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Correlation functions of the hard-sphere Lorentz model
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Quantitative results for the correlation functions for the Lorentz model of overlapping hard spheres are worked out

and discussed within the recently proposed theory of diffusion and localization of a classical particle moving in a

random static field. The applicability of the theory to the diffusion phase is established by a successful comparison of

the diffusivity as a function of density and the velocity-autocorrelation function as a function of time for various

densities, with the computer simulation results of Bruin. Specific predictions of the localization length as a function

of density, of a nonmonotonic density dependence of the effective power-law exponent of the long-time tail of the

velocity correlations, and of an oscillatory wave-number dependence of the normalized width of van Hove's

scattering function are presented.

I. INTRODUCTION II. THE MODEL

The Lorentz model for the motion of a particle
in an environment of randomly distributed hard-
sphere scatterers exhibits a number of features
relevant to the understanding of the diffusion dy-
namics in classical fluids. ' Two theoretical fea-
tures beyond the standard kinetic-equation results
have been revealed by asymptotic expansions in

the weak-coupling regime: The diffusivity is a
nonanalytic function of the density' and the velocity
spectrum is a nonanalytic function of frequency. '
The velocity-autocorrelation function has also been
calculated for small densities within the repeated
ring collision approximation. Computer simula-
tion studies were carried out by Bruin" to obtain
the diffusivity and the velocity-autocorrelation
function for small and intermediate densities. The
data indicate a percolation edge separating a phase
with nonzero diffusivity from one where there is
absence of diffusion. Computer simulations for
the two-dimensional Lorentz model' detected the
mentioned phase transition rather convincingly.

Recently an approximate theory for the evaluation
of the correlation functions for the Lorentz model
of overlapping hard-sphere scatterers has been
proposed. ' This theory reproduced the earlier
theoretical results for the mode12' and yielded a
phase transition at a critical concentration in

agreement with the edge value which one can read
off from Bruin's data. ' In this paper, the com-
puter data" are compared quantitatively with the
results of the theory' and additional properties
of the model are presented to ch~Benge further
simulation studies or possible neutron scattering
experiments.

The model under consideration is specified by
only one nontrivial parameter, the density of the
scatterers n measured relative to the volume of
the spheres with radius 0,

n* = no'. (la)

The constant particle velocity v, defines the fre-
quency scale through the binary collision rate

v= vn*v, /o, (lb)

while the classical mean free path can be used as
length scale

t =o/zn+. (lc}

The absorptive part of K(z) determines the veloci-
ty-autocorrelation function as the Fourier trans-
form

K(t)= cos(utK" ((u)d((u/n).
m oo

(2b)

K(t) is of primary interest in any discussion of
particle motion in disordered systems'; K"(~}is

The central concept of the theory is the current
relaxation kernel M(z}, a causal function of the
complex frequency z. One gets M(~ ~ iO) =M'(&u)

+iM"(&o) with M' denoting the real, even, nonneg-
ative absorptive part and M' the reactive part. A

Kramers-Kronig relation determines M(z) as a
spectral integral in terms of M "(&u). The kernel
yieIds the correlation function of the velocities,
the Laplace transform of K(t) =(v(t)v), as

K(z) = — (vo/3) .1
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the analog of the real part of the electrical con-
ductivity in the residual resistivity problem of
metals or semiconductors. If the zero-frequency
limit of M exists, there is a nonzero dc conduc-
tivity implying a diffusivity

D = (vmo/3)1/M "((()), (d = 0 . (3a)

If M(z) exhibits a pole at zero frequency, then
there is absence of diffusion. In this case parti-
cles move in a finite spatial region characterized
by the localization length l„

I', = —(()',/3)/(uM'((u), u) = 0 . (3b)

The propagation of the particle is described most
conveniently by van Hove's incoherent scattering
function'

S(q, (d) = cos(()t(exp(tQ [r(t) —r(0)]))dt . (4a)

III. THE APPROXIMATION SCHEME

The theory for the kernel M(z) leads to a non-
linear equation'

z+M z

M(*)= "- l"' (M' f)«&) ( )p )( ( ))
(5)

In this equation enters the density-correlation
function for the free particle

(t)"'(q, z) =( (t)0(z/qvo),
1

qvo

where

(6a)

(t),(x) = & log (6b)

and the vertex F is given in terms of spherical
Bessel functions derivatives and free system cor-
relations similar to (t)0)

F(z, x) =j,'((&) t,( () —xi ~j,'((&) Q,( )x
-2j,'((() (t),(x) +

@~
= 1+g $0,

y, =(3xy, —y,)/2.

(6c}

(6d)

(6e)

It is clear from Eq. (5) that the current relaxation
rate M "((d) has to be calculated self-consistently
with the particle propagation. In addition to the
binary collision rate v, there is a higher-order
in the density contribution which is quite different

This quantity is obtained from the spectral function
of the density propagator

S(q, ~) = (t) "(q, (d)/&, (4b)

where Q(q, z) is related to the current relaxation
kernel M(z).'

n,* =9/4v, (8)

the solution for M(z) has to be obtained by solving
the transcendental equation [Eq. (5}]numerically.
We have done this by a straightforward iteration.
The procedure was started at large values of fre-
quency z, since all functions there are close to
the ones obtained from the kinetic-equation ap-
proach.

To understand the solution of the approximate
equation outside the asymptotic regimes discussed
before, ' let us consider the z =0 limit. If there
is diffusion one can introduce the dimensionless
relaxation rate u =M "((d = 0)/v & 0 and rewrite the
self-consistency equation in the form o =f~(() )

[compare Eq. (29) of Ref. 8]. Hence, ()( can be ob-
tained as the intersect of the fD(u} versus c( curve
with the diagonal [Fig. 1(a)]. f~(a) starts off
from unity for ~ =0 and increases with increasing

The increase is larger if n* becomes bigger,
since multiple-scattering events enhance the current
relaxationrate. Forlarge o(onegets (Ref. 8)fn(u)
= n(n*/n,*)+O(1/o(). Hence, diffusive particle
propagation is possible for n*&n,*, and for n*

&n,* there is absence of diffusion. For n*& n,*
the self-consistent current relaxation concept
does not allow for a zero-frequency velocity spec-
trum. If there is localization one can introduce
the dirnensionless inverse localization length
squared c(=(4l/I, )' and rewrite Eq. (5) in the form
a=f~((z) [compare Eqs. (33) of Ref. 8]. The solu-
tion a again is obtained as the intersection of the
diagonal with f (o); In Fig. 1(b), f (a} starts
off linearly for large localization lengths, fz(n)
= a(n*/n,*)+O(a') and it approaches (Ref. 8) 8/3~a
for large a. Hence there is localization for n*
&n,* and for very dense systems the localization
length is proportional to the mean free path ob-

depending on whether the particles move almost
freely, or diffuse slowly, or oscillate in a trap.
The latter is calculated by a mode-coupling ap-
proximation describing the decay of the particle
momentum into pair excitations consisting of
random potential fluctuations of momentum 7& and

particle modes. For the particle modes it was
necessary to express the propagators for density,
current, stress, etc. , in terms of the correspon-
ding functions for the free system and the kernel
M(z) by means of a generalized collision rate ap-
proximation. In this way one gets, e.g. ,

(t) q, z) = y&')(q, z+M(z)}
1+M(z) y"'(q, z+ M(z)}'

For an analytical discussion of Eq. (5) the reader
is referred to our preceding publication. ' Outside
the regime of small n*, large n*, and n* close to
the critical point,
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FIG. 2. Diffusivity D normalized by the kinetic-
equation result D as function of density y2 *. Dots are
the simulation data of Bruin (Refs. 5 and 6). The full
curve is the present theory. The dashed line is the
linear function (n,*-n*)/n,*.

FIG. 1. Graphical solution of the self-consistency
equations for (a) the diffusion phase o, =D '/D and (b)
the localization phase o. = (4l /l t)) (see text).

function (dashed curves in Figs. 2 and 3) one ob-
tains the percolation edge n,* also in agreement
with the present theory. For the sake of complete-
ness in Fig. 2, the data for n*= 0.6, and 0.8 are
shown, ' even though Bruin realized their uncer-
tainties to be larger than for the other data. The
source of greater uncertainty in the simulation
data upon approaching n,* will be discussed below
in connection with Fig. 8. For intermediate den-
sities the theory yields slightly greater diffusivi-
ties than the experiment.

The result the present theory predicts for the
localization length l, is shown in Fig. 4. For n*
& 2n~ l, is practically given by the large-coupling
asymptote (dashed line in Fig. 4); near the edge
lo diverges like 1/(n* —n,*)"'. A computer simula-
tion of the dynamics would yield l, as the long-
time mean spread (nx(t)') -2l 0. The localization
length determines the static polarizability as g'
=l 0 and so a Monte Carlo computation would yield

tained from the binary collision cross section l,
= l 3/2. With decreasing density l, increases
above l until it diverges at the edge. For n*&n,*
the self-consistency equations do not allow for a
solution with localization.

IV. RESULTS

& 60—
C)
O

40—

In Figs. 2 and 3 the diffusivity as a function of
n* is compared with the data of Bruin. " For n*
& 0.2 the agreement between theory and experi-
ment is perfect, reflecting the fact that the theory
reproduces correctly the leading correction to
D/D"' —l ~ n* (D'" = v,'/3v). Notice that the non-
regular n*~ logri* term is so small that it does
not show up in the figures. If one interpolates the
experimental points by a linear D/D"' vs n*

20-
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0.2
I

0.4 „x p.s
FIG. 3. Relative difference of the diffusivity D to the

kinetic-equation result D ' as function of density y2~.

Data and error bars are Bruin's results (Refs. 5 and 6),
the full curve is the present theory, and the dashed line
is the interpolation curve defined in Fig. 2.
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n" /n" 6

FIG. 4. Inverse localization length lo as a function of
density. The dashed line is the large n * asymptote
(Ref. 8).

l 0 as the dipole moment per field induced by a
small homogeneous external field. Computer sim-
ulations for lo or X or any other quantity for n*
&n,* will be time consuming. The system is in a
nonergodic phase then and so statistical fluctua-
tions will be large.

For the weak-coupling system the velocity-cor-
relation function is the classical exponential
K"'(t) =exp( vt)(v,'/-3) With i.ncreasing density
diffusivity is suppressed, hence K(t} falls below
K'"(t). If the correlation effects become suffi-
ciently pronounced, they give rise to a "backscat-
tering" effect. In good agreement with the data of
Bruin' ' the theory yields K(t) & 0 for vt a 2 (Fig.
5}. With increasing n", backscattering begins at
earlier times (in units of v '}, in correspondence

with the decrease of D/D'O'. For n*&n,*, the pos-
itive area under the K(t) curve exactly cancels
the area of the part with backscattering. If n* in-
creases, the magnitude of the negative part at in-
termediate times increases also somewhat at the ex-
pense of the tail for very long times. If one mag-
nifies the scale of Fig. 5 by plotting nK(t) =K"'(t)
-K(t), one realizes that the present theory under-
estimates a bit the magnitude of the negative tail
of K(t) for vt&2 (Fig. 6).

The spectrum of the velocity-autocorrelation
function K"(e) (Fig. 7) also reflects the importance
of the feedback mechansim underlying the present
theory. According to the kinetic equation,
K"'"(&u)v is a Lorentzian function of e/v (dashed
curve in Fig. I). However, because K"(&@=0}
=D&D' ', the correlation effects suppress the
spectrum for small frequencies. For e» v,
K"' (&u} =K"(e}, and since the area under the
K "(&u) curve is independent of the interaction,
K"(&u) has to exceed K'" (v) for intermediate fre-
quencies ~. For n*&n,*, therefore, the spectrum
has to exhibit a peak at some nonzero value of v,
and by continuity there is such a peak also for in-
termediate n*&n,*. The spectrum looks similar
to that of a strongly damped oscillator. For inter-
mediate frequencies there is no remarkable differ-
ence between the spectrum for the system below
and above the percolation edge. The low-fre-
quency variation of K "(~) is quite different for the
various density regimes. For n*&n,*the spectrum

AK(t)
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FIG. 5. Velocity-autocorrelation function K(t) in

units of (yo/3) as a function of time for various den-
sities n *. Dots are computer simulation results of
Bruin (Refs. 5 and 6). The curves are the results of
the present theory.
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FIG. 6. Deviation of the velocity-correlation function
from the kinetic theory result in units of (vo/3) as
function of time for various densities. Dots are the
Bruin data (Refs. 5 and 6). The curves are the results
of the present theory.
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FIG. 7. Velocity spectrum K"(cu) as a function of
frequency for various densities according to the present
theory (full curves). The dashed curve is the kinetic-
equation result K (co). The dotted curves are the low-
frequency asymptotes (Ref. 8).
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increases proportionally' to aP ', for n*=n,*, K"
~ co' ', and for n*&n,*, K"fx: co'. Notice that the
frequency scale has to be expanded considerably
in order to make these different frequency varia. -
tions visible.

An important consequence of the anomalous fre-
quency spectrum K"(&u) is the shrinking of the hy-
drodynamic regime upon approaching the edge.
Let us define a characteristic frequency v„, or
time t„=1/&u„, delineating the regime of hydrody-
namic motion by requiring K"(w)/K" (0) for n* & n*,

[or K'(cv)/K'(0) for n*&n,*] to deviate from a con-
stant by not more than 5+. Diffusion and its as-
sociated t ' ' long-time tail can be observed only
for t&t„. Similarly, for n*&n,* (bx(t)') ap-
proaches its constant long-time value 2l 0 only for
t &t„. In the classical weak-coupling regime one
expects the hydrodynamic regime to expand with
increasing coupling t„-1/v; the present theory
verifies this result up to about n*-0.5n~, (Fig. 8).
The same behavior is predicted for n*&2n,*. At

the edge there i.s no hydrodynamic motion and so
it is evident that t„diverges if n*-n,*. The scaling
law derived for K"(~)' reveals t„~ 1/(n* —n~)' near
the edge. One has to wait longer the closer n~ is
to n,*in order to decide, e.g. , whether (bx(f}')/t
approaches a constant as is to be expected for
n*&n,*, or whether (nx(t)') tends to 2l,'as one ex-
pects for n*&n,*. Figure 8 represents t„as a
function of n*. For a computer experiment the
maximal time t„ is restricted by technical dif-
ficulties and therefore results for D or Io can be
obtained only for such densities with t„&t„. These
physical circumstances are the reason why Bruin
rightly suspected large uncertainties. in his dif-
fusivity results for n*=0.6 and 0.8 (see Fig. 2).
In principle there is a similar characteristic
length scale l„diverging at n,*.' We found it not
to be critical for the sample sizes used by Bruin' '
and therefore we do not show the corresponding
graph.

The &u'" singularity of K"(tu) for n*=n,* implies
a t '" long-time tail of K(t). On the other hand

one gets for n*&n,* and t &t„a t '" tail due to the
uP" singularity of K"(&u) in the diffusion phase and
an essentially exponential decay of K(t) for n*
&n,*. To analyze this qualitative transition of the
long-time anomaly in a computer simulation one
can choose a window on the time axis (1/v&)t, &t
& t~ and fit the velocity-correlation function by a
power law K(t) ~ t ~.' The exponent P will depend
somewhat on the window chosen. With increasing
density P will show the following variation. If t,
&t„, the long-time exponent is essentially the
classical one. ' lf t, -t„, it drops until it reaches
the critical value —,

' in the neighborhood n*-n,*
where t„&t,. In the localized phase P increases
with increasing n~ without upper bound. The
quantitative prediction of the P variation for the
three-dimensional Lorentz model shown in Fig. 9
is made for the window t, v =20 and t, v = 50.

Spatial and time-dependent effects both appear
in the van Hove self-correlation function, Eqs.
4(b} and (7). For the noninteracting systems
S"'(q, ~) is the constant 1/(2qvo} for frequencies

Cpp
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05 1.P n"

FIG. 8. Characteristic time scale tI, delineating the
regime for hydrodynamic motion.

1.0 I

0.5
I

15 If

FIG. 9. Effective long-time exponent as a function of
density defined for the time window tgv=20, trav=50.
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smaller than qvo and zero otherwise. Owing to
the collisions, S(q, &u) is essentially bell shaped for
small and intermediate values of ql (Fig. 10). For
ql &10 the recoil spectrum S(q, &d) essentially is the
free function So(q, ~) with a small peak superim-
posed at ur-0. To make the anomaly of the dy-
namics transparent, one can characterize S(q, u&}

by its half-width at half-maximum &@~&2(q) and plot
this quantity as a function of q relative to the dif-
fusion width y(q} = v», (q)/D'"q' (Ref. 10), see Fig.
11. y(q) can be looked upon as an effective diffu-
sion constant. In the hydrodynamic regime, y(q)
=y(q =0) =D/D"'. If one evaluates Q(q, z) from
the Boltzmann equation, the correlation function
is given by E&l. (7}with M(z) =iv '". One finds y(q)
to be unity for wave numbers smaller than the in-
verse mean free path L and then it drops moaoton-
ically. In the kinetic-equation approximation,
P(q, z) approaches the free particle function for
ql ) 1 with width &u, &,(q) =qv„dashed dotted curve
in Fig. 11. For small densities, the present the-
ory reveals for y(q) a similar behavior except
for a decrease of y(q =0) due to suppression of the
diffusivity; see the result for n*=0.2 in Fig. 11.
At intermediate densities, however, y(q) exhibits
an oscillatory behavior. It decreases with in-
creasing wave number to reach a broad minimum
at about q/-1, then it increases again to reach a
maximum somewhat greater than y(q =0). For
large q, y(q) decreases like the kinetic-equation
result. The low-q decrease of the effective dif-
fusion constant can be understood by carrying out
a long-wavelength expansion of the density-cor-
relation function, E&l. (7). In leading nontrivial
order of the small parameter {qv&&/Iz+M(z)])', one
finds P(q, z) to be a generalized diffusion propa-
gator

ql =0.1

-1
4(q K(,) . (9a)

with the frequency-dependent diffusion constant
K(z). Expanding the denominator of E&l. (9a} for
small z =(d+i0 one finds

-1
+fD&"q'y(q) D/D"' '&h( u)+f0) =

with

D/D&o)
y(q) = —

('+I ( =p~)e'

(9b)

(9c)

Y«'
&.0 ——

The strong suppression of the velocity spectrum
at low frequencies as opposed to intermediate fre-
&Iuencies, (Fig. 7), implies K(&u) to exhibit normal
dispersion for ~-0: BK'/sv &0. Hence, y(q) de-
creases with increasing q as long as expansions
(9) are applicable. If ql- 1, the frequency at half-
width of S(q, &d) is of order v. Then K(z) ap-
proaches the kinetic-equation result M(z) = iv,
see Fig. 7. As a result, P(q, z} practically be-
comes the kinetic-equation result and this implies
a corresponding increase of y(q) to the dashed-
dotted line of Fig. 11. So according to the present
theory the y(q) oscillation represents a percursor
phenomenon for the phase transition to the local-
ization regime. It should be mentioned that the
y(q) oscillation has been observed for the incoher-
ent scattering function in classical liquids by com-
puter simulation' "and by neutron scattering ex-
periments, " and that the preceding interpretation
is in agreement with the semiphenomenological
theory' proposed to explain these data. Obviously
it would be desirable to extend the existing com-
puter simulations in order to check the quantita-
tive predictions (Figs. 10 and 11) of the present
work. Such a check would test essentially the

0.8 — n =0.2
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0.5 50

FIG. 10. Van Hove function S(q, ~) as a function of
frequency a for various wave numbers q; m*=0.4. The
dashed curves are the free-particle results S (q, u).

I

qt

FIG. 11. Effective diffusion constant y(q) as function
of the wave number q for various densities. The dashed
curve is the free-particle result y(q) o&- 1/(qvo), the
dashed-dotted curve is the result of the kinetic-equation
approach.
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quality of the approximation for p(q, z), Eq. (7)."
It should be mentioned that all the graphs pre-

sented thus far have been evaluated taking into
account the first three terms contributing to the
vertex F [Eq. (6c)]. To justify this procedure, the
convergence is analyzed for the most sensitive
function Z K(f) discussed above in connection with
Fig. 6. Taking into account only the density mode
in Eq. (6c) corresponds to the approximation
studied originally for the diffusion-localization
phase transition. " This approximation accounts
qualitatively for all the features of the preceding
results and yields the correct value of the per-
colation density n, . The leading approximation,
however, does not reproduce correctly the pre-
factor of the long-time anomaly for small n*, nor
the correct singular low-density expansion of D.
The latter defects are eliminated if the first two
contributions to F in Eq. (6c) are taken into ac-
count, ' but convergence in the sum (6c) is not
achieved if only $0 and Q, are considered. Fig-
ure 12 demonstrates that taking into account the
first four terms in the series for F (dotted line)
does not significantly modify the three-mode re-
sult (full curve). The next correction beyond the
four-mode approximation is so small, that the
corresponding result for nK(t) cannot be dis-
tinguished from the dotted curve of Fig. 12.

If one is interested in the main qualitative fea-
tures of the theory only, i.e. , in a self-consistent
and unified treatment of diffusion and localization,
one can simplify the mathematics considerably as
follows. First one restricts Eq. (6c} to the leading
term so that Eqs. (1}and (6) yield

M(z) =iv+ an*v', o-

x dK K $|(Ko)[$(z,z) —p"'(r(, z+M(z}}).
0

(10a}
Second, one neglects fIe}'" in comparison to f and

replaces the latter by the long-wavelength asymp-
tote, Eq. (9a). Then the momentum integral can
be expressed in terms of Bessel functions with
imaginary argument. With the abbreviation K"'(z}

h, Klt)

O.IO—

/ II,

/

/ /
/

/

n =0.1

= -(v /203)/(z i+v), the self- consistency equation
reduces to the transcendental equation for K(z),

(gi (z) 1 F([zo /K(z )] ) (10b)

(10c)

In particular, one gets for z = 0 D/D '" = 1 —n*/n,*,
i.e. , the dashed line in Fig. 2. The rather good
result of this treatment for D is accidental, how-
ever, the velocity-autocorrelation function de-
rived from Eqs. (10) does not account adequately
for Bruins K(t) data. "'
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FIG. 12. Results for gE(t) compare Fig. 6 for various
approximations of the vertex (see text). Dashed-dotted
line: 0-contribution. Dashed line: 0-1 contr ibution.
Full line 0-1-2 contribution. Dotted line: 0-1-2-3 con-
tribution.
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