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We use a method based on Fourier analysis to obtain wave-train solutions for monatomic as well as diatomic
lattices with exponential nearest-neighbor interaction. The monatomic solution obtained by our method agrees with
the solutions of Toda. The nonlinear dispersion relation found by us for the diatomic chain goes over to known
results in the appropriate limits. The effect of nonlinearity on the dispersion curves is illustrated for various mass

ratios.

I. INTRODUCTION

Recently nonlinear wave propagation aroused
considerable interest in almost all branches of
Physics.!”® In 1967 M. Toda” proposed a nonlinear
lattice with exponential interaction between neigh-
boring particles which admits one-soliton, two-
soliton, or N-soliton as well as cnoidal or wave-
train solutions. Both numerically® and analytically®
this system is known to be completely integrable
whereas Siegel’s work!® suggests that the Toda
Hamiltonian with almost every perturbation is non-
integrable. However, the Kolmogorov-Arnold-
Moser (KAM) theorem!* along with various com-
puter experiments!? ensures that for a wider range
of perturbation, the system Hamiltonian may re-
main at least near integrable. In this connection
the work of Casati and Ford® is very interesting
in the sense that it discusses the near integrable
behavior as well as the stochastic transition of the
Toda Hamiltonian with two different masses via
computer experiments. All these considerations
indicate that although the unequal mass Toda lat-
tice is, in general, nonintegrable particular solu-
tions might exist which represents stable orbits
surrounded by an arbitrarily close stochastic band.
In this paper we demonstrate a method for applying
a Fourier series technique to monatomic as well as
diatomic Toda lattices, and the new result is a par-
ticular closed-form elliptic-function solution for
the diatomic Toda chain.

The organization of the paper is as follows. In
Sec. II we examine the monatomic Toda lattice by
a Fourier series method and obtain solutions which
agree withthose of Toda. In Sec. IIIwe solve the di-
atomic Toda lattice equations and also show that
in different limits our results agree with known
results. In Sec. IV we conclude that the present
method is more suitable for problems of exponent-
ial lattices because the diatomic chain is more

amenable to solution by this method compared to
other methods. :

II. MONATOMIC EXPONENTIAL LATTICE

The equation of motion for the one-dimensional
lattice of particles with nearest-neighbor interac-
tions can be written as

m %y, _ ( Y+, - 2.1)
n dt2 —¢n Yn= Yn-1 +¢n+1(yn+1 yn)’ ( .
where m, and y, stand for the mass and displace-
ment of the nth particle, ¢, is the interaction po-
tential between the nth and the (n— 1)th particles,
and prime stands for the derivative.

We consider exponential interaction of the follow-

ing form:

qb(r)=—%— exp(-br)+ar +const . (2.2)

Here, a and b are constants. In the limit 5~0,
ab with finite, Eq. (2.2) reduces to harmonic inter-
action with spring constant 2=ab. With b~ x,
keeping ab finite, Eq. (2.2) corresponds to the sys-
tem of hard spheres. o

The equation of motion for a monatomic lattice
can now be put in the following form?!5:

m:s",,/(l+é,,)=s,,_1+s,,+1—-2s,,, (2'3)
where

§n= —8¢(r")/ar"=exp(—r,,) -1 y Yn=Yn— Yn-1
where m is the mass at every lattice point and the
constants ¢ and b are put equal to 1, as retaining
a and b will in no way affect the form of the solu-
tions, except the appearance of these constants in

the final expressions. ‘Equation (2.3) can now be
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. + o0
written as s.= . byexpli2mjn/a+vd)], (2.5)

j==o

mgn - (Sn-l *tSpi1 an)= én(sn'l RS 23”) .
@.4) where X is the wavelength, v is the frequency, and
: b;s are the j-dependent coefficients to be deter-
We seek a periodic solution of the form mined. Substituting Eq. (2.5) in Eq. (2.4),

J

i o (7 & o R i2mj i 27j
- @mv)2m i;m ]"’bjexp[zZn](—;+vt>]— z: b,exp[z2n]<—/\-+ut).][exp<%)+exp(—z—xl>—2]

=" w

={27v i jbjexp[ian(—:L—+Vt)] i b,exp[ian(—;iwut)][exp(iz;rp>+exp(——i%@)—2]. (2.6)

F Ry p= -

Multiplying both sides by exp[—:2n(n/X +v¢)] and intergrating over a time period Eq. (2.6) reduces to
2 2 . =, 27 .
-m(27v)%p, +2 |1~ cos—=)b, =—i2mv E 2j(1- cos—= (1-4))b,5,-,. 2.7
j=re0
Here we have used the relation
+T/2 n 1
f exp[i2n(j—k)(—+ut)] dt=—2djk .
-T/2 A . 14

Converting the summation over j into two separate summations we write Eq. (2.7) as
2 = 2r(1-4 1+j
-m(2mv)2b, +2b, (1 - cosTn) =-2{(2mv) ,Z; Jj [b, by-y (1 - cos —ﬂ%—ll)— boybyy (1 - cos —ZL(A—JQ)—)] . (2.8)

s, can be expressed either in cosine or in sine series. In order to get it in terms of a sine series, we
choose

b.,==b,. 2.9)
Hence,
—m@m)?+2(1 - cosZn/A)=Ej[—b—’%1‘~ (1 — cos 2n(}\j+1)) b l;m (1 _ cos—zi(]x:l—))] . (2.10)
i=1 1 1

Equation (2.10) is a nonlinear equation. To solve it we linearize b;b,-, in the difference form as follows:

b;b;_1/b,=21vA(c,., - c;),

(2.11)
by41b5/by =2mvA(c; = c;4y)
where the coefficient c; depends on j and A is a constant. They are to be determined. The factor 2nv ap-
pears in the expression to preserve the time reversal symmetry. The right-hand side of Eq. (2.10) is
equal to the following:

& byb 27(j+1)) b,5,. ( 27(j-1) ]
i+l - i-4-1 - _J -7
j=1] 5, (1 cos N/ b, 1-cos Y )

=2i(27v)? Z; jA [(cj..1 - cj)<l - cos -glri';;!—))— (e;- cj“)(l - cosz—”({f—l))]
=2i(27v)24 i: [—jcj (2 -2 cos—il cos 2~)T\’];>+jc,_1 (1 - coszL(i_—l—)) +jCis1 (1 - cos—zﬂ?i)-)]
i=1

=2{(27v)24 2 [—2jc,- (1 - cos % cos 2—:]) +(+ l)c,(l - cos E;—il) +(j= 1) (1 - cosz—zj-)]
i=1

. 27\ & . 27j
=-2{(27v)2A42 (l - cosT) ;]cj cos— = .
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With this simplication Eq. (2.10) becomes

%— 1 =2{(27v)24 ; jc, cos 2—;’] . (2.12)
Now we can use the following identity'®:
1 m? U
snu = F csc? ﬁ
+E= E 2: " oS n;u ’
(2.13)

where g=exp(-nK'/K), K(k) and E(k) are complete
eliptic integrals of first and second kind, respec-
tively, sn is the Jacobian elliptic function, K’
=K(%’), and B’=(1-£2)Y2, With u=2K/\ we rear-
range Eq. (2.13) as

S S
4sin’n/x w2 \sn?2K/x K

o0 27 2mi
. q mj
+2 ;:1 j 77 cos—= . (2.14)
Substituting Eq. (2.14) in Eq. (2.12) we obtain

m(21w)2 (—S—H%K—/—{— 1+ %) -1 +2m(21rv)2

N 2mj
Z 7 cos ==
i=1

=2{ A (27v)? ch,cos—zl’i (2.15)
=1
Equation (2.15) will be satisfied if
=q% /(1 - q*) for j=1,2,...,» (2.16)
and
A=-im, (2.17)
1 E\?
2 = —_— ———
m(2Kv) (anZK/)\ 1+ K) . (2.18)
We observe that
c;+e.;=-1. (2.19)

This relation will be very useful while solving the
diatomic lattice. )

Equations (2.15)-(2.18) with linearizing expres-

sion (2.11) determine b, as follows:

Crer= €= Y/ (1= g7 = g*/(1 - ¢*

=[¢'/(1-¢*)][g*/(1-

(2.20)

This expression suggests that b; is equal to

b,=—im2mvg’ /(1 - ¢?').

We can therefore verify that b_;=-b;. Now,

(2.21)

q*®)]/le/(1-¢®)].

+ oo n
S, = b,exp[ian<—+ut>] ,
j==e A '

§,=i2m Y jb, exp[z‘h,(—;i + Vt)]

o b .
={2mv 2jb,cos2 '<——+ut> . (2.22)
jz=1: 70 L) X

Using the expression for bj, we get
cos2177< +yi>
or

$,(ze "= 1)=m(2Kv)?[An*2(n/x+viK - E/K]. (2.23)

$,=2m(2m)? Y j 1_
J=1

16,7

In writing Eq. (2.23) we make use of the identity

mju
Zjl pl

Our solution and dispersion relation for a mon-
atomic exponential lattice given, respectively, by
equations (2.23) and (2.18) agree with that of Toda”
which had been obtained in an alternate method by
comparing Eq. (2.3) with the following relation®:

Z"(u)
(1/sn?v)=1+E/K+Z'(u)

dn? u_£= (2.24)

=Z(u+v)+ZWw-v)-22u),

(2.25)

where Z(u) is a periodic function known as the
Jacobian zeta function.

III. DIATOMIC EXPONENTIAL LATTICE

The equation of motion in the case of a diatomic
lattice with masses m, and m, at the even and ‘odd
sites can be written as

Ciz
my 2228 = exp(~7,,) - eXP(=74psy) » 3.1a)

dat?

2
my, __Zn_l.d Yap- =exp(-—1’2,,-1)— exP(—”’zn)’ (3'1b)

dt?

where 7,,=9,,~ ¥s,-,. Multiplying the first equation
by m, and the second equation by m, and then sub-
tracting one from the other, we have

2
mym, 472 . (m, + my,) exp(=7,,)

ar®
~m, exXp(=¥y,-1) =15 €XP(=75,,,) -
Similarly,
mlma%%i =(m, +m,)exp(-7,,-,)

—m, exp(=7,,) —m, exp(~7,,-,) .
Using the notation of Sec. II, that is,
5, =exp(-75,)- 1,
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we rewrite the above equation as
-mymy Sy, (1+ 8,,) = (my + my)s,,
=My Sy =My Sppyy  (3.22)
=My My en /(L Sppmy) = (0 + 105) 850,
=M 3S3p-z ~ MM S, (3.2D)
or as

=y M8y + My ey + Mg Sppyy — (2 +1M3)s,,

=85,(my +m3)85, =My Sy =385, (3.32)
=My M3 8p ey + My Syt My Sppmg = (M) +1M3)85,-,
=8y (M + M) S0y =M S50 =10y S5, . (3.3D)

We look for periodic solutions with different sets
of coefficients {a,;} and {5,} in the following form:

San= Z : a,-exp[ian(uH%—)] s (3.4a)
j==e
and
P Zm b exp[ian(vH Zn—l) . (3.4b)
2n=1 = i Y

Substituting Eqgs. (3.4) in'Eq. (3.3a), multiplying
throughout by exp[—i27(vt+2x/A)], and then inte-
grating both sides over a time period we obtain

[mym,2av)% —m, —m,]a, +e(1)b,

=i 2mv(m, + m,) z jaja,.;—1i2av

j=-
X ja;by-ze(l-j). (3.5)
j==o
Similarly, Eq. (3.3b) becomes
ae(=1)+ [mym,2mv)% —my, —m, b,

=i 2nv(my +my) Z jb;by-;~i2mv

j==
X 3 jbay-,e(j=1), (3.5b)
YERL)

where e(7) = m, exp(—i2mj/\)+m, exp(i 2mj/)),
e(-7)=e*(j), and * stands for complex conjugation.
Equations (3.5) can be put in the following matrix
form:

[m1m2(271v)2—m1—m2 e(1) ] a
e(-1) [bI]

M
= [N] , (3.6)

where M and N stand for the right-hand expression
for Eqs. (3.5a) and (3.5b), respectively. We now
proceed to solve this matrix equation for the coef-
ficients q; and b;. The coefficients thus obtained

mym,2uv)? —my —m,

satisfy the above equation, and this is shown'® ex-
plicitly in Appendix E.
Let us consider the following eigenvalue problem:

o-my—m e(1) a
{ v ] { J:o, 3.7)
e(-1)  o-m-m, b
where o =m,;m,(2nrv)%. The eigenvalues can be
written as
04 = (my +my) £ [(my +m,)? - dm,m, sin?27 /2 ]2 .
(3.8)

Corresponding eigenvectors are

) () o9

These eigenfunctions are orthogonal, and after nor-
malization the elements are given by the following
expressions:

a,=a.=1/V2, (3.10a)

-b,=b.=(1/VZ)L*, (3.10b)
where

L=[e(1)/e(-1)]V2, (3.10c)

We then expand

a
[b;]
of Eq. (3.6) in terms of the complete set of eigen-
functions as

)= (7] ()

with o and 8 as expansion coefficients.
Substituting Eq. (3.11) in Eq. (3.6) and then mul-
tiplying both sides by
[azpt]

we get the following equation:

(3.11)

g, Qv R = my—my = [my+my)? - dmpm,sin®2n/2]YZ%a
=g*M+b¥N. (3.12a)
Similarly, multiplying by
[a*b*],
we have
frymy @m0 P —my— my + [y +m, P - dmym, sin®2m/X]V% B
=gftM+b*N. (3.12Db)

Here, use has been made of the orthogonality of the
eigenvectors. M and N contain nonlinear terms in
the coefficients g, and b;. Our linearization pro-
cedure of the monatomic lattice (Sec. II) suggests
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the following choices: M=i2mv(m, +m,) Z ja;a.;
j==e

a;a,.,=2mA(c;-, - ¢;), c;+c;==1 (3.13a) -

a-,=—ay, (3.13b) —i27v FZ_:” jaby- el =3j), (3.16a)

b;b,-,=2mvB(d;-, - d;), d;+d-;=-1 3.14a =2

30y =2mBd;y = dy), dyrd. (3.142) N=i2m(my +my) 3. jb;by.;
b.;==by, (3.14b) P
bya;.,=2mvD(g;., - &), (8.15a) —i2m ) jbyay-,e(i-1). (3.16b)
J==e
+g.;=-1, 3.15b :

81" &1 ( ) Expressions for various sums contained in M and
where A, B, D are constants and c;, d;, g; depend on N are given below (detailed evaluations are worked
j and have to be determined. We know that out in the Appendix A):

| .
Z jasay.;=-2mvAc,, (3.17a)
j==e
> jb;b,.;=—27vBd,, (3.17b)
j="w
Z jbjay-,e(j- 1)=21n/D(--(ml +1,)g, +2i(my +m,) ZgisinZthwE 2jg;le(-1) —e(O)]) , (3.17c)
j==w i=1 i=1
E ja;b,-;e(1-j)=2qvD ((m1 +m,)(1+g,) - 2i(my + m,) Zgj sin21rj/>\+z: 2jg,le(1)- e(O)]) . (3.17d)
j= =1 =1

Using the expressions (3.17),

I

. N 21rj> Using expressions (3.10) and Eqs. (3.18) we get,
- 2 - - =27
M=i(2mv) (€ 2D[e() e(O)]jZI Jg;cos X/’ after some algebraic simplification,
(3.182) a*M+b*N=4(2mv)? ——\/.1—5— (¢-Ln)
. SN 27j
N=z(21n;)2(n_2D[e(—1)— e(O)]Z:Jg,cos T)’ . . ‘ 27
=1 +i(2mv) DPz jgycos ==, (3.192)
(3.18b) =1
and
where 1
§=—(ml+m2)(Aco +Dg, +D) ) an+be=i(2”V)2—\/T(£+Ln)
. . . 27 © ,
+2i(m, —mz)D,Z'; gjsm—:—] , (3.18¢) +i(2mv)2DQ Z_;jgjcos 31;1 (3.19b)
and where
1= (m, +m,)(~Bdy + Dg,) _ P=v2L[e(-1)-e(0)] - vV2[e(1)-e(0)], (3.19¢)
. . Q=—vIL[e(~1)= e(0)] = VZ [e(1) - £(0)] . (3.19d)
~ 2i(m, ~m)D Y g, sin 2L (3.184)
=1 A Using Eqgs. (3.19) in Eqs. (3.12),

1/2 o .
[m1m2(21n/)2 ~my —m, — ((m1 +my)? — dm,m, sin® —2}\1) ]oz= i(2mv)? "/L'Z (¢-Ln) +i(21w)2DPZ jg;cos -%;TT]- .
=

(3.20a)

1/2 o .
[mlf'n.‘,(ZuV)z—m1 -y + ((m1 +my)% = dmym, sin® %—) ]B =i(27v)? ——\/.lf (¢+Ln) +i(21rv)2DQ;jgj cosz—;i]- .

(3.20p)
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The dispersion relation for the diatomic exponent-
ial lattice can now be obtained from Eqs. (3.20).
This should reduce to that of the monatomic case
(Eq. 2.18) when m, =m, and also to that of the har-

monic diatomic dispersion in the appropriate limit.

These considerations lead us to make the following
choices: X

¢£-Ln=0, (3.21a)

£+ILn=0, (3.21b)
that is,

£=n=0, (3.21c)

P/a=Q/B, (3.21d)
and

g =q"/(1-q¢%). (3.21¢)

Now Egs. (3.20) yield a dispersion relation of the
following form:

(my +m,) £ [(m, +m,)? - 4mym, sin®27/2 ]2

(@&cv)* = 4m,m, sinfr/x(1/s0°2K/\~ 1 +E /K)
(3.22)
with
D=~i8m,m,(B8/Q) sin’n/x. (3.23)

When m, is put equal to m, in Eq. (3.22), the dis-
persion relation reduces to that of a monatomic
expression, namely,

a (1 __ E)"

m(2Kv) (anZK/A 1+ %) -

For k<1 (i.e., E/K =1, sn®2K/x~sint/\, K =u/2),
Eq. (3.22) takes the following form:

(@mv)2 = (1/my +1/my) £ [(1/m, +1/m,)?
- (4/m,m,) sin®21 /212 ,

This agrees with the dispersion relation of an har-
monic diatomic chain.

Using the Eqs. (3.10), (3.13)-(3.15), (3.21), and
(3.23) and going through very cumbersome alge-
braic calculations, we get the following expres-
sions'® (we have calculated the expressions in Ap-
pendices B, C and D):

a,=Xq’ /(1= ¢! (3.24a)
with
X=12nv(4m,m, sin’n/1)/[e(-1)-e(0)], (3.24b)
=Yq'/(1-q¢%), (3.25a)
with
Y =1i2qv(4m,m, sin’r/A)/[e(1) - e(0)], (3.25b)
& =c;=d;=q"/(1-q¥ (3.26)

-
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A=(x%2mv)(g/1~ q?)
B=(Y%2mv)(g/1- q?)

(3.27a)
(3.270)

- q 16m2m2 sin*nr/A
b= 2"”(1 - q2> [eCD-e(®)][c@)- O] °
(3.27¢)

Finally, we obtain the solution of the diatomic ex-
ponential lattice as follows:

San= Z a;expli2uj(vi+2n/)]

j==
=ay— 2TV
o Amym sin®r/AY, 5., 2¢4°/(1 - 2f)sm21r](1/t+2n/7\)

mlexp(z 27/)) + myexp(—i2n/\) —m, —m,
. = (2Kv)24m,m,, sin’m/1
n my +m, ___mleizw/)\ — mze"z"”‘
x [dnzz (Vt+i—n)K—%]. (3.28)
Here, use is made of the relation’
. E
(ZxK)‘ Z; 1o 2, cos21rx]+7(—.
(3.29)
Similarly,
. dm, m, sin’n/n
= 2 12
801 = (KV) T Ty —mye” TRy oTEX
27 —
x[dn22(vt+ ”K I)K-—I’%]. (3.30)

It is of interest to see that when m, is equal to m,,
Eqgs. (3.33) and (3.36) reduce to that of the mon-
atomic case, namely,

$,=mQKv)?[dn®2(vi+n/M)K-E/K].

IV. CONCLUSIONS

The method we develop here is more general than
the method used by Toda. Its merit lies in the fact
that both monatomic and diatomic exponential lat-
tices can be studied with the help of this technique.
In the method used by Toda an equation connecting
Jacobian zeta functions of the form (2.25) is neces-
sary for obtaining the wave-train solution. We
could not find suitable equations of the form of
(2.25) to compare with Eqs. (3.2a) and (3.2b) of the
diatomic lattice. So we conclude that though Toda’s
intuitive method succeeds in the case of a mon-
atomic lattice, its extension to other complicated
systems is not easy.

The dispersion relation (3.22) of the diatomic
lattice not only reduces to the monatomic expres-
sion (2.18) when m, =m,, but also goes over to the
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harmonic case in the limit 2=~ 0. The nonlinear
dispersion curves (Fig. 1) preserve the general
harmonic characteristic; that is, with increase of
the mass ratio, the separation between the acous-
tic and optical branches widens. But they differ
from the harmonic curves as regards their shapes.

Even though the cnoidal solutions of the mon-
atomic Toda lattice are particular solutions,
they reveal something of the general solution, as
this Hamiltonian represents an integrable system.
This is not true in the case of a diatomic Toda lat-
tice. Our solution is strictly a particular solution
which, for certain mass ratios, is an unstable per-
iodic orbit lying in a stochastic sea. Moreover,
even when this orbit is stable in the sense of KAM,
it is surrounded by an arbitrarily close stochastic
band.®

Lastly, it is of interest to see how the Fourier
series converges. It has been known since the time
of Poincare?® that a Fourier series diverges in gen-
eral, though it may converge for a particular solu-
tion. Further, this fact is exploited by Eminhei-
zer, Hellman, and Montroll?* in obtaining particu-
lar solutions for some nonintegrable systems.
Very elaborately they have demonstrated a method
for avoiding divergencies of the Fourier series by
assuming a single frequency expansion. In light of
their work, we observe that our Fourier method
represents a convergent series, as we take a single
frequency expansion and seek a particular periodic

o8
|
o6l . o For m~2
! X For mz=lo
| 2
|
0.4 :
|
~ !
[
& oz |
s I
Ay |
o |

o 075 035 053 07l 0.80u=—§-

“€3%)

FIG. 1. Dispersion of diatomic wave train (2= 0.5,
my=1).

solution, not a general one, in the form of elliptic
functions.
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APPENDIX A: DERIVATION OF EQUATIONS (3.17)

o = oo

Z jaial'j=;jaja1'i+ Z jajay-;

j= = i==1

i=1

-27VA Z jlej-y — c;) +2mvA Zj(cj
§=1 J=1

—Eja,- aj_1+2jajaj,r1 , since a.;=-gq;
i=1

(A1)

- ¢;41), usingEq. (3.13)

=21WA[2 i]‘c,—i (j+1)cj—z.o: (j- 1)Cj]
ST =0 =2

oo

=21ruA[2 ;jc,— Co— Z (j+1)c;— Z (j- l)cj] =-27VAc, .
=1 i 7=t

=1
Similarly,

)

D jbsby.;=—21v Bd,.

j==o

Now,

PR

A2)

Z jb,al'.,(mje"(l""z"/x + mze-i(x-j)zw/x) =211VD(2 j(gj_gj_l)(mle-i(j-nm/x +mzei(j-1)z«/x)
ji=1

—j(g-,—g-,--l)(mle""’“’z"/"+ mze"'””’z"/)‘)). (A3a)
=1

g2
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Here we have used Eq. (3.15a).
Taking into account the following identity which can be Wr1tten on the basis of Eq. (3.15b) as
8-j—8-j-1"8j+1~ &>
we write the right-hand side of (A3a) in the following form:

27vD ngj(mle HG020/N gy giCIm2I/Ay :(]4_1 )g,(mye” 1521/ 4 g, @8¢5 27/0) )
=

+ngj(mxe“”1’2”/" +mjemiUD/AY Z (j= 1)g,(mye ™27 + mape™H27/0)
=1

i=1

e i3 ) . - 2y i2
=2Ter(—go(m1+m2)+2i(m1-mz) Z_;gj smlx_" +2(mye 2N b mye” 2N i —my) ,Z;]gjcosJT") )

Hence,

o

Z jba,-;e(j—1)= 21n)D<g(,(m1+m.‘,)+2z(m1 mz)Zgjsm
=%

T +2[e(~1)-e(0)] i:]g,cos L—)

(A3Db)
Similarly,

oo

IZ jajb1-,e(1—j)—jz_: (1~ 7b,8,-;e(4)

0 ~2 o0 -2
_—.21er((m1 +my)(1+ g,) — 2i(m, —m,) Z g, sin ]Aﬂ +2[e(1) - e(0)] ngjcos lil) .
i=1 =1

(a4)
I
. . . 1 -
APPENDIX B: EXPRESSIONS FOR a; AND b =Y g 4 5= L*( Q PP>°' . (B3b)
Using expression (3.21e) K ,
- Therefore
o 12 (L () ’
ZWVD(gj-l—gj)"ZﬂVD q (1_q21 l_qgj-z X__ (Q+P)
EaRACERE (B3¢)
Comparison of this with Eq. (3.15) suggests the v
form of @; and b; as Putting Eqs. (B1) and (3.21e) in Eq. (3.15a)
i _ 2
a],:X 1 q 37 » A (Bla) XY:Z-"VDE.—q—)_
q’ (B1b) o 7 (1-4%)
b;=Y 1 _ . =-z'(2m/)7)- 8m,m, sinzT — (B4)

However, from Egs. (3.11), (3.10), and (3.21d) Substituting the value of a from Eq. (B3a) in Eq.

a =0a, +fa.= 712—"(& +B) B4)

_ 82 2 T
Y=-oTF (i 2mv)m,m, sin ¥

B ( Q) 3 ( z) Q
= — 1 +— ﬁ 1+ ’ (Bza')
V2 V2 Q Also, using Eq. (B3c)
1
by=ab, +Bb.= 7 L*(B-a) X=— _'_—L*.&;/{p) (i 27v)m, m,, sin® —;’— .

S L*(g - l>a=LL* (1 —%)B . (B2b) However, Eqgs. (3.19¢) and (3.194d) give

/ /
=27 -ia2n/) i2n/\ _,, _
From Eqs. (Bla) and B2a) Q+P=-2V2(me +mye my—m,)
’ ==2V2 1)-¢(0
a q (Q+‘P)a (Bsa) [e( ) e( )] ’ (B5a)
XA-¢ VI P ’ and



Q—P=—2\/'2—L(mle"2”/)‘ +mze"2"/"—m1—m2)

=-2V/2 L[e(-1)-¢(0)]. (B5b)
Therefore,
4m,m, sin®n/x
=4 2ymy SIN /A .
X=12nv 1= e0) (B6a)
4m, m, sin’m/x
= 2myme SINW/A
Y=1i2nv o= 2(0) (B6b)
Hence,
. dmy,m, sin*n/ 7
a;=12mv cCh-e(0) =)’ (B7a)
and
i 2 i
b,=i2m 4m,m, sin®n/\ q (B7b)

e(1)-e(0) (1-4%)"

APPENDIX C: EXPRESSIONS FOR «, 8,4, B, AND D

From Eq. (B3a)

V2P _q

orF o7

Using the expressions for X and @ +P from Eqs.
(B5) and (B6)

a——(2\/'2')12m/1 qq2 m, m,, sin —:—
: L 1
(e - En=ew): €
'B=_§_ 2ﬁ12nv T qqz m,m, sin 2%
L
(coew* wwn-ew)
D=-8im,m, sin?‘(%)%
2 16m2m2 sin*n/ q
[e(1) - e(0)][e(-1)-e(0)] (1-47)
C3)

Using Eq. (Bla)
25 2j=2

= q q q

"f“l'f‘Xz(l —¢7 T 1- qzm) -

Comparing the right-hand side of this equation with
Egs. (3.13),

27

_q—zT) N 2TTVA=X2

- q
i (l_q

(1-4%"

c

\
where,

& q
20 (-g% °

A=

Similarly,
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2j

d;= ‘(T_—q—zj) ’
and
X q
B= o (A= q%) " (C5)

APPENDIX D: EXPRESSIONS FOR a4y AND b
Setting j=1 in Eqgs. (3.13)-(3.15) we get

= 2mA(c - ¢), (D1a)
bybo =21VB(d, - dy) , (D1b)
aoby =21vD(g; - &) (D1c)
a,/b, =Alc, - ¢,)/D(g, — &)
=X/Y=(Q+P)/L*(Q-P). (D1d)

Here we have used expressions (Dla), (Dlc), and
B(@3). Now,

L*(Q—P)A(l_qqz-Co)=D(Q+P)(1_ )
or
l—qqz_ Co= l—qqz_g°‘
Therefore,
Co=8o - | _ (D2)

Using Eq. (D2) we get from Eq. (3.21c)

Agy+Dgy+D=2iD ——‘—-—3 Z g; sm—— s (D3a)
-Bd0+Dg°=2ti g,sin 12T (D3b)

my+m, b=t Y

After solving Eqs. (D3) we obtain the following:

j .
: 77 Sin j2m
q

D my-m,
=9 1 2
£ Z A

1
A+D my+m, =1 1-

D? D

TA(A+D) A’

(D4)

AD my—m, < q*! . jom
-d,=2i 2 s
do =21 B(A+D) my+m, &¢1- 4% RS

DZ
*B@A+D ° (D5)

Now using Eqs. (D1),

Al g* 1- g2
a= 2ﬂv—(lzq _g0>( qq) ’ (D6)

bo=27rvi;;(lf]-2q do)(l_q ). (D7)
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APPENDIX - E: VERIFICATION OF EQUATIONS (3.5i Also,

We observe that Eqs. (3.2) possess periodic solu- 2mvA( —e)=2m b'& ( g2 B q?! ) q
tions of the form given by Eqs. (3.28) and (3.30) i Cim17 € 2y \1= g2 2 1-¢27) (1= ¢%)
the coefficients a; and b; satisfy the Egs. (3.5). By
our method we get particular solutions where q;, = Xz( ' )( Y 1-- )=a .

b;, a4, and b, are given by Eqs. (3.24), (3.25), 1-g%/\1-¢g?i2/ "%t
(D6), and (D7). In this Appendix we put these equa- (32)
tions back in Eqgs. (3.5) and show that the coeffici- '
ents a;, b;, ay, and b, satisfy the original equations Similarly, using the expressions for the coeffic-
(3.5) if the frequency is given by the dispersion re- ients we verify the following relations.
lation (3.22).
With our expressions (3.24) and (3.25) we see that 27vB(d;., — d;)=b;b;.,, (E3b)
G.y=-a;, b.;=-b;. E1) 21vD(g;-,— g;)=b;a;-, . (E3c)
i =d.= = g2d g2 isfi -
?gam, ¢;=d;=g;=q"'/(1 -q*) satisfies the rela Using expressions (E1)-(E3c) and taking the help
ton of the summations carried over in Appendix A we
g;tg-;=-1. €2) get
J
. . = .52 © .
M=i(27mv)? (-(m1 +m,)(Acy+Dgy +D)+2i(m, —m,)D Z g; sin ]A" —2D[e(1)-e(0)] ng,cos ]i” ) R
i=1 i=1
N=z’(2m/)2((m1 #ma) =By + D) = 24lm, ~m,)D 3, sml—il_ 2Dfe(-1)-e(0)] 3 jg,cos J—i-’i)
i= i=1
Using expressions for A, B,D, as given by Egs. (3.27), and c,, dy, gy, 28 expressed by Egs. (D2), (D4),
and (D5), we see that
; . . j2m
—(my+m,)(Acy+Dgy+ D) +2i(m, —m ,)D ;gjsm N =0,
v —
and
Py . . jom
(~Bdy +Dgy)(my + my,) —2i(m, —m,)D ng sin < =0.
=1
Hence,
. > j 2w
M=-i(2av)%22D[e(1) - e(0) jg,cos LT |
[ ( ( ]jzzl]gj X
Using Eqgs. (3.24b) and (3.27¢) as well as the expansion formula (2.14), we write M as follows:
2 2
=2(2mv)? 2L 4| T e (1 E \]K
M=221v)24m, m, sin 1o q"’X[4K2 ese® (s A T K 1 CPER E4)
Similarly,
_ 2 LAY m? 7 1 E K?
N=22mv) 4m, m, sin (}\) 1= 42 Y[W csc? Sy (m+ X" 1)]-2—;5 . (E5)

Substituting Eqs. (E4) and (E5) in Eqs. (3.5) and noting that
4=Xq/(1-4¢%, b=Yq/(1-q?)
we get the following:
[mym,2av)2 —m, — m,]a, +[e(1)]b, = @av)24mym, siri"’(—i—) al{&—zz csc? —Z— - (Enzle—/er % - 1)]% .
(E6a)
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Also,

[e(=1)]a, + [, m,(27V)2—my —m, by = (27v)*4mym, sin2<%) bl[—"—z- 2T _ (

_1 E 1)]_K_
sn?2K/n K w2’

Equations (E6a) and (E6b) will be simultaneously satisfied if

1 E m
2 — L in?( —
-my —my +4mgn, (2K v) (sn"’zK/x +F 1) sin (A)
e(=1)

or if
my +my £ [ (my +m,)? — dmym, sin®27 /22

(2Kv)*= =
- 1) sin? —
A

1
Amgn, SnZ2K /%

52 5
(E6b) -
e(1)
1 E m 0,
. 2 —_— —_ . 2 =°
—my, +4m;im, (2K v) (SnZZK/)\ Y 1) sin® -
(ET)

As Eq. (ET) is identical with the dispersion relation (3.22), our solution satisfies Eq. (3.5).
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