continuation
of the corresponding quantities in the subcritical
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FIG. 14. Matrix elements of the induced and spontane-
ous positron coupling as a function of collision time in
central collisions of U-Cf, 2a =18 fm. For comparison,
the dashed line shows the radial coupling in a Pb-Pb
collision (multiplied by a factor of 10).

40 80 120 160

[)c.m

FIG. 12. Probability of positron emission in the s~~2
ch~»el as a function of c.m. scattering angle in colli-
sions of U-U at 2g = 16 fm and U- Cf at 2a = 17 fm. Full
lines: Fully coupled calculation. Dashed lines: The
spontaneous coupling (4S (H) Cz) has been omitted.
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FIG. 13. The positron spectra in U-U and U-Cf colli-
sions. Meaning of the curves as in Fig. 12.

region (cf. Figs. 10 and 1$}. An explanation for
this result can be gained by looking at the struc-
ture of the coupling matrix elements as a function
of time. In Fig. 14 the values of (Qs ~Ra/&R

~
4s)

and (Ps ~H ~4„), E~= 2, are drawn-for a head-on
U-Cf collision with 2a =18 fm. For comparison
the corresponding radial coupling in Pb-Pb col-
lisions is included in the graph. Obviously, the
spontaneous coupling is compensated by a cor-
responding reduction of the 1s-induced contribu-
tion. Both couplings have to be added coherently

[with a relative phase factor of i, cf. (4.25}],
leading to excitation rates which do not differ
qualitatively from the subcritical results.

This observation is in general agreement with
the notion of a "dynamical width" which may be
associated with a collision time r by the uncer-
tainty principle I'd = 8/T and whic'h leads to a.

smooth transition between subcritical and super-
critical collisions. The shortness of T prevents
any sudden threshold effects and in particular
precludes the existence of sharp structures in the
positron spectra near the diving energy E„(R „).
A proof of supercriticality of a given collision,
therefore, according to our calculations will not
be possible by the observation of qualitative fea-
.tures in the excitation rates. Rather, a quantita-
tive analysis is needed, including the rate of 1so-
vacancy formation, which is sensitive to the bind-
ing energy.

A unique signature for spontaneous positron
production could be gained in collisions with pro-
longed interaction time. Rafelski, Muller, and
Greiner suggested the use of deep inelastic nuclear
collisions" to keep the nuclei in close contact for
some delay time T. While the radial coupling is
small during this period, R «v„, the decay coup-
ling (Ps ~H~ Cs) remains constant at its maximum
value. This leads to an increase of positron-
creation rates as a function of T. In the (hypo-
thetical) limit of total fusion to a long-lived
supercritical compound nucleus, a positron line
with the natural decay width (4.26) would emerge.

Coupled-channel calculations within the frame-
work of the theory developed in this paper ' have
lead to the conclusion, that time delays in the
region of 2, . . . , 3 x 10 " s are required to get a
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clear distinction of the diving process. ' If the
background due to nuclear excitation is separable,
and if collisions with sufficiently long reaction
times can be selected, this experiment could give
an unequivocal answer to the question of the de-
cay of the neutral vacuum.

dp—
dE, —

10—

E,- =490 50keV

E„,) = 5.8 MeV/u

E. Comparison with experiment

Since beams of very heavy ions at energies
close to the Coulomb barrier have become avail-
able at GSI (Darmstadt), a number of experiments
have been performed to study positron production
in highly charged collision systems. The search
for such processes has been largely successful.
A major problem in analyzing the experiments
consists in the background originating from nu-
clear processes. Already well below the barrier
the nuclei can be excited by Coulomb excitation.
Photons with energy larger than 1022 keg can
undergo pair conversion. Although this process
takes place long after the collision (= 10 "s), it
cannot be distinguished experimentally from the
quasimolecular mechanism by ordinary methods. '~
For nuclei with a simple level structure (e.g. ,
"'Pb) the Coulomb excitation can be calculated.
The resulting pair creation can be deduced from
the theoretically known' ' conversion coeff icients. ' '

Otherwise one has to measure the y-spectrum'"
and fold it with the conversion coefficient. Here the
y-ray multipolarity has to be known or assumed.
Monopole conversion cannot be handled by this
method. The procedure was tested in collisons
with lighter targets where it quantitatively accounts
for the total observed positron production. No
significant contribution of atomic positrons is
expected in these collisions. Beginning in the re-
gion Z, + Z, ~ 160 all experiments have found an
increase which could not be explained by nuclear
conversion.

We will now compare the experimental data
published so far with the predictions of theory.
We adopt the coupled-channel results, assuming
F= 3, i.e., the states above 3so and 4p~„are
empty (this choice should give an upper bound for
the production rates). Figure 15 shows the result
of Kozhuharov et al."for three collision systems
Pb-Pb, U-Pb, and U-U, at 5.8 MeV/u, measured
with an orange-type P spectrometer. The prob-
ability of positron emission in a narrow energy
window around 490 keV is shown as a function of
projectile center-of-mass (c.m. ) scattering angle.
Here and in the following figures projectile and
target nuclei are not distiriguished. The theoreti-
cal curves therefore have been symmetrized with
respect to forward and recoil scattering. The
shape of the theoretical curves is in good agree-

10—

10 20 30 I 0 50 60 70 80 90
B„(deg j

FIG. 15. Positron-production probability in an energy
window E~= 490 + 50 keV as a function of projectile scat-
tering angle in 5.8 MeV/u Pb-pb, U-Pb, and U-U colli-
sions. Experimental data taken from Kozhuharov et al.
ref. 88). The nuclear background is subtracted.

ment with experimental data. Also the predicted
increase of positron production with charge Z=
Z, + Z, by nearly an order of ma, gnitude (while
dZ/Z is only 12%) is fully confirmed by the mea-
surement. The absolute magnitude of the theore-
tical values, however, is generally too high.

In another, independent experiment using a
solenoidal spectrometer Backe et al.""~obtained
differential and integrated positron probabilities
for various impact energies. Figure 16 shows
P"(ft~) for the three systems already discussed
and in addition for the heaviest accessible system
U-Cm (Z= 188). The scattered particle was de-
tected in a fixed angular window gi,~ = 45'+ 10'
so that the various values of R~ were obtained by
variation of the collision energy. The theoretical
values are symmetrized and averaged over the
region of impact parameters defined by the ex-
perimental angular window.

Again, a general agreement is found in the Z and
R dependence. In particular the Pb-Pb results
are explained even quantitatively, in contrast to
the experiment discussed above. In the heavier
systems theory again has a tendency to overesti-
mate the measured data. In addition the experi-
mental slopes are somewhat steeper thanpredicted.
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FIG. 16. Positron emission probability for various
heavy-ion collision systems, drawn as a function of the
distance of closest approach. The scattered ion is de-
tected in an angular window e&= 45' +10'. The bom-
barding energy is varied. Data are taken from Backe
et al. (Refs. 87 and 104). The nuclear background is
subtracted.

Such a trend seems to be present also in new ex-
perimental data.' """"A new generation of
experiments was set up to extract the most sensi-
tive information: the energy spectra of positrons,
measured in coincidence with the scattered ions.
Their knowledge is most useful if one wants to
verify the theoretical predictions or find deviations
hinting to the positron-creation mechanism. Fig-
ure 1'l shows the first published positron spectra
of Backe et alP' for 5.9 MeV/u U-Pd, U-Pb, and

U-U collisions. The U-Pd (Z=138) positrons can
be fully accounted for by nuclear conversion
(thin curves). In the system U-Pb the sum of
background and calculated QED positron rates
(full curve) is in excellent agreement with the ob-
served spectrum. The spectrum of the U-U

system is explained less closely. Its maximum
seems to be shifted to lower kinetic energies.
Again, such a tendency seems to be observed in

several experiments with U-U and U-Cm currently
under way at GSI.'~ ' '

VI. SUMMARY

We have studied the mechanism of pair produc-
tion in collisions of very heavy ions within the
framework of a dynamical theory of excitation

~o -)
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FIG. 17. Spectra of emitted positrons in 5.9 MeV/u
collisions measured by Backe et al. (Ref. 89) in coinci-
dence with ions scattered in the angular window e~~
=45'+ 10'. The spectrum in the lightest system, U-Pd,
is explained by nuclear pair conversion alone (thin line).
In the U-Pb and U-U systems the sum of nuclear and
calculated atomic positron probabilities (heavy lines) is
shown.

based on the quasimolecular picture. Massive
relativistic effects in the wave functions of elec-
trons and positrons in s~, and p» states, caused
by the coherent action of the Coulomb field gener-
ated by the two nuclei, are reflected in the excita-
tion rates. As known already from the process of
inner-shell vacancy creation, positron formation
is concentrated in a region of close collisions, i.e. ,
high impact energies and small impact parameters.

The most outstanding result is a very steep
increase of positron production with nuclear charge,
which alone makes the experimental observation
possible against a large background. Contrary to
the case of light collision systems, theory predicts
the sharply growing importance of the inner-shell
bound states (Is and 2p,+) in the pair-production
mechanism if the. supercritical region is approach-
ed. If prepared empty, the 1s state will be the
dominant final state for the electron in pair crea-
tion since this level interacts strongly with the
antiparticle continuum in the course of the collis-
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ion.
We have developed a theory which properly takes

into account the resonance character of the dived
1s state. The results of our coupled-channel cal-
culations indicate, that no sharp threshold effects
are to be expected at the border of the super-
critical region, in accordance with the notion of
dynamical collision broadening.

The experiments performed so far have con-
vincingly established the predicted strong increase
of positron production in close collisions of heavy
ion systems with very high total nuclear charge
of heavy-ion systems. There remain some dis-
crepancies with theory in absolute magnitude, in
the slope of P~' (b}, and, possibly, in the shape
of the positron spectra. At present it cannot be
determined whether these differences have ex-
perimental origins, are caused by the approxi-
mations employed in the theoretical model, or do
reflect some deviations from the predictions of
QED which are of principal interest. Future studies
should lift the approximations discussed in Sec.
VA and also include effects from field fluctuations
like vacuum polarization' ' and self-energy, ' '
which have been neglected in the present work.
An unambiguous demonstration of the decay of
the neutral vacuum may be possible, though very
difficult, by measuring enhanced positron pro-
duction in collisions with nuclear contact leading
to a sufficiently prolonged interaction time.
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APPENDIX: ELECTRON-POSITRON PAIR
CORRELATIONS

To complete the discussion of Sec. II in this
appendix we discuss correlations between pairs
of emitted electrons and positrons. We will stay
within the framework of the monopole approxi-
mation. According to the theory presented above,
the angular momenta s~2 (g= -1}and p~, (v=+ 1}
are the dominant channels. In the experiment,

the partial waves will not be distinguished. There-
fore the basic equation (2.24) for pair correlations,
integrated over the solid angle of the emitted
particles, has to be supplemented by terms de-
scribing incoherent coincidences. Assuming
further, that spin orientations are not measured
leads to the result

=4(N + N ')(Ã' + N ')Sg,Sy E) E] Ey Ey

2 2

(A1)

Here and in the following the superscripts (+) and
(-) will denote the channels s =+1 and -1. The
first term in Eq. (Al) is a product of the differen-
tial excitation rates for electrons and positrons
and thus describes random coincidences. The two
remaining terms represent coherent correlations.
In particular, they contain the direct transition
between the states Ez and E&. In the limit of low-
excitation rates, Eq. (Al} reduces to (setting
r=E,)

(A2)

It should be stressed, however, that this simple
result is valid only if multiple excitations can be
neglected. Since inner-shell bound states are
strongly ionized in the collision, the random coin-
cidences will constitute a large part of the total
pair correlations. This can make it difficult to
extract information from doubly differential
measurements.

The information contained in the amplitudes a~~'

is sufficient to determine also the angular correla-
tion between emitted electrons and positrons. Its
measurement has been suggested to obtain addi-
tional information on the pair-creation process. '~""
To determine the angular correlation, two de-
tectors have to be placed at definite angles so
that they can measure the momentum vectors
k, , k~. In such an arrangement partial waves with
different angular momentum and parity can inter-
fere. To derive an expression for the number of
pairs with electron energy E, and direction k,jik,

i

and positron energy E~, positron direction kJ i k~ i,N;, -„, we have to evaluate Eq. (2.24} using
number operators for particles (holes) in plane-
wave states instead of the spherical waves used so
far. The transformation between the sets of states
is a generalization of the Rayleigh plane-wave
expansion It takes the form&&0, six

ikm}=(4r) ~ g ( 2f1+)'~i'8 '&(l gj iOmm)D~
i
Kg),

(AS)
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where Ikm& and
I
Ky. ) are plane and spherical

waves quantized along the axes k and z, Df
(0„-) is the rotation matrix (z-$) for angular
momentum j= IK I-—,', and 6„denotes the phase
shift due to the potential. The basis states are
normalized according to

(A4}

d»t y»+
KF «&E

(A5}

The canonical transformation between the primed
and unprimed particle and hole operators then, is
given by (A3), namely,

d'( = Q %(m(IK ((,g d ~,
yCF

b', = Q (km((I K(( ) b
y&F

(AS)

The labels i and q are abbreviations for the sets
(k(, m() and (E,, K, ((J. The number of pairs in
the plane-wave states i and j then is given by

N(( = (F
I
b»(t b(d'~ d»(

I
F)

(E'K'P'I EK, ((& = 6~,6„,„6(E' E),-
(k'm' Ikm) = 6~ 6'(k'-k).

The field operator + may be expanded in analogy
to (2.20) in the basis of plane-wave states &t&'(,

~ a„,a„~ ~ a„, a,~,
( T&F e&F

g (p, K Ikm) I'= I/4((, (A9)

the direct term in (A7), (AS) can be simplified at
once:

N'''"= p I( Kp, , Ik,m, & I' I&fc,.m(IK, i(, & I'
a(P

(AS}

The expression (A7) with (AS) so far is valid
quite generally. Now we will restrict our con-
siderations to the monopole approximation and
also neglect rotational coupling, i.'e. , we assume
that the amplitudes a„, do not mix between states
of different K and p, . This means K„= K = K,
K = Kf&= Kf, , and p.„=p, = p.. . p,,= p. f,

= p, ~, in the
first term of Eq. (AS), and K —K

=
Kf& and p, T &a &~ ps= p'a' pf„ in the exchange

term.
Using the relation

Keua kfmf «m«K
0~ 0 (0( 0~

x(k(m(l K(((p&(xK((~ lk(m(&(FI~ b; @~~ IF&.

(A7)

The expectation value of the spherical wave opera-
tors under the sum can be evaluated in the same
manner as in Sec. II, and leads to an expression
containing the single-particle amplitudes a„,:

(A10) '

This is just the incoherent product of particle and
hole probability that also appeared in (Al}-. The
evaluation of the exchange term

&&'&s"= —I (»,», l&»&mi&&» mal»" »»&(&»im»l». ».&&». ». I&»»mi& Z»:.,*,"...*, I
I», ., *,».

, ...*,)

(All�)

is more tedious. We give the final result, summed over the spin orientations of electron and positron:
2 2

N& = Q N'=(.4&()
' 4(N' &+N»&)(N' &+N'»&)+2 g a' &(' a' ' +2 P a&»&g a"

T, E«T, Ef Ef
if fit «( fstf T&F T&F

(-)* (-) (A12}

Here & is the relative phase & = (6',. ' —6&') —(5& & - 6~&'&) and 8(& is the angle between k, and k(.
In perturbation theory (A12) reduces to

Nf'; =2(4v} *(Iai' ., I'+
I
as'. ..I'+2 cose (cosnI a", K I las&, K, I

&. (A13)

Upon integration over the angles, the last two equation reduce to (Al) and (A2).
Equation (A12) shows, that the emitted pair has an angular correlation that results from the interference
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between ~=+1 and -l waves. We do not expect, however, thatthiseffectwillleadtosignificantstructures
as a function of positron energy in supercritical collisions. The phase shift & has to be determined for
the final wave function. In contrast to the (academic) problem of monopole pair conversion in a stationary
supercritical atom, ~ does not exhibit a resonance behavior in the case of a heavy-ion collision. More-
over, the relative magnitude of the interference term is smaller than in the case of pair conversion for
the reasons discussed earlier.
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