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Recent advances in the unitary group, or Weyl tableau, approach to the theory of complex spectra have provided

great simplification of calculations in atomic and molecular applications. We show that the subduction coefficients

employed by Patterson and Harter to generate mixed-orbital-configuration LS-adapted states can be derived using

simple vector-coupling considerations. Using lowering and projection operator techniques based on the idea of
"highest tableau, "which we show are automatically eigenstates of the L ' operator, we generate equivalent states.

These states are used to calculate reduced matrix elements of the spin-own-orbit operator for the case '(p'd). We

discuss the generalization of the existing minicomputer programs to treat mixed-orbital configurations.

I. INTRODUCTION

In recent years a great deal of progress has
been made in the implementation of unitary-group
methods to atomic and molecular problems. '

This has greatly reduced the complexity of cal-
culations in atomic and molecular many-body
problems. In this paper we work out detailed ex-
pressions and discuss the minicomputer imple-
mentation of the unitary-group approach to the
case of mixed-orbital configurations in atoms.

An extension like this proves difficult using the
traditional Racah scheme. First, the labeling of
states in terms of I and seniority numbers for
f electrons and beyond, even in pure configura-
tion, breaks down. Second, difficulties arise due
to expressions involving 3n- j and fractional
parentage coefficients. The latter have no closed
form expressions. This fact requires the storage
of large "look up" tables making a minicomputer
implementation all but impossible.

Patterson and Harter (PH) (Ref. 4) have recently
discussed the generation and classification of
mixed configuration states in terms of breaking
the corresponding group U„ into its various com-
ponent product groups, and using IS labeling
based on the concept of parentage.

In the balance of this work we shall, after a
brief outline of the theory, show the equivalence
of the (PH) method to a standard vector coupling
approach. Next, we shall show that from the
point of view of computer implementation, the
equivalent lowering-projection operator tech-
nique' [Drake, Drake, and Schlesinger (DDS)t is
to be preferred. Last, we give a sample calcula-
tion of reduced matrix elements of the spin-own-
orbit operator between states of (P d).

II. OUTLINE OF THEORY

A. Pure orbital configurations

A completely antisymmetric N electron state
will be represented by the product of a two column

Weyl tableau (see Fig. 1) with boxes labeling the
one electron orbital quantum numbers of the elec-
trons, and a conjugate tmo-rom tableau with boxes
labeling the corresponding one electron spin
quantum numbers. The product of orbital and
spin tableau uniquely define the vector
~f"SMzMs; (a.')), where l denotes the orbital angu-
lar momentum of a single electron, S the resul-
tant spin, and M~ and M~ the resultant orbital and

spin projections, i.e. ,
N I 0

Mg ——Q mg (
——N(l + 1)—Q a., —Q a. ', , (2. ].)

i=i 5~1

&N

b=2S

FIG. 1. Tableau labeling: Lexical tableaux are de-
fined by the properties that each n'; is less than or equal
to the value n,. in the box to its right and each n; is less
than the value n, in the box below it. Indexing is defined
so that the maximum n';=n~, the next largest n2, and so
on, to the minimum n~ which is always located in the
upper left column box.
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M~ ——

j 1

For a, given tableau (o'} shape it is clear that
there can only be one tableau of highest M~,
namely the one which contains &„ having the low-
est allowed lexical values. Hence, we shall have
with o.j =i,

M~(max) = (2g + g) (l + 1)

(2. 2)

B. Mixed orbital configurations

%hen a driven electron can occupy any of t differ-
ent orbitals I&, I2, . . . , I„ there will be n = (2l, + 1)
+(2l2+1)+. . . (2l, +1) states for it. The corre-
sponding n "one-body" operators for these states
will generate the group U„= Ut2(), + ~ ~ gg)+gg

In the case of many electrons, such that N] oc-
cupy states in the l& labeled orbital and N2 occupy
states in the l2 labeled orbital, etc. , we have a
mixed orbital configuration denoted by
(l"')(Iz 2) (l", ~) with N =N&+N2+ ' ~ ~ N, Here, .
too, we consider the group U~2«„, ...., ,&„& and we

choose tableau box labels &j such that for the jth
pure configuration l& &

2(l~+ ~ ~ l&,)+j- o',~' ~2(lq+ l&)+j. (2. 5)

a(a+1) (&+g)(a+&+1) . (2 ~)
2 2

In order to generate definite L-labeled states,
we begin by defining the highest M~(max) labeled
tableau as

~/"L SM (max)MS)=~l"SM (max)M;(o'. )) .

(2.4)
Next we proceed, in the fashion described by
DDS, ' by successive application of the lowering
operator L &. %e shall be able to generate allL,M~) labeled states. The remaining L
&L ~ labeled states can be generated by a pro-
jection operator technique and each in turn is then
lowered using L

&
until all L-labeled states cor-

responding to a given tableau shape have been
generated. When several states of the same L
are present at a given M~ level, an extra (Iuantum
number is chosen (such as seniority, although
this alone does not suffice for the case off' and
beyond).

We can now select families of tableaux corre-
sponding to l» l& 'l2, ..., ~, '~,"2... && ', ..., l,".
Each of these families corresponds to a particular
mixed orbital configuration subgroup of
Uu( g)(I = 4+ 4).

When we couple the conjugate spin tableaux, we
can then define the subgroups (' ~&"I,"&) ~ ~ ~ (

' ~t "I;"~)
of '(lq ~ ~ l,)". The next task is that of calcu-
lating L-adapted eigenvectors as was done in the
case of pure orbital configurations. This can be
achieved in two different ways. The one discussed
by Patterson and Harter [(PH) (Ref. 4)] uses so-
called subduction coefficients to couple parent
configuration defined L-labeled vectors of the
groups Ug, , ) x UL. ,2) x ~ ~ . x U~, , )([l]= 2l + 1).

The other approach, suggested by us (Ref. 1)
for pure orbital configurations is that of using
lowering and projection operators to obtain L
adapted vectors from a highest I state tableau
(highest tableau) .

In what follows, we shall first show that the
rules stated by PH for the derivation of the sub-
duction coefficients can easily be derived from
standard vector coupling or a simple application
of graphical methods of angular momentum anal-
ysis. Second, we clarify certain ambiguities re-
garding the lowering operator method'4 and show
it to be suitable for computer implementation.

III. EQUIVALENCE OF SUBDUCTION METHOD
TO VECTOR COUPLING APPROACH

%e shall restrict our discussion to the case of
two pure configurations l&

' and l";2 coupling to give
mixed states l~ 'l22. The extension to t-mixed
configurations is straightforward as we shall show
below.

The coupling of spin and orbital tableaux can be
performed in two different ways. We can begin
with a pure configuration tableau state
j I,"&S"'MP'M~"; (o."')) and we can successively
couple E,-labeled electrons onto this parent state
arriving after adding i electrons at the statet"""I"if'S M

We could have also proceeded by coupling all
l2-labeled electrons together and then coupling
the pure configuration states together to give

+~l+&)(» +&l2)S&M& &Mz &). These are
equivalent. In fact, we can write [Brink and
Satchler (BS), 1968] (Ref. 5)

~(
'

lg 'I2 )l2S M~, ) = [(2S. + 1)(2S'2'+ 1)]'~2( 1) ~ +~a-1+~(+&/2($) (f) S(i) S(2)

S(2)
j -'1 j

)( ~(» '&+&INi)(2s"'+1/~)S M )

The vector coupling coefficients in (3.1) have four possible vaJues which we list below.
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x (2) (2)Cage 4: S, =S) f+ g S$ Sj f+

(S +S S )(S 1&+S +S 2)+1))~1/2

1 (2) (2) 1Case 8: S]——S) i —~, S] ——S] i+2,

(S'1' ps'» S )(S'1&+S S'»+ 1)1 2Si
(as, + 1)(as,'»)

Case C. S, =S, i+~, S] ——S] i
—-„1 (2) (2) 1

((S'1)+S'2)—S +1)(S(1&+S —S(2)) 1/2

(2S, + 1)(2S,"'+2)

Case D: S =S x (2) (2) x
k-i

t

(S&1&+S&2)+ S +2)(S(2& Ps S(1)+1) 1/2

(2S, + 1)(2S,"'+ 2}

The cases A-D above correspond to the cases'A Dof -PH (19VV). The remaining case E of PH corre-
sponds to the coupling of a pair of electrons having the same m, values. Here, we find

(i& (2)S S] 2 S]2
~(l&'l2 )l2S,Ms, )= g [(2S, 2+1)(2S,' '+1)]'/ x(-1) ' i 2

0 S S(2&.2 i i
2

X ~(lf 1)(l2)S(Ms i) . (3.2)

The coefficients here have the following form.
Case E: 5(S„S,2)(&(s, ', S,' 2). The difference

in phases between the vector coupling approach
and the method of PH is accounted for by Drake
and Schlesinger [DS (19VV}].

The equivalence of Eqs. (3.1) and (3.2) to Pat-
terson and Harter's subduction coefficients used
in defining definite I -labeled states constitutes a
proof of their method; it should be stressed as it
contributes greatly to one's understanding of the
tableau formalism for mixed configurations.

Finally, it is also clear in this context how to
proceed with the case of more general mixed con-
figurations. If we consider, for example,

then we can define states

~
f [(2S +)iN1)(2S )i&&2)](2SI„Ii(-1)],l S M )

[(2 +&is))(2s &i&&2)](2S . li)s M

[
((2S +)lS))][(2S +)lS2)(2S& ii)]s

and so on. The relationships between these var-
ious equivalent representations is displayed
(Brink and Satchler) using 9-j symbols.

Finally, in Appendix A we derive the same re-
sults for the coupling transformation coefficients
using graphical methods of angular momentum
analysis.
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IV. LOWERING OPERATOR METHOD FOR THE
GENERATION OF L-ADAPTED BASES L = -

I

a~(2l +1 —n~) (/2E(
2

(4 1)

A. Pure orbital configurations

ln Ref. 1 (DDS) the generation of L-adapted
bases from. highest tableaux of pure I" configura-
tions was discussed in detail. Briefly, the trans-
formation coefficients from the tableau defined basis

t"SM~Ms; (~)) to the L-adapted basis
l"LSM~Mzr) are generated using the lowering

operator

where v' is any necessary additional quantum num-
ber, and E(c//„n~) represents a sum of single-
particle operators e~(~'n) such that

e/(a/c. ,) Il-,'n, m,„)=&(p, q)5(n/„n, ) l ,'n, m-, /, ) .

(4 2)
L-labeled states not produced through lowering
are generated using projection techniques. One
can express the transformation coefficients re-
cur sive ly by (I,[L,Mz (max) 1]= 1, )

~Ng+X

) 1/2 (&s(2)+1 &r) g/g

&sr

~ max

4, (LM~r) = ' Z [5(I, r) —e,(L'M~r')e, (L'M~v')],
1.' =el,

gt

(4 8)

(4.4)

where E~ is the matrix element of the E(nl„n~) operator between the I'th tableau at level M~ + 1 and the
Ith tableau at level M, , Q„„is the number of tableaux at level Mz +1, and D is a normalization factor.
The label 7 is chosen in this method so as to distinguish between the different same-L, vectors at the
same M~ level. The transformation between L -adapted and tableau states is then written as

@Ng

I
l LSM M T) = g 4 (LM 7')

I
l SM M;(o.)) (4.5)

where the 4,(LM~v') satisfy the orthonormality conditions

4, J-M, 7 e, L'M, v' =el. , L, e v, ~ . (4.6)

B. Mixed orbital configuration

(4.7)

In the case of mixed configurations the procedure is entirely analogous. A complete basis set of opera-
tors for the group U„ is given in terms of irreducible tensor operators by

-m' l' k t,V (l„l,) = Q (-1) "'~ '~'&(2k+1)'/ " ' ~E(m', ), m, /),
-m',

g q m

where r, t denote the rth and. tth pure configurations (f„")and (I", ~). Using (4.7) we can define intrashell
(l„=l„r=t) and intershell (l„t t,) operators. In particular, we define the orbital operators by

(-1) ' "[Ip(ted+1)(2~p+1)]"
~l

l' ~E(n,', n/, )
-ms a ~ m

~(~W24+1- ~Q '"
(4.8)

l~+I -np E ~~, ~~ . 49

The operator I„is similar to (4.8), involving
a change of overall sign and interchange of primes

and no primes on the Qf s %'1th N Ny+N2+. ~ ~

one sees by comparing (4.8) with (4.1) that the
form of the operators is the same for mixed and
pure configurations requiring, of course, that l
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be labeled for the pth electron in the mixed orbital
case.

The generation of vectors at a given M~ level,
having the same L, is again accomplished by a
projection technique and the transformation coef-
ficients 4, (IM~r) are defined by (4.3) and (4.4).

The use of lowering and projection techniques
in the generation of L-adapted bases for pure or
mixed orbital configurations depends on being
able to have at least one eigenvector of definite
L. In the pure orbital configuration case this
choice is immediate, since for M~(max) there
exists only one tableau state and this defines an
L ~-labeled state. In the case of mixed orbital
configurations this situation may not always occur.
In other words, several "highest tableaux" [de-
fined as all lexical tableaux of the configuration
that cannot be raised by any intrashell operator
&(n~, a~) j may exist for a given configuration. We
show in Appendix B, however, that each of these
highest tableaux is, in fact, an eigenvector of
definite L, and consequently the states of a mixed
orbital configuration will be found by systemati-
cally lowering the highest tableaux just as one
does for a pure orbital configuration.

TABLE I. Tableau states of [{p )d).

ML, QQL (Tableau)

4

~2&
5 4

2 4 3 t [~ t a( 2 2(s & sl
6 5 4 4

«l~ ~ al' a al' ~ sl4 a sls
7 6 5 5

o s «I' & ala»ls & sl4 as)
8 7 6 6 5 4

& sls 231 ssl
8 7 7 6

s 2 I' i s la a s ls s s l4
8 8 7 6

8 7

V. APPLICATION TO SPIN-OWN-ORBIT
MATRIX ELEMENTS

In this section we demonstrate a calculation
of the spin-own-orbit matrix elements for mixed
orbital configurations. For our example we con-
sider the case of '(P'd) which we split into two
families, '[('P')dj and '[( p')dj.

Numbering P- and d-labeled boxes by 0, =1, . . . ,
3 and o. =4, . . . , 8, respectively, we find for
highest tableaux the states

terms of the irreducible tensor operators V de-
fined in (4."l).

The reduced matrix elements of (5.3) in the re-
presentation corresponding to the

~

('~ "I,')
I,"'SM~M„(o.)& vector's can be written in terms
of the cases y =0, —1 separately.

TABLE II. Tableau states of [{p )dt.

QgL (Tableau)

5 I

~

('p')dL =4S =-,'M =4M, &
=

4 M

(5 1)

~('P')dL =3S =2™z=3M'& = (5.2)

(5.3)

The remaining tableaux generated from these
highest tableaux are given in Tables I and II. The
superscripts on each tableau are index labels I
to be used in conjunction with the transformation
coefficients defined in (4.3) and Tables III and 1V.
These last two tables are generated using the
lowering and projection operator techniques de-
fined in equations (4.1) and (4.8).

The spin-own-orbit operator is defined by3

0 5

4)& & 6~2
2

& 6l2 «13
2

»]«6 ~2

2

2 6]i f 7I2 i 6]5
2

2 7 )1 f 6 i2

where l, „and S, „are single-particle orbital
and spin operators which can be expressed in
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TABLE III. Transformation coefficients for ( (p )d LSMzMsv) states.

e
3

gi
7

-Qs -Qi
i4

3(1)

-+i
'2

Qi
3

-Qi

15
Qi

15

Qi
5

Qs
i0

Qs
io

Qs

-Q4
2i

-Qs

gi
i0

5

0(1) 0
48 i4?
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Casek: y=0(Mz =M+). In this case n, =n', (i =1, N) .After removing all mutual pairs in our tableaux,
we find n, 55n& (iwj =1, . . . , N) and

(( s ' '
l )l 8,'M', ;(n'))( P~o(((' "l, ')1, 'S,M~;(n))

N

5(n])n]5) 5(S),$,')(lp+1 —np')(-1) ~ ~ ' Qs [(2$~, +1)(28', +1)]')"

SJ $ j p~
M(i) .

1 1 S ~+0
2 2 p

Case B: y = -1(Mz =M~ +1). In this case n I
= n

&
for all i except n& = n~ - 1 and

(( s "I ')I"2$'M' ~ ( ')(( P-'
[[ (» +21 ')I 2$~ ~ ( ))

n]~j E N
2/2

=5(M~, M~+I) 5(n], n))
'

5(n'„n)) 5($', S,) ~ ~)
~

Ep''' M(i),
4

where

I{()=[(22, +1)(22', +1)]'" i ' I(-1) ~*

1
S]i1 S]41

and M(-1) =1, by definition.
For Ep we find four possible forms, namely&

$1
EP=5(SPSP) [(28/ 2+1)(28/1+1)]'"(-1) ' ' ' '' ' ' M(P -2)

1 1 S2 2 P

(5.4)

(5.5)

SrS =5(S 2')5(S S )(—1) )' ' ' ~ ' [(22' +1)(2S' +1)]'i'
1 1
2 — 2 Sp 1

Sl
E, =5(S~,S4)( 1)"~" [(SPS+ )((~2--2. +1)1" " " IM(5-2)

1 1
2 2 Sp

~= S(S~S5~ )5(S~,S~,) [(2S~ +()(22] +1)]'i'(-1) ~ ~ '
I

~ ~

I1 1
2 2 Sp1

~f QpQp-1 y Qp+Qp+1 &

(5.'I)

&f Qp Qp 1y Qp+Q~1 q

=Q', ,

IIf Qp Qp 1 ~ Qp Qp41 ~

The counting order of the spin chain (S,) is taken so that S, is the total spin, S, the spin after removing
the. highest Q value, and $„=0the spin after all boxes have been removed.

The case y = j. is of the same form as case B, interchanging primes and no primes where necessary,
and changing the overall sign to minus.

Table V contains values of matrix elements of V» between tableau states. Once the computations of
the V~0 matrix elements has been completed, the transformation to states of, say, definite L is quite
simple. We write

((' "l ')I, 'L'8'Mix'ii V ii
('s "l, ')l, 'LSM r)

s. L'llfLT' @r LML7 l1 l2 S M Q I V~
S ' '

l1 l2 S~L' Q
I s]. s

where the double summation ranges independently over the Q'„5 and Q~ tableaux at levels M~5 and M~, re-
L

spectively. Further transformation to different labeling schemes, say (LSD+) labeling, can also be ac-
complished in a relatively simple manner.
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TABLE IV. Transformation coefficients for
((~p2}dLSMzjlfsv) states

e'rLM~~)
1 2

-Qi
3

Qi
5

3

Qs
5

—Qi
5

-+i
3

Qi
6

2

f0
+s

i0

+
.22oq-& + (6.1)

VI. MINICOMPUTER PROGRAMMING
CONSIDERATIONS

t

We have recently' completed the minicomputer
programming of the generation methods for ta-
bleau and I -adapted bases plus spin-own-orbit
reduced matrix element calculations for pure
l" configurations. The programs were coded in
POP assembler language. They constitute a
string of four programs, each less than 20E
words (1 word —16 bits) in length so that a unit
of limited memory capacity can handle them se-
quentially.

The first program, "GENI AL" generates and
stores on disk the entire list of tableaux cor-
responding to a given partition (tableau shape)
of the configuration. Optimal storage is achieved

I

by encoding each, :tableau in terms of a binary
string, ' represented by the expression (cf., Fig.
1)

(-1)~v n/d, (6.2)

where the phase P =0, 1 and e and d are integers.
In our program we have chosen to utilize this fea-
ture to calculate exact values for these various
quantities, which we then express in the form
(6.2). Using conventional high-level language
(e.g. , Fortran, Basic, etc. ) software overflow
can be a problem as the numbers n and d can be
extremely large fe.g. , for the case 4(f ') configu-
rations d approaches loso in some instancesj. If
one abandons an exact approach and calculates in-
stead the actual numerical value as a decimal
number, then significant round-off errors can re-
sult.

We have been able to completely overcome these
difficulties through the development of arbitrary
precision software. In practice, this requires

The second program, "ELLMAT, " calculates
and stores on disk the matrix elements of the
E(ni„o.„) operator between two tableaux. The
third program, "ZOHAR, " uses the output of
ELLMATto compute the transformation coefficients
4, (LM~r) described in (4.3) and (4.4) which are
then stored on disk. At this point, a complete I-
adapted basis is achieved. The final program,
"SPNORB, " uses the output of GENPAL and ZOHAH

to compute reduced matrix elements of the spin-
own-orbit operator in the representation of
~l"LSM~r) vectors T.he output of SPNOIIB can be
placed on disk or outputted on a line printer.

In extending the programs to mixed orbital con-
figurations only minor changes need be imple-
mented. In fact, the programs ELLMAT and
LOBAR do not require any changes and SPNORB
requires only slight modification to account for
differences in state labeling. The only substantial
change is inQENPAL, where it becomes necessary
to add a program section which accepts the input
of specific parent partitions, assigns box labels
z, corresponding to various / labels and uniquely
constructs a highest tableau. Once this function is
performed GENPAL then generates all tableaux
according to the algorithm already programmed
(for the pure configuration case).

The power of the unitary group approach can be,
perhaps, best appreciated by the fact that there is
little distinction between pure and mixed orbital
configuration treatments. The program batch de-
scribed above treats both cases effectively.

An additional point should be clarified. The
transformation coefficients C z(LM~T) and matrix
elements of both E(n', n) and the spin-own-orbit
operator can always be calculated inthe exact
form
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TABLE V. Spin-own-orbit reduced matrix elements in the tableau representation.

114'& ll V & I IP & II'4&

Mg= 4

I I V & 116"& I I P & I IP & 114'&

MI= 3

Qi
2

Qi
3 3

2

&g'411

Q()

3

gi
J 4

~ gi
2

Qi
2 2

Qi
3

3

several words of storage for large numbers, but
presents only minor problems in programming,
each of a bookkeeping nature. The main problem
associated with the use of multiple precision soft-
ware of any type is a significant increase in the
time of calculations. Even so, for our computer
typical run times for zoHAH amount to a few
hours for very large dimension cases and of the
order of ~10 h for the spin-own-orbit (SPNORB&

calculations. However, our hardware functions
are quite slow (-5 p, sec/operation&, as is the case
for most minicomputers. By, say, programming
in IBM assembler and running on a full-scale
computer, we can expect to cut these times very
significantly.

L (gj Nj)

I &{tj "j)

aj+ bj

aj+ bj

aj
~a

(at)+(-a))

{oj+bj){2Cj+1-oj-bj)
2

a {2 +1-oj)

2

aj+ bj

aj+ bj
+1

,aj + bj

aj+&

aj

aj
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2

oj+ bj

oj

Flo. 2. Raising and lowering of highest tableaux.
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APPENDIX A: GRAPHICAL ANALYSIS OF THE COUPLING OF MIXED ORBITAL TABLEAUX

ft is shown in Ref. S (DS) that each fully labeled pure configuration tableau is proportional to an angular
momentum coupling graph displaying the explicit coupling of the spins of N electrons to some resultant
spin S, hence

Sp= 0 Si
~4

7 7
ms, i ms, i+ I

(Al)

where S, is the total spin after adding the ith electron,
If we consider a parent graph with resultant total spin S"' and couple X2 l,-labeled electron spins suc-

cessively to it, we arrive at a graph of the form

So=So=O S(IL

t

SN SN
(I)

I I

t t

SNI+I
+~J4

t

NI+I SNI+N2" S
C

t
~ ~

(A2)
V

& I -electrons
V

& 2-electrons

However, we can also couple the l,-electrons together first, forming a parent graph with total spin S"'.
Coupling the "1"and "2"parent graphs together, we then find a graph of the form

@(ILP $(I) $(2) pNI

t

$(2)
I

$(2)
I

t
T

(I)

(2)
$N2 $NI+N2 $

(AS)

The relationship between (A2) and (AS) can be determined by coupling the two graphs according to

=60 =O

(I)
SNI

S(8
I

I)

(2)
SNp

(A4)

+ +
SNI

+ + s + +
NI+ I

where the label S,. refers to the total spin after the addition of the ith electron and S„"'=S"'=S„,S„"'=S"'
and. SN =S.

Multiplying (A4) by the product of spin multiplicities for each component of the upper and lower chains,
excluding pairs, and decomposing the graph, we find

Nl E-1

(2$&», 1)«2 j)I(2$&2~, 1)~& 2 q (2$,1)»2g(~)
i=1 j=O i=1
NP NP NP

N N2-1

(2$,'."+1)"' ]'] (2$.+1)"'&& ][
i=O

NP

(A 5)

(where NP stands for no pairs).
Rewriting the graph in terms of a, 6-j symbol, we have for the ith term of (A5)

S(1)+S(2) +S + & Nl+i+1S
(»1) i+1 &1+i

S (2)
i

S(2) S(l)
i+~ [(2$&»+1)(2$ +1)]'

1
N +i

(A6)

The cases A-D of Sec. ff& follow from (A6) after inverting the numbering order on the sPin chain.
Higher-order coupling of f mixed-orbital configurations (f,"~) ~ ~ ~ (lp&) can also be analyzed using graPhs.

For the case of t =3 one of the three possible distinct coupling modes corresponding to the parentage coup-
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ling '~'[('~"'"l,"~)('~ "I,"a)('~ "l,"')j is described graphically by

8(l) 0
I SN 0 SN) S'

+
N(

V
f q -electrons

+, +

V
g q -electrons

(A7)

where we have coupled (on the top part of the graph) the "1"electrons to the "3"electrons, giving a re-
sultant spin S' and then coupled the "2" electrons to get the total spin SN =S.

By breaking the graph part we see that within the "2"electron part of the graph we arrive once again at
terms involving 6=j symbols. Within the "3"part of the graph, however, we now find subgraphs of the
form

g (2x)+))(2'+))x xz &

X( Xp
+(

iX(

)+
(AS)

SN( + N2+ ( +
N) + Np+ i + I

where x, and x, assume all allowed values. The graph in (AB) can be rewritten as a 9-j symbol.
In general, for t mixed-orbital configurations, we can expect the transformation coefficients between

direct successive coupling modes and parent partition coupling modes to be St —j coefficients for the tth

pure configuration. In this sense then, the subduction coefficient method of PH is similar to the older
Hacah methods.

APPENDIX B: HIGHEST TABLEAUX AS
EIGENFQNCTIONS OF J.

In Sec. IV it was asserted that any highest tableau ~T) is an eigenfunction of the L operator, that is,

L'~5=L.„(L. +1)iA.
Thus

~
T) uniquely defines a state

~

(' "l"') ~ (' ""t"~)L SM (max)1Vi 7) =

The operator L„ is defined as the sum of operators for each pure configuration

(B1)

(B2)

L(f)
r (B3)

(B5)

and L„"' acts only. on that part of the mixed orbital tableaux corresponding to the ith pure configuration,
that is to say, there are no intershell oper'ators. The values of z =0, +/-1 correspond to measuring i'~("
or raising/lowering of the ith subtableau.

For each pure configuration highest tableau we have (viz. , Fig. 2)

LQ" ~t ")= l5(/MAL' (max) (t"), (B4
j./ 2

) i/a"' (2f +1 -f«)l 6 It"')

(86)L (i)
~

t (f)) —0

where ~t"') and it"'") are the resulting tableaux after lowering the lowest box in the right and left col-
umns of ~t'"), respectively. Operating on these lowered tableaux with L,'," gives back the highest tableau
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f&(&) with the same eigenvalues, having opposite sign, as shown in (85). Thus, for each highest tableau
f&(&) we find

L(()2 lf (i&) —(L(i)2 L(i)L(i) L(i)L&i&) lf (i))
0 +1 -1 -1 +1

= b(,.[M~&(&(max)k+ 2a(()(2f(,.)+i —a(,.))+ 2 (a(,)+b(, ) ) (2f(,)+ i —a(;) —'b(;))] lf'(&)

= 5,, [M~&"(max)(M~'(max)+1)] lf'"),
where we have used (2.3) to obtain the last line of (BV).

Expanding L' in terms of L„«& we find, using (84) and (BV),

Lk
l
T. f ()) f (z) f &r))

1 r
( l)r L(i) L(k&

l
T. f()& )

(BV)

M~&&(max)(M~(&(max)+l)+2 M~'(max)M~'(max)
l
lT;. . .f"'. . .)I, L )

=M ~(max) [M~(max) + 1] l 7; f "&, , f "', . . . , f '"&)

where we have used (B2) in the final step. With L =M~(max) we have proven our assertion
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