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Improved variational solution of the Thomas-Fermi equation for atoms

R. N. Kesarwani
Department of Mathematics, University of Ottawa, Ottawa, Canada KIN 9B4

Y. P. Varshni
Department of Physics, University of Ottawa, Ottawa, Canada KIN 9B4
(Received 4 April 1980; revised manuscript received 11 August 1980)

A variational solution of the Thomas-Fermi differential equation is obtained. The proposed solution is used to
calculate the total ionization energy of atoms, and also the repulsive interaction energy between rare-gas atoms. It is
shown that the results obtained by the proposed function are better than those obtained from Csavinszky’s function

for medium and high atomic number elements.

I. INTRODUCTION

The Thomas-Fermi (TF) theory of the atom!®
has an unsatisfactory feature in that it leads to
a radial electron density which decreases as the
inverse fourth power of the distance from the
nucleus, whereas quantum-mechanical results
show that it should decrease exponentially. Csa-
vinszky* 3 proposed to remedy this shortcoming
by obtaining an approximate solution of a suitable
form of the TF differential equation by making
use of an equivalent variational principle. Csa-
vinszky’s function has found use in a number of
areas.’™ We have been interested in the appli-
cation of Csavinszky’s function to describe the
repulsive interaction between atoms. A close
examination of the results presented by Csavin-
szky for the repulsive interaction between rare- -
gas atoms, as well as some calculations carried
out by us showed that Csavinszky’s proposed sol-
ution is satisfactory only for the light elements.
In the present paper we propose an improved
variational solution of the TF equation, which
gives better results than the Csavinszky function
for the total ionization energy of medium and
high atomic number atoms, as well as for the
repulsive interaction energy between such atoms.

II. THEORY
The TF theory leads to the differential equation
a&2 3/2
a;g=%7T ’ 1)

where x is a dimensionless variable, defined by
x=4(27/91)/3(r /ay)

where v is the distance from the nucleus, a, is the
Bohr radius, and Z is the atomic number.

The following boundary conditions should be
fulfilled by a solution of Eq. (1):

#(0)=1, )

and
¢()=0. (3)
The choice
2 5/2
F(, 00,0 -1/2(22) w2/5(%7), @

in conjunction with the variational principle
L(p)= f Fdx (5)
0

is the equivalent of Eq. (1), since substitution
of Eq. (4) in the Euler-Lagrange equation'®

4 (F\ oF_,
dx \ag¢’) " 8¢

leads to the TF equation.
Csavinszky* suggested the following trial func-
tion:

¢ =(a, e™0"+ b, e™0o*)?, (6)

There are four parameters but these are not all
independent. To satisfy the boundary condition
in Eq. (2), one requires

Gy +by=1. S m
In addition, the subsidiary condition that the elec-
tron density be normalized must be satisfied:

fpdv=N, - (8)

where N is the number of electrons, dv is the
volume element, and p is the electron density
which is related to ¢ by

(2"

with
n =%(9172/ZZ)1/3a,s .
With the function (6), L(¢) can be analytically
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evaluated. Because of conditions (7) and (8) there Eq. (10). We shall determine the five remaining
are only two independent parameters. These are parameters by minimizing L with respect to these
determined by extremalizing Lwith respect to parameters subject to the subsidiary condition
these parameters. Csavinszky® thus obtained (8).
2,=0.7218337, a,=0.1782559, It is convenient to write L as
b,=0.2781663, B,=1.759339. L=Ly+L,, (12)
In the earlier paper,* somewhat less accurate Where ,
values were determined. As noted in the intro- L w J‘ -1 <_c_i_?_)” dx
duction, we found that the function (6) is satis- 17 ), 2\dx ’
factory only for low atomic number elements. d
This will be considered further in Sec. III, an
In the present paper, we suggest the following -
variational trial function for the TF equation: L,= f 245/271/2 gy |
p=(ae™**+be®*+ ce™)?, (10) °
where @, b, ¢, o, B, andy are parameters. It All the integrals involved in the present work
is readily seen that the boundary condition (2) can be evaluated analytically. For carrying out
requires that the minimization of L, using Eq. (10), it is con-
_ venient to express the integrals in terms of two
a+brc=1. 1) auxiliary variables » and m, defined by »=8/a
Thus only five parameters are left; also, the and m =y /a. The resulting expressions for L,
boundary condition (3) is seen to be satisfied by and L, are as follows:

2
L = a[%a‘* +3b%+ Sctm+ 4a3_b(li§) + 4a30<1 b Z) + 4b3a(n+ d )

3+n 3+ 1+3n

m+m s n2+nm) mE+nm\ 5., 1+4n+n2)
+4c3a(1+3m +4b c(m+3rz +403b<n+3m @b 1+n

2 2 2
+a202(1+4m+m )+b2c2(n +4nm+m)+4a2bc(1+2n+2m+mn)
1+m n+m 2+m+n

2 [m+2n+ 2nm+n"’) (n+2m+2nm+m2>]
+4ab c(-—-——-——l+m+2n +4abc? T , | (13)

L—zl/("s+ e b e ey Ya cha
2= G) BT R R E S e R (a2 (G m) 2 (dnt 1)V 2 (@m+1)72
oo bo b 2 2 26
(@n+mP" 2" (Am+n)"2 @B+2n)'2 (B+2m) 2 (3n+2)2

. 24°¢3 N 2632 20%¢  4a*bc 4b%ac
(Bm+2)2" Bn+2m) 2" (3m+2n)"% (B+n+m)’2 (1+3n+m)’ 2

+ 4ciab . 6ab?c? + 6bca? . 6ca?b?
A+n+3mP 2 (1+2n+2m)y'2 (m+2+2mp’2 (m+2+2n03)"

The subsidiary condition, Eq. (8), yields

1 a3+b3+c"+3azb+3ach3b3a
—7_013 2'53‘7‘5 (3n)a/z Gmyr 2" @+ny? (2+m)3’27(2n+1)372

43¢ . 3b% . 3ch +.Babe _2 N (15)
@m+1P2 @u+m)’ 2 @m+nP 2 (l+m+nP’? vr Z°

For neutral atoms N/Z is, of course, equal to 1. L was minimized with respect to the parameters a,
¢, n, and m; the remaining two parameters being determined from Egs. (11) and (15). The resulting
values of the six parameters in Eq. (10) are

(14)
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a=0.52495, «=0.12062,
b=0.43505, B=0.84795,
c=0.04;  y=6.7469.

III. DISCUSSION

Csavinszky® has considered three things to ex-
amine the validity of his variational function. Here
we shall also consider the same three things.
First, in Fig. 1 we compare ¢ [Eq. (6)] and ¢
[Eq. (10)] with the exact solution''® of the TF
equation. It will be noticed that Eq. (10) is in
better agreement with the exact solution than
Eq. (6). At large values of x there are marked
deviations arising from the exponential decrease
of Eq. (10).

The energy necessary to remove all electrons
of an atom can be calculated from the following
equation!:

E=(12/7)(2/9m)/3¢(0)27/ (% /ay) . (16)

We have calculated E, both by Egs. (6) and (10),
and the results are shown for some represen-
tative values of Z in Table I. Column 3 of this
table shows the experimental values of the total
ionization energy for Z < 18. For Z> 20 experi-
mental data for ionization potentials for all stages
of ionization are not available, and in these cases,
the theoretical (corrected Hartree- Fock) values
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FIG. 1. ¢ [Eq. (6)] and ¢ [Eq. (10)] compared with
the exact ¢ obtained from a numerical solution of the
TF equation.

of Fraga et el.}” are shown. For Z <18, the val-
ues of Fraga et al. are in good agreement with
the experimental values; for higher atomic num-
bers, their values can be expected to be reason-
ably close to the correct values. It will be no-
ticed from Table I that for light elements, in
percentage terms, Csavinszky’s values are bet-
ter than ours, but for Z> 28, the reverse is true.

An interesting approach to the theory of the
repulsive interaction between two atoms was
initiated by Firsov.!? In his theory, the inter-
action energy is given by

UR)=(Z,Z,¢*/R)$(£), 1)
where
£=(2*{2+2%{?/R /0.8853a, ,

and R is the internuclear distance. Firsov limits
the validity of his approximation for R <10 ¢m
(=1.9a;) mainly because the TF electron density
falls off too slowly. Csavinszky* has calculated
the interaction energies between rare-gas atoms,
both for the homo and heteronuclear cases,

in the Firsov approximation and making use of
Eq. (6).

We have calculated repulsive interaction ener-
gies for Ne-Ne, Ar-Ar, Kr-Kr, Xe-Xe, and
Rn-Rn in the Firsov approximation, from both
Egs. (6) and (10), and the results are compared
with the best available experimental and theoret-
jcal potentials in Figs. 2-6. In all of these fig-
ures, F1 curves represent the results obtained
from Eq. (6), and F2, represent those from Eq.
(10). The dotted line curves represent the re-
pulsive part of the empirical potentials (deter-
mined from experimental data), i.e., the dis-
persion energy contribution has been subtracted
from the fitted potential.

There is a great amount of literature on the
determination of the intermolecular potential
energy functions of the inert gases from analysis
of various types of experimental data on these
gases. Potentials thus determined shall be re-
ferred to as empirical potentials. The early
work on empirical potentials has been discussed
in the well-known book by Hirschfelder et al.'°
There has been a considerable advance in our
understanding of the potential energy functions
of the inert gases during the last decade. The
work on empirical potentials has been reviewed
by Maitland and Smith,?° Smith,?* and Barker®
during the last few years.

The theory of intermolecular forces was re-
viewed by Hirschfelder ef al.'® in 1954 and by
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TABLE I. Comparison of total ionization energies (in units of e%/a B

_Expt. and Percent Percent
corrected Calc. from  difference Calc. from difference
Element VA Hartree-Fock Eq. (6) from col. 3 Ea. (10) from col. 3
He 2 2.905 3.016 3.8 3.426 17.9
C 6 37.88 39.14 3.3 44.47 17.4
Ne 10 129.1 128.9 -0.2 146.4 13.4
Ar 18 529.4 508.1 -4.0 577.2 9.0
Ni 28 1519 1424 -6.2 1618 6.5
Kr 36 2786 2561 -8.1 2909 4.4
Pd 46 5036 4537 -9.9 5154 2.3
Xe 54 7427 6595 -11.2 7492 0.9
Hf 72 14977 12905 -13.8 14659 -2.1
Hg 80 19431 16501 -15.1 18745 -3.5
Rn 86 23253 19535 -16.0 22191 -4.6
U 92 27506 22864 -16.9 25972 -5.6
Fm 100 33896 27774 -18.1 31 550 -6.9
Margenau and Kestner®® in 1969. More recently, been numerous calculations®*™* of the repulsive

interaction energy between rare-gas atoms by
a variety of methods. We shall now consider
individual gases.

Murrell® has discussed the short- and inter-
mediate-range forces, and Bell and Zucker®®
have discussed long-range forces. There have

. A. Neon
Siska et al.** have used the following potential, known as the Morse-spline-van der Waals (MSV) poten-
tial: '
expf-2B(x — 1)} -2 exp{-B(x-1)], O<x <x,
V(R)/€ X by +(x = 2 by + (% = 2,)[ by + (x = x,)b,]}, x,<x<x, (18)

Cex 8= Cex® - Cx™°, x,sx
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FIG. 2. Repulsive interaction potential for the Ne—Ne

system. F1 and F 2 are explained in the text.

FIG. 3. Repulsive interaction potential for the Ar—Ar

system.
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where x=R/R ,, R, being the interatomic separa-
tion at the minimum of the potential; €, B, and
b’s are constants. Cg, Cg, and C,, are disper-
sion energy coefficients. These authors deter-
mined the parameters, occuring in the potential
from their scattering data, second virial coeffi-
cients and known long-range behavior; the re-
sulting values being € =(0.633 +0.024) X 107¢ erg,
R=3.03+0.02 A, 3=6.93+0.18, x, =1.1000, x,
=1.4000, b, =-0.7500, b,=1.870, b,=-5.185,
b,=5.797, C4=1.282, C;=0.278, and C,,=0. The
dispersion energy constant C, was given the theo-
retical value and C; was estimated. This poten-
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FIG. 5. Repulsive interaction potential for the Xe—Xe
system.
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FIG. 6. Repulsive interaction potential for the Rn—-Rn
system.

tial gives good agreement with experimental vis-
cosity data.*® A slightly improved potential has
been proposed by Farrar et al.**; however, the
values of all the parameters occurring in the
latter potential are not available. The potential
of Siska et al. (after subtracting the dispersion
energy contribution) is shown in Fig. 2 by the
dotted line curve.

Gilbert and Wahl*® have carried out self-con-
sistent field (SCF) calculations for the Ne-Ne
interaction and their results are shown in Fig.

2. Ab initio configuration-interaction calcula-
tions have been made by Cohen and Schneider3®;
their results are in good agreement with those

of Gilbert and Wahl. It will be noticed from Fig.'
2 that there is good agreement between the em-
pirical and Gilbert-Wahl potentials. Csavinszky’s
function is seen to give better results than Eq.
(10). :

B. Argon

The following potential was proposed by Barker
and Pompe®: _ ~

V(R)=¢ e"‘“"’}i A (r-1) __Qs__
' @ +35)

i=0

Cs ClD
~F+5) O+ 5))’ (19)
where =R/R,,, and o and A ’s are constants.
The constant 8, which prevents a spurious maxi-
mum in the potential at small distances, has
always been given the value 0.01. Successive
refinements of the argon potential using the form
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(19) and related forms were made by Barker and
co-workers.*®**® The potential of Barker, Fisher,
and Watts*® appears to be the best available po-
tential for argon. The following data were used
to fix the parameters in Eq. (19): high-energy
molecular-beam data, zero-temperature and
-pressure lattice spacing, energy and Debye
parameter 6,, derived from specific heat
measurements of solid argon, the known long-
range coefficients of R, R™®, and R (the two
latter coefficients are approximate values),
second virial coefficients, the liquid-phase pres-
sure at one temperature and density, and the
known coefficients of the Axilrod-Teller inter-
action. The values of the parameters in Eq. (19),
as listed by Barker,?? are given in Table II. This
pair potential has been used to calculate a wide
range of thermodynamic properties of solid,
gaseous, and liquid argon, and the results are in
excellent agreement with experiment. The re-
pulsive part of this potential is shown by the dot-
ted line curve in Fig. 3.

Gilbert and WahI*® and Wadt*® have performed
SCF calculations on the Ar-Ar interaction. The
two sets are in reasonable agreement with each
other. Gilbert-Wahl results are shown in Fig.

3. The theoretical results of Gilbert and Wahl are
seen to be in reasonable agreement with the em-
pirical potential. The results from Eqs. (6) and
(10) have about the same sort of deviation, but

in opposite directions, from the Gilbert-Wahl
results.

C. Krypton

An extended version of potential (19) has been
quite successful for krypton. This potential has
the form

VR)=€[V(r)+AV(r)], (20)

where V,(7) is given by the expression inside the
large parentheses in Eq. (19) and AV(r) is defined
by

{P(r-— 1)+ Q(r - 1)5]"6“' (1-1), r>1
AV(r)=
0, r<1. (21)

Barker et al.*® determined the parameters of
this potential using scattering data, vibrational
levels of Kr,, solid-state data, second virial
coefficients, and gas viscosities. The K2 set

of their parameters is given in Table II. The
repulsive part of this potential is plotted in Fig.
4. Barker et al.* estimate the range of validity
of their potential to be roughly V(R)<1.3 x 102
a.u. Thus the major portion of the plotted curve

23

TABLE II, Parameters for argon, krypton, and xenon

potantials.
Argon? Krypton® Xenon®

e/k (K) 142.095 201.9 281.0
R, &) 3.7612 4.0067 4.3623
A 0.27783 0,23526 0.2402
Ay —4.50431 —4,78686 —4.8169
A, —8.331215 -9.2 -10.9

Ag —25.2696 -8.0 —-25,0
Ay —~102.0195 —30.0 —50.7

A —-113.25 —205.8 —200.0

Ce 1.10727 1.0632 1.0544
Cs 0.16971325 0.1701 0,1660
Cio 0.013 611 0.0143 0.0323
a 12.5 12.5 12.5

5 0.01 0.01 0,01

P —-9.0 59.3

Q 68.67 71.1

a’ 12.5 12.5

2 Reference 22,
b Reference 49.

can only be considered as an extrapolation. There
is a potential due to Buck ef al.,® which gives
results almost as good as those from the potential
of Barker et al.*®; the two potentials are in ex-
cellent agreement with each other.

Wadt*® has carried out SCF calculations for
Kr,, and his results are included in Fig. 4. At
very small values of R, i.e., R<a,, the results
from Bohr’s screened Coulomb potential, Fir-
sov’s TF results, F1, and F2, are all very close
to each other and there are good theoretical rea-
sons to believe that these results are correct.
The F2 curve is in excellent agreement with the
quantum-mechanical results and it would appear
that it is close to the true potential in the repul-
sive region.

It will also be noticed in Fig. 4 that there is an
increasing divergence between the empirical and
quantum-mechanical results as R -0. As we go
away from R =R to smaller values of R, the
shape of the empirical potential becomes increa-
singly less influencial in determining most of
the physical properties which are usually employed
for determining such potentials. (An important
exception is high-temperature second virial co-
efficient data). Thus the empirical potential is
accurate only in the attractive and low-energy
repulsive region. The available evidence indi-
cates that the empirical potential is inadequate
to describe the high-energy repulsive region.

D. Xenon

The determination of an interatomic potential
for xenon consistent with all experimental data
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has proved to be difficult, possibly because of

a real inconsistency in the experimental data.
The best compromise appears to be a potential
of the form (20) whose parameters have been
obtained by Barker et al.*® (their set X2). These
parameters are listed in Table II and the repul-
sive part of this potential is shown in Fig. 5.

For xenon also, the estimated range of validity
of Eq. (20) is V(R)<1.3x 102 a.u.

Wadt?® has performed SCF calculations on the
ground state of Xe, also, and his results are
shown in Fig. 5. It will be noticed from Fig. 5
that the results from Eq. (10) are closer to Wadt’s
values than those obtained from Eq. (6). Also
we notice that, as was the case for Kr, there
is an increasing divergence in the empirical and
SCF potentials as R tends towards zero: In this
case also the empirical potential is inadequate
in the high-energy repulsive region. '

E. Radon

The experimental data for radon are very
scant. While attempts have been made to esti-
mate®»5? the values of €/k and R, for the in-
termolecular potential for radon,  reliable in-
formation on the repulsive region is lacking. The
only previous theoretical calculation on the
Rn-Rn interaction is that of Abrahamson.?® How-
ever, his results are suspect as his method of
calculation has been criticized by Gunther?® and
the criticism has been substantiated by Junker
and Menendez.?” From the trend of relative po-
sitions of F2 and ab initio calculations for the
previous four cases, it would appear that the
actual repulsive potential for radon will lie above
the F2 curve (Fig. 6). '

Summarizing, we find that for Ne-Ne interac-
tion Csavinszky’s function gives better results
than Eq. (10); for Ar-Ar, the results from the
two have about the same sort of deviation from
the ab initio theoretical curve. But as we go to
heavier pairs, namely, Kr-Kr, Xe-Xe, and Rn-
Rn, the results obtained from Eq. (10) become
increasingly better than those from Csavinszky’s
function.

We have also carried out calculations for hetero-

nuclear pairs of rare gases. The results are
analogous to those for homonuclear pairs. The
results from Eq. (6) are better than those from
Eq. (10) for Ne-Ar, the results from the two are
comparable for Ne-Kr, but for all other hetero- .
nuclear pairs between Ne, Ar, Kr, and Xe, the
results from Eq. (10) are better than those from
Eq. (6). In conclusion, we find that for medium
and high atomic number elements, Eq. (10) pro-
vides a more satisfactory approximation for ¢
than Eq. (6). In a sense the two solutions are
complementary, one is more suited for light
elements, while the other for medium and high
atomic number elements.

At first sight it may appear rather surprising
that a six-parameter fit [Eq. (10)] does more
poorly than a four-parameter fit [Eq. (6)] for
low-Z elements. A reference to Fig. 1 will help
to clarify the situation. It is known that if one
uses the exact ¢ obtained from the TF equation,
the calculated atomic and interatomic properties
are in poor agreement with experiment. A sharper
decrease of ¢ with x is indicated. How much
sharper ? The results of the present paper show
that for low-Z elements a rapid decrease of ¢
with x, Eq.(6), is needed, while for medium-and
high-Z elements, a less rapid decrease of ¢ with
x, Eq. (10), is satisfactory. Extrapolating, one
could conjecture that as Z becomes very large,
atomic and interatomic properties calculated
from the exact TF solution will tend to the “cor-
rect” values. One could argue that after all the
TF model is a statistical model and can be expec-
ted to be best applicable only when Z is very
large. The results of the present paper also
indicate that probably it is not possible to find
a “universal” repulsive potential of the form of
Eq. (17) such that ¢(£) is some suitable function
of £ alone.
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