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A modified R -matrix technique is presented which determines the eigenvalues and widths of resonant states by the

direct diagonalization of a complex, non-Hermitian matrix. The method utilizes only real basis sets and requires a

minimum of complex arithmetic. The method is applied to two problems, a set of coupled square wells and the II,
resonance of N, in the static-exchange approximation. The results of the calculation are in good agreement with

other methods and converge very quickly with basis-set size.

I. INTRODUCTION

The R-matrix method has been used successfully
to study the electron scattering from both atomic
and molecular systems. ' In all of these applica-
tions the internal wave function is matched at the
R-matrix surface to proper asymptotic forms ob-
tained by numerical integration of appropriate dif-
ferential equations in the external region. When
resonances are present in the scattering cross
section they appear quite naturally by eigenphase
sums increasing by II over some range of incident
electron energy. By fitting the eigenphase sums to
appropriate analytic forms (e.g. , Brett-Wigner plus
background) it is possible to extract the resonance
energy and width from the scattering calculation.

In recent years there have been efforts to de-
velop methods which calculate the resonant energy
and width directly. These new techniques reduce
the full sca,ttering problem to the diagonalization
of a complex, non-Hermitian matrix. ' The real
part of the eigenva. lue gives the resona, nce position
while the imaginary part gives the total width.
Two of these approaches, the complex coordinate
technique and the Siegert method, have met with
considerable success. ' 4 The purpose of this pa-
per is to show how the R-matrix method may be
easily modified to compute these complex eigen-
values directly. Just as with the complex coordi-
nate and Siegert method we diagonalize a complex
non-Hermitian matrix. In fact it is easy to demon-

strate that we are solving the Siegert eigenvalue
problem using a modified Hamiltonian which in-
corporates the boundary conditions required of a
resonant state directly in the definition of the op-
erator. This approach has several practical ad-
vantages. By imposing the outgoing wave boundary
conditions in the modified Hamiltonian we avoid the
need to introduce complex basis functions in the
variational trial function. This in turn obviates
the calculation of complex matrix elements in-
volving the interelectronic interaction. In our ap-
proach the complex part of the matrix arises from a,

singular boundary value operator, first introduced
- by Bloch' in nuclear physics, which involves the
unknown logarithmic derivative of the resonant
wave function on the R-matrix surface. When the
resonant condition is satisfied there is a self-con-
sistency condition between the logarithmic deriva-
tive of the wave function on the surface and the
resonance eigenvalue. By diagonalizing the modi-
fied Hamiltonian for a few values of the complex
momentum it is possible to locate the resonant
eigenvalue and fit it to a simple power series.
The Newton-Raphson method may then be used to
find the precise location of the resonance eigen-
.value in the complex plane. In practice we have
found that it is possible to determine the position
and width of the resonance with three or four diag-
onalizations of the modified Hamiltonian if the
complex momenta are chosen reasonably.
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(H+ L —Eie) =Lip),
where
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II. THEORY

Following Bloch' we write the Schrodinger equa-
tion in the internal region as

&, = channel energy,

k, = resonance channel momentum,

E„, = resonance energy.

III. NUMERICAL RESULTS
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(Sc)

(3d)

(lb)

(&+L)I+;) =E;(E)I+i) (2)

is energy dependent. These eigenfunctions, first
defined by Kapur and Peierls, can be used to
solve the full scattering problem. Resonances ap-
pear when some particular eigenvalue E&(E) lies
near the real axis with a small negative imaginary
part. However, true resonances are poles of the
S matrix and do not depend on the incident energy.
Siegert' demonstrated that the resonance ener-
gies satisfy the same eigenvalue problem as Eq.
(2) but with the additional condition that

(k', )„,=2(E„, —e, ), (3a)

TABLE I. Results for the coupled-square-well prob-
lem.

Model B
Erw

Exact
N=10
N=10L
N= 20K

N= 25~

Exact
N= 10
N=1p'
N=2p'
N=25'

45.6347
45 ~ 6347
45.6656
45.6358
45.6351

Model D

46.8517
46.8511
46.9005
46.8534
46.8521

0.0729
0.0729
0.0718
0.0729
0.0729

0.5562
0.5577
0.5673
0.5567
0.5561

Square-well energies and coupling potentials
Model B

The L operator is defined here with the true log-
arithmic boundary condition L, of the outgoing
wave, rather than 5 as in the R-matrix method.
Since L, depends implicitly on the channel momen-
tum, the eigenvalue problem

To test the numerical efficiency of the method
we have examined two problems. The first con-
sists of three square wells coupled by a constant
potential matrix. This problem has been treated
by McCurdy and Rescigno' using the conventional
Siegert approach as well as by Hazi and Fels'
using the stabilization method. It is particularly
interesting in that one can compare the conver-
gence patterns of the two numerical procedures
and draw some interesting conclusions. In order
to keep the calculation extremely simple we have
used polynomials as a basis for the expansion of
the internal wave function. The required matrix
elements of the modified Hamiltonian are abso-
lutely trivial to compute and no complex arith-
metic is required until the last step when we as-
semble the Bloch operator from the surface pro-
jections of the elementary polynomial integrals.
The second problem we consider is that of e+N,
scattering in the static-exchange approximation.
This system is known to have a resonance in II~
symmetry at E- 3.70 eV when using the Nesbet
target wave function. To carry out the calcula-
tion we used our newly developed R-matrix inte-
gral program for diatomic molecules modified to
account for the complex logarithmic derivative
condition of the Siegert eigenvalue problem. In
this calculation all one and two electron integrals
are computed inside a finite radius in spheroidal
coordinates. Just as with the square well no com-
plex arithmetic is required until the last step when
we assemble the Bloch matrix elements from the
primitive integrals. To facilitate a comparison
we have calculated the resonance position and
width by a conventional R-matrix calculation using
the same basis set.

'The results for the coupled-square-well problem
are given in Table I. We include the results of
McCurdy and Rescigno as a function of basis-set

Eg = 0.0
Vgg = -5.0
V)2= V32= -0.05

E2 =37.5
V22 =-1.0

E3 = 50.0
V33= 8.0
V(3= -5.0

TABLE II. Position and width of the d-wave e+ N2
resonance in the static-exchange approximation.

Eg = 0.0
V(g = -5.0
V f2 —0.05

Model D

E2 =37.5
V22

——-1.0
V)3= -5.0

E3= 50.0
V33= 8.0
V23= -2.5

Method

R matrixa
Iterative close coupling
This work~

E res (e+)

3.70
3.77
3.62

r (eV)

1.16
1.20
1.11

a Reference 2. ~ The R-matrix radius was at r=10.
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size for comparison. Although the basis sets used
in the two calculations were not the same there is
no reason to expect that one is substantially better
than the other for this particular problem. Given

that assumption it is clear that the convergence
of our method with basis-set size is better than

the standard Siegert technique. One may specu-
late about the reasons for this since a similar be-
havior has been observed in a comparison of the
Schwinger and Kohn variational methods. ' Both
the standard Siegert method and the Kohn varia-
tional technique employ basis functions in the var-
iational trial function which are required to satis-
fy certain asymptotic conditions. These functions
do not behave correctly for small r and must be
multiplied by an arbitrary cutoff to ensure proper
behavior near the origin. We argue that this cut-
off basis function behaves very poorly in the in-
ternal region, causing the other members of the
basis set to work very hard to correct the diffi-
culty. The Bloch operator allows us to avoid

these irregular solutions and converges much

more quickly with basis-set size.
In Table II we present the results of our calcu-

lation of the position and width of the d-wave e+ N,
resonance in the static-exchange approximation.
The R matrix, and iterative close coupling calcu-

lations are shown for comparison. The results of
all three methods are in good agreement. One

reason for the discrepancy between the Siegert and

R-matrix calculations, which were done with the
same basis set, lies in the procedure for compu-
ting the logarithmic derivatives on the R-matrix
surface. In the R-matrix calculation the full zero-
potential Schrodinger equation was integrated in

spheroidal coordinates from infinity to the R-ma-
trix surface. In the Siegert calculation it was as-
sumed that the angular functions could be treated
as Legendre polynomials and the radial functions

as Bessel functions. This is an approximation
which could easily account for the few-percent
difference in the numerical results.
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