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Nonlinear wave in a diatomic Toda lattice
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We use a method based on Fourier analysis to obtain wave-train solutions for monatomic as well as diatomic

lattices with exponential nearest-neighbor interaction. The monatomic solution obtained by our method agrees with

the solutions of Toda. The nonlinear dispersion relation found by us for the diatomic chain goes over to known

results in the appropriate limits. The effect of nonlinearity on the dispersion curves is illustrated for various mass

ratios.

I. INTRODUCTION

Recently nonlinear wave propagation aroused
considerable interest in almost all branches of
Physics. ' ' In 1967 M. Toda' proposed a nonlinear
lattice with exponential interaction between neigh-
boring particles which admits one-soliton, two-
soliton, or N-soliton as well as cnoidal or wave-
train solutions. Both numerically' and analytically
this system is known to be completely integrable
whereas Siegel's work" suggests that the Toda
Hamiltonian with almost every perturbation is non-
integrable. However, the Kolmogorov-Arnold-
Moser (KAM) theorem" along with various com-
puter experiments" ensures that for a wider range
of perturbation, the system Hamiltonian may re-
main at least near integrable. In this connection
the work of Casati and Ford" is very interesting
in the sense that it discusses the near integrable
behavior as well as the stochastic transition of the
Toda Hamiltonian with two different masses via
computer experiments. All these considerations
indicate that although the unequal mass Toda lat-
tice is, in general, nonintegrable particular solu-
tions might exist which represents stable orbits
surrounded by an arbitrarily close stochastic band.
In this paper we demonstrate a method for applying
a Fourier series technique to monatomic as well as
diatomic Toda lattices, and the new result is a par.-
ticular closed- form elliptic-function solution for
the diatomic Toda chain.

The organization of the paper is as follows. In
Sec. D we examine the monatomic Toda lattice by
a Fourier series method and obtain solutions which

agree with those of Toda. In Sec. IIIwe solve the di-
atomic Toda lattice equations and also show that
in different limits our results agree with known
results. In Sec. IV we conclude that the present
method is more suitable for problems of exponent-
ial lattices because the diatomic chain is more

amenable to solution by this method compared to
other methods.

II. MONATOMIC EXPONENTIAL LATTICE

The equation of motion for the one-dimensional
lattice of particles with nearest-neighbor interac-
tions can be written as

d2 ." = -4.'b. —S.-.) + @.'..b..i —X.),

a
Q(r) =—exp(-br)+ar+const . (2.2)

Here, a and b are constants. In the limit b -0,
ab with finite, Eq. (2.2) reduces to harmonic inter-
action with spring constant k = ab. With b - ~,
keeping ab finite, Eq. (2.2) corresponds to the sys-
tem of hard spheres.

The equation of motion for a monatomic lattice
can now be put in the following form":

ms„/(1 + s„)= s„,+ s„„—2s„, (2.3)

where

s„=-ag( )/rsrexp(-r„) —1, r„=y„—y„,

where m is the mass at every lattice point and the
constants a and b are put equal to 1, as retaining
a and b will in no way affect the form of the solu-
tions, except the appearance of these constants in
the final expressions. Equation (2.3) can now be

where m„and y„stand for the mass and displace-
ment of the nth particle, p„ is the interaction po-
tential between the nth and the (n —1)th particles,
and prime stands for the derivative.

Ne consider exponential interaction of the follow-
ing form'4:
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written as

ms„—(s„,+ s„„—2s„)= s„(s„,+ s„„—2s„).
sn bJ exp &2&j «'p+vt

OO

(2.5)

Vfe seek a periodic solution of.the form

(2.4)
where A. is the wavelength, v is the frequency,
b~s are the j-dependent coefficients to be deter-
mined. Substituting Eq. (2.5) in Eq. (2.4),

. n '" . . n & s2nj&i s2wy—(2nv)2)n g jmb,.exp i2nj —+vt —g bjexp i2nj —+vtl exp i+exp .— —2
z j

n '" . I'n i2np i 2'=i2nv g jb, exp .i2nj —+vt Q b~exp i2npl —+vt exp +exp — —2 . (2.6)

Multiplying both sides by expI-i2n(n/X+vt)] and intergrating over a time period Eq. (2.6) reduces to

2m . " . 2w
-m(2ww) b, +(12—cos b, = —(2w bj 1 —cos (1 —j)) , ,bb.

A.

Here we have used the relation

(2.'1 )

exp i2n(j b)l ——+vt dt= —bjb.
- T'/2 v

Converting the summation over j into two separate summations we write Eq. (2.7) as

m(2ww) 2 +-22 (1
—cos )=-2((2ww) j bwb

w
1 —cos

(

—b wbw„ 1 —cos2n1 2n(1 —j) ) 2n(1+j) l
1 1 ) ] )

s„can be expressed either in cosine or in sine series. In order to get it in terms of a sine series, we
choose

b -=-b. .J J'

Hence,

(2.6)

(2.9)

-m(2nv) +2(1 —cos2n/A) =g j ' '+' 1 —cos ~
l

— ' ' ' 1 —cos2n(j+1)5 b, b, , 2n(j —1) & '

j=1 l- bl ) bl ]~
' (2.10)

Equation (2.10) is a nonlinear equation. To solve it we linearize bjbj, in the difference form as follows:

bjbj 2/bb =2nvA(cj 2
—cj) w

bj, ~bj/b, =2nvA. (c,.—c,.„), (2.11)

where the coefficient c~ depends on j and A is a constant. They are to be determined. The factor 2mv ap-
pears in the expression to preserve the time reversal symmetry. The right-hand side of Eq. (2.10) is
equal to the following:

g. b b- (»(j+1)'l

=2i(2nv)' jA (c. , —c.)l1 —cos l- (c.—cj ) 1 —cos( 2n(j- 1)~ 2n( j+1)
1 1 j j j 5+1

A.

2n 2nj ( 2n(j —1)') 2n( j+1)=2i(2nv) A g —jcj 2 —2cos cos +jc& 2l1 —cos l+jcj 2 1 —cos
j=l j

=2i(2nv)'A -2jc,. 1 —cos cos +(j+1)cj 1 —cos +(j-1)cj 1 —cos217 2mj 2' 2'
J=l

2r ". 2'=-2i(2nv)'A2 l1 —cos g jcjcos
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With this simplication Eq. (2.10}becomes

—1 =2i(2wv)2& g jc,. cos . (2.12}
m(2wv)' . , " . 2wj
4sin g ~

Now we can use the following identity".

w ~ nu

sn u 4K2 2K2 circ

+ ocb

~ ns„=g btsxp (2wj —+vt)
A.

OO n
s =i2wv p jb exp i2w —+vt

f
De

b=t2wv g 2jbtcos2wj —+vt) .
f-1

(2.22)

q2n
+

K K' „, 1 —q'"

(2.13)

Using the expression for fj, , we get

2„=2'(2sv) ~j t cos2wt. —+vt)
n

+2 j 2q cos
217j

1-g (2.14)

Substituting Eq. (2.14) in Eq. (2.12) we obtain

m(2w v), —1+ ——1+2m(2wv)
1 E 2

sn 2K/X K

q" 2njx j,~ cos
f=I 1 —Q'

=2iA(2wv)' Q jc,cos . (2.15)2'
1 A.

Equation (2.15) will be satisfied if

where q =exp( wK'/-K), K(k) and E(k) are complete
eliptic integrals of first and second kind, respec-
tively, sn is the Jacobian elliptic function, K
=K(k'), and k'=(1 —k2)'!w. With u=2K/X we rear-
range Eq. (2.13) as

1 E2 1 E
4 sinmw/A, ww sn 2K/g K

or

s„(=e "« 1) -=m(2Kv) [dn 2(n/X+vt)K —E/K]. (2.23)

In writing Eq. (2.23) we make use of the identity"'

dnu- —= 2 j 1 2f cosKK fq1 —q' (2.24)

where Z(u) is a periodic function known as the
Jacobian zeta function.

III. DIATOMIC EXPONENTIAL LATTICE

Our solution and dispersion relation for a mon-
atomic exponential lattice given, respectively, by
equations (2.23) and (2.18) agree with that of Toda"
which had been obtained in an alternate method by
comparing Eq. (2.3) with the following relation':

Z "(u)
-( /, ) /, ( )

=Z(u~v)+Z(u- v)-2Z(u),

(2.25)

c, = q "/(1 —q"} for j= 1, 2, . . . , ~ (2.16} The equation of motion in the case of a diatomic
lattice with masses m, and m, at the even and'odd
sites can be written as

A=-jun,

We observe that

(2.1V)

(2.18)

m, d
w" =exp(-r2„)- exp(-r2„„),d 3'2n

dt

d
ma '2 ' =exp(-r, „,) —exp(-rw„),

dt

(3.1a)

(3.1b)

Cf+C (2.19)

This relation will be very useful while solving the
diatomic lattice.

Equations (2.15)-(2.18) with linearizing expres-
sion (2.11) determine fbj as follows:

where r, p2 $2 y MUltiplying the first equation
by m, and the second equation by m, and then sub-
tracting one from the other, we have

m, m, ,'" = (m, + m, ) exp(-r, „)2 dt2

cj.2- cj =q /(1 —q ) q /(1 q )

= [qj/(I- q")t[qj '/(1- q" '))/[q/(I - q') t.
Similarly,

-m, exp(-r2„, ) -m, exp(-r2„„) .

This expression suggests that bf is equal to

tjj = - im2wvq'/(1 —q'j) .

(2.20)

(2.21)

F2„m, m ", = (m, + m, ) exp(

—m, exp(-r, „)-m, exp(-r2„2) .

Using the notation of Sec. II, that is,

We can therefore verify that b
&
=-bf. Now, s „=exp(-rm„) —1,
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we rewrite the above equation as

-m, m, s,„/(1+ s,„)=(m, +m, )s,„

satisfy the above equation, and this is shown' ex-
plicitly in Appendix E.

Let us consider the following eigenvalue problem:
-m, s,„,—m, s,„„(3.2a)

-m, m2sm„ i/(I + sm„ i) = (m, ™2)s2„,
)

0'-m~-m2

e(-1)
e (1) a

=0,
o -m, -m, . (3.7)

2n't
sw„= a~exp t2wj vt+

1

(3.4a)

-m 2s, „m -m, s „(3.2b)

or as
~0—m, mws, „+m,s,„,+mms, „„—(m, +m, )s,„
=s,„(m, +mw)sm„—m, s „g—mws „„, (3.3a)

~e—m~mwsw„g +
mg S2„+mms2„w —(mg + mm)sw„

= s,„,(m, + m, )s,„,-m, s,„,-m, s,„. (3.3b)

%'e look for periodic solutions with different sets
of coefficients {a,.j and {b&j in the following form:

where a = m, m, (2wv) . The eigenvalues can be
written as

f' a+

,b+

a

b
(3.9)

These eigenf unctions are orthogonal, and after nor-
malization the elements are given by the following
expressions:

u, = (m, + m2) + [(m, +m2) —4m, m2 sin'2w/g]'t2 .

(3.8)

Corresponding eigenvectors are

and

s,„,= b~exp i2wj (vt+
~

~2tl 1 Jf (3.4b)

a, =a =I/W,
-b, =b =(I/.&)L*,

where

(3.1Oa)

(3.1Ob)

Substituting Eqs. (3.4) in Eq. (3.3a), multiplying
throughout by exp[-t2w(vt+2n/X)], and then inte-
grating both sides over a time period we obtain

[m, m2(2wv)m-m, -m2]a~+e(1)b,

= t2wv( m~ +mw) g ja&a~ &
—t2wv

L = [e(1)/e(-1)]' ' .
We then expand

a1

,b~

(3.10c)

x Q j a, b, ~ e(1 —j) . (3.5a)

Similarly, Eq. (3.3b) becomes

a,e(-1)+ [m, m, (2wv)' —m, -m, ]b,

=t2wv(m, +m, ) Q jb, b, , -t2wv-
j

jb, a~,e(j —1). , .(3.5b)

where e(j) = m, exp(-t2wj/p)+ mw exp(t2wj/z),
e(-j) =e*(j), and * stands for complex conjugation.
Equations (3.5) can be put in the following matrix
form:

of Eq. (3.6) in terms of the complete set of eigen-
functions as

a+
'

.b+
+p

b ~
(3.11)

we get the following equation:

{m,m (2wv) —m —m, - [(m,+m2)' —4m~m, sin 2w/a]' Qn

= a,*M+bf N . (3.12a)

Similarly, multiplying by

with o.'and P as expansion coefficients.
Substituting Eq. (3.11) in Eq. (3.6) and then mul-

tiplying both sides by

[a+b+

m, m2(2wv)2-m -m2

e(- 1)

e(1) ax

m,'m, (2wv)' —m, —m, .'.b, .
[abbe]

we have

I
M'

(3.6)
{m,m (2wv) —nl- m, + [(m, +m, )'- 4m,m, sin'2w/y]'~ }p

= a*M+ b*N . (3.12b)

where M and N stand for the right-hand expression
for Eqs. (3.5a) and (3.5b), respectively. We now
proceed to solve this matrix equation for the coef-
ficients az and bz. The coefficients thus obtained

Here, use has been made of the orthogonality of the
eigenvectors. M and & contain nonlinear terms in
the coefficients az and bz. Our linearization pro-
cedure of the monatomic lattice (Sec. II) suggests
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the following choices:

a, a, , =2wvA(c, , —.c,), c, +c, = —1

a j=-ca,
b ~ bj 2=2wvB(dj 2

—d~) d~+d j= —1

b 2 ai -2 = 2wvD( gy 2
—gg) w

(3.13a)

(s.lsb)

(3.14a)

(3.14b)

(3.15a)

(3.15b)

where A, B,D are constants and gj, d, , gj depend on

j and have to be determined. We know that

M=i2wv(m, +m, ) Q ja~a, J

—i 2wv g ja&b, ;e(1—j),j W

N =i 2wv(m2+ mm} Q j b, b2q.
j % 26

i2-wv Q j b, a, ,.e(j 1}.-
j

(3.16a)

(3.16b)

Expressions for various sums contained in M and

N are given below (detailed evaluations are worked
out in the Appendix A):

g ja, a, , = 2wvA-c„
m

(3.17a)

j bi b, ~
——-2w vBd(),

j
oo ( oo oo

P jo,. c, we(j —1)=2wvD( —(m+m, )g, +2i(m, +m ) Pg,. sio2wj/Wvg 2jg [e(-.1) —e(0)]),
j=l j=1

oo oo eo

P je,. c, we(1 —j)=2wvD](m, +m )(1+g)—2i(m, +,) Pg,. sio2wjll++2j [e(g1w) —e(0)]) .
oo j=l j=l

Using the expressions (3.17),

(S.17b)

(3.17c)

(3.17d)

M = i (2wv) ((
—2D[e(1)—e(0)]g jg,.cos 2rj

(3.18a)

I

Using expressions (3.10) and Eqs. (3,18) we get,
after some algebraic simplification,

2 1
a,*M+ b,*N = i(2wv) 2

(~ Lq)—
)i=i(swv)*(0 —2D[e( 1)—e(0)]g-jg, cos 27rj

j=l A.

(3.18b)

21rjve(swv)'DDgjg, cos
j A.

(3.19a)

where

( = -(m, + m, )(Ac, +Dg, +D)

+ 2i(m, -m, )D g,.sin 2'
j

and

(3.18c)

where

+i(2wv)'DQ g jg,. cos 2rj
j=l

a*M+b*N=i(2wv)~ (]0+LE)
1

(S.19b)

q = (m, +m, )(-Bd, + Dg, )

—2i(m, -m, )D g,. sin 2' (3.18d)

P = vTL[e( 1)—e(0)] —W-[e(1)—e(0)], (3.19c)

Q = -WL[e(-1)—e(0) ] —~[e(l) —e(0)) . (3.19d)

Using Eqs. (3.19) in Eqs. (3.12),

2m 'i' 2)O

27rj
mzmw(2wv)2 -m, -m2 — (m, + mw)

2 —4m, m2 sin' (w = i(2wv)2 ($ —L]7) +i(2wvPDP g jgj cos

(3.20a)

oo

m, m2(2wv)2 —m, -m2+ (m, +m2)w —4m, m2sinm p=i(2wv)2 (g+Lji)+i(2wv)'DQQ jg,.cos
A.

(3.20b)
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The dispersion relation for the diatomic exponent-
ial lattice can now be obtained from Eqs. (3.20).
This should reduce to that of the monatomic case
(Eq. 2.1S) when m, = m, and also to that of the har-
monic diatomic dispersion in the appropriate limit.
These considerations lead us to make the following
choices:

A. = (X'/2wv)(q/1 —q'),
B= (F2/2w v)(q/1 —q'),

(3.27a)

(3.27b)

q 16m', m,' sin'w/X
1 —q [e(-1)—e(0)][e(1)—e(0)j

~

~

(3.27c)

Ln-=0,

$+Lq =0,

that is,

(3.21a)

(3.21b)

Finally, we obtain the solution of the diatomic ex-
ponential lattice as follows:

s = g ii&exp[i2wj(vt+2I/A)]

and

(3.21c)

(3.21d)

g, = q"/(1 —q"). (3.21e)

Now Eqs. (3.20) yield a dispersion relation of the
following form:

(m, + m 2) a [(m, + m, )
2 —4m, m 2 sinw2w/x ]i~a

4m, m, sin ir/X(1/sn'2K/X —1+E/K)

(3.22)

with

x dn'21vt+ IK-—2~'t z
K. '

Here, use is made of the relation'

(3.28)

dn2(2xK) =—
2 gj 2& cos2wxj +—.2w' " . q'

K ~ q
I--q~ K

(3.29)

4m, m~ sin w/A, Qi i 2q /(1 —qm') sin2wj(vt+2m/X)

m, exp(i 2w/z) + mm exp(-i 2w/x) m,--m,

(2Kv)'4m, m, sin'w/y
SZ +.8$ —SZi8 —Bl e1 2 1 2

D = -i Sm m (P/Q) sinew/X . (3.23) Similarly,

a, =Xq'/(1- q"),
with

(3.24a)

X= i2wv(4m, m~ sinew/A)/[e(-1) —e(0)], (3.24b)

b, = rq'/(1 —q"), (3.25a)

with

F=i 2wv(4m, mm sin w/A)/[e(1) —e(0)],
gi=ci=di=q /(1 —q ),

(3.25b)

(3.26)

When m is put equal to m~ in Eq. (3.22), the dis-
persion relation reduces to that of a monatomic
expression, namely,

m(2Kv)' =1, —1+—
I

E ~-'

~sn'2K X K j
For k«1 (i.e., E/K=1, sn'2K/X-sinw/g, K=w/2),
Eq. (3.22) takes the following form:

(2wv)' = (1/m, +1/m, ) ~ [(1/m, +1/m, )'
—(4/m, m, ) sin'2w/g]'~'.

This agrees with the dispei sion relation of an har-
monic diatomic chain.

Using the Eqs. (3.10), (3.13)-(3.15), (3.21), and
(3.23) and going through very cumbersome alge-
braic calculations, we get the following expres-
sions'8 (we have calculated the expressions in Ap-
pendices 8, C and D):

(~ ) ~ 4m' m~ sin w/A,
2n-l «p + m m &-ian/1 m &i2n/1

2

x d"'21 vt+
E
K (3.30)

It is of interest to see that when m, is equal to m„
Eqs. (3.33) and (3.36) reduce to that of the mon-
atomic case, namely,

s, = m(2Kv) ~[dn'2(vt+ n/x) K —E/K] .

IV. CONCLUSIONS

'The method we develop here is more general than
the method used by Toda. Its merit lies in the fact
that both monatomic and diatomic exponential lat-
tices can be studied with the help of this technique.
In the method used by Toda an equation connecting
Jacobian zeta functions of the form (2.25) is neces-
sary for obtaining the wave-train solution. Vfe
could not find suitable equations of the form of
(2.25) to compare with Eqs. (3.2a) and (3.2b) of the
diatomic lattice. So we conclude that though Toda's
intuitive method succeeds in the case of a mon-
atomic lattice, its extension to other complicated
system s is not easy.

The dispersion relation (3.22) of the diatomic
lattice not only reduces to the monatomic expres-
sion (2.18) when m, = m„but also goes over to the
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harmonic case in the limit k-0. The nonlinear
dispersion curves (Fig. 1) preserve the general
harmonic characteristic; that is, with increase of
the mass ratio, the separation between the acous-
tic and optical branches widens. But they differ
from the harmonic curves as regards their shapes.

Even though the cnoidal solutions of the mon-
atomic Toda lattice are particular solutions, "
they reveal something of the general solution, as
this Hamiltonian represents an integrable system.
This is not true in the case of a diatomic Toda lat-
tice. Our solution is strictly a particular solution
which, for certain mass ratios, is an unstable per-
iodic orbit lying in a stochastic sea. Moreover,
even when this orbit is stable in the sense of KAM
it is surrounded by an arbitrarily close stochastic
band. l9

Lastly, it is of interest to see how the Fourier
series converges. It has been known since the time
of Poincare'0 that a Fourier series diverges in gen-
eral, though it may converge for a particular solu-
tion. Further, this fact is exploited by Eminhei-
zer, Hellman, and Montroll" in obtaining particu-
lar solutions for some nonintegrable systems.
Very elaborately they have demonstrated a method
for avoiding divergencies of the Fourier series by
assuming a single frequency expansion. In light of
their work, we observe that our Fourier method
represents a convergent series, as we take a single
frequency expansion and seek a particular periodic

0.8-

0.6

0«4

for m=2
2

I & For m=~0
I

1

0.2

0 O.l76 0.55 0.53 0.7l 0.80lL =—K

FIG. 1. Dispersion of diatomic wave train (k = 0.5,
ml =1).

solution, not a general one, in the form of elliptic
functions.
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APPENDIX A: DERIVATION OF EQUATIONS (3.17)

C)O 40 gp

j j j j j jja-ag- =Q ja. a&--+ Q ja.a)--
j=l j= "l

OO

—g ja,. a;, +g ja, a. .. since a i = -a,-

j=l j=l

2„))A g j(c, , —c,)+2))&A g j(c;—ci„),
j=l j=1

OO OO

= 2m))A 2 g jci — (j + 1)c,.—g (j- 1)c,.
j=l j=0 j=2

DO DO

using Eq. (3.13)

Similarly,

=2wvA 2 jci —co —g (j+1)ci—g (j—1)c,. =-2))()Aco.
=1 j=l j=l

g jf),-f), , =-2i/) Bd, .
j

Now,

(A2)

(eee ee(1-i)»/&+ I - f(1-i)»/&) 2&&))f) ( )(~ e-i&i-1&»/& + m &&(i-)&»/&)j 1-j "1 2 2j j=l

+ -)((, —e )(«e e"""*'«+ «e e "«*""«)) (A3«)
-1
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Here we have used Eq. (3.15a).
Taking into account the following identity which can be written on the basis of Eq. (3.15b) as

g- j g-. j-l =g'j+l g'f ~

we write the right-hand side of (A3a) in the following form:

2((vD Y 'g (m e ((& &)&"/&+ m e((& &)&"/&) ( '+ 1)g (m e ((&&11/)1)+m e((/&11/&) )2 2
j=I j=

(m e((/+1)Rw/)1+ m e ((/+1)2w/)1)
jPSj l '2

j=l
(j 1 )g (~ei/211/k+ m e (/2w/x)~

~

Hence,

oe oo ~'

=2)(vD(-go(m, +m, )+2i(m, -m, ) gg,. sin ~ +2(m, e("/~+m~e '~'/"-m, —m, ) g jg,.cos ~

j=l

g jb&az ze(j„1)=2-eve -go(m, + m~)+2i(m, -m~) g g&sin +2[e(-1)—e(0)] p jgzcos. j2g '2'
0 l 2 l f

Similarly,

(A3b)

ja&b, &e(1 —j)= g (1-j)b&a~;e(j)
j f

=2 D + 1+g —2 — gj 2 I — 0 jg os j~ j2w j 27T

j=l

APPENDIX 8: EXPRESSIONS FOR a& AND b&

Using expression (3.21e)

1 —q'( q' l / q''

Comparison of this with Eq. (3.15) suggests the
form of gj and 5f as

q 1 Q-P
bg Y

T herefore,

x (Q+P)
I.*(Q P) '-

Putting Eqs. (81) and (3.21e) in Eq. (3.15a)

(83b)

(83c)

Cf =X— (Bla) XY =2m' (1 —q')

bj=F ) (81b) (1 —q')= - i(2)(v)—8m, m, sin'—I' A, q
(84)

However, from Eqs. (3.11), (3.10), and (3.21d)

1
a = o,'a +pa„= ~ (n+p)

a (1 + —
)

= 11(1+—), (82a)

Substituting the value of ()( from Eq. (83a) in Eq.
(84)

8Wr= — (i2)(v)m, m, sin' —.
Q+P l 2

Also, using Eq. (83c)

g, =eQ +Pb
1 i*(p- ~) 8WX= — (,(i2)(v)m, m, sin' —.l 2

1"( —1)n'= I" (1 -—)1I .. (Mb)

From Eqs. (Bla) and 82a)

However, Eqs. (3.19c) and (3.19d) give

Q+P =-2~(m, e ' " ~+ m~e' " "—m, -m~)

q 1 Q+P
1 (1 2) ~ p (83a)

and

= —2v2 [e(1)-e(0)], (85a)
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q-P=-2WL(m, e'" '+m, e '" '-m, -m, )

= —2~L[e(—1)—e(0)] .
Therefore,

4m, m, sin'w/z
e(—1)-e(0)

4m, m, sin'w/x
e(1)—e(0)

(B5b)

(B6a)

(86b)

q2f
~J (1 2J)

p2

2wv (1 —q') '

APPENDIX D: EXPRESSIONS FOR ao AND bp

Setting j= 1 in Eqs. (3.13)-(3.15) we get

(c5)

Hence,

and

4m, m, sin'w/A.

e(l) —e(0)
qJ .

(1 —q")

4m, m, sin'w/x q'
e(—1)—e(0) (1 —q'~) ' (Bra)

(BVb)

a,a, =2wvA(c, —c()),

b, bo = 2w vB(d, —do),

Qob~ = 2wvD( g~ —g()),

a, /b, =A.(c, —c,)/D(g, —g, )

=X/Y'= (Q+P)/L*(Q —P) ~

(Dla)

(D lb)

(Dlc)

(Did)

APPENDIX C: EXPRESSIONS FOR n, P, A, 8, AND D

From Eq. (B3a)

WP q
Q+P 1 —q

Using the expressions for X and Q+P from Eqs.
(B5) and (B6)

Here we have used expressions (Dla), (Dlc), and
B(3). Now,

1."(0 1')a(-, —e )=0(q+)')( e. , -e, (,q
1 q2 0 1 q2 0~

or
q q

1 —q 1 —q
2 &P 2 gP ~

c(=-(2~)i2wv m m sin—2 7T

1 q2 1 2

I 1

e(1)-e(D) e(-1)- e(0)) '

p = —c. =2&i2wv 'm m sin-q ~ 2 r
1- q'

L
e(1)—e(0) e(-1) —e(D))'

AD=-8im m sin1 2

(cl)

(C2)

'Therefore,

Cp =gp .
Using Eq. (D2) we get from Eq. (3.21c)

I

@vs —m2 . g 2g
Ago+Dgo+D=2iD ' ' g gi sin

+ m2

m1 -rn . j2g-Bg+Dgo =2iD ' g gz sin
7tl1+ m2

(D3a)

(D3b)

After solving Eqs. (D3) we obtain the following:

16m', m 2 sin'w/z
[e(1)—e(0)][e(-1)—e(0)] (1 —q') '

(C 3)

Using Eq. (Bla)
2J q

2 g 2
q~=X

1 2y
—

1 my ~ (1 2).—q

Comparing the right-hand side of this equation with
Eqs. (3.13),

(1 —q") ' (1 —q') '

m, -m, " q» . )2z
gp =4/ Sln4+D m1+tn2 ~ 1 1 —q &

D2 D
A(A+D) A

D 2

B(A+D)

Now using Eqs. (Dl);

(D4)

where,

X' q
2wv (1 —q') ' (G4)

ao = 2wv —
2

—go I

A q2 ) (1 —q~)
X 1 —q j q

Similarly, $0=2gP —
2 '
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z„f=-af, 5 f =-bf. (E 1)

&gain, cj =dj =gz = q'j/(I -qmj) satisfies the rela-
tion

gf+g-f =-~ ~

APPENDIX E: VERIFICATION OF EQUATIONS (3.5)

We observe that Eqs. (3.2) possess periodic solu-
tions of the form given by Eqs. (3.28) and (3.30) if
the coefficients a,. and b, sa. tisfy the Eqs. (3.5). By
our method we get particular solutions where gf,
bj, a, and bo are given by Eqs. (3.24), (3.25),
(D6), and (DV). In this Appendix we put these equa-
tions back in Eqs. (3.5) and show that the coeffici-
ents af, 5f, a, and bo satisfy the original equations
(3.5) if the frequency is given by the dispersion re-
lation (3.22).

With our expressions (3.24) and (3.25) we see that

q' q' '-g
),, „.„,)-..., , .I —q

(E3a)

Similarly, using the expressions for the coeffic-
ients we verify the following relations.

2vvB(d,-
2

—d,.) =b, b. .. .

2vvD(gj, —gj) =bjaj, .

(E3b)

(E 3c)

Using expressions (E 1)-(E3c) and taking the help
of the summations carried over in Appendix A we
get

Also,

+2 q2f 2 q2f q27fvA(c 2 cg) 27lv
2 1 2g 2 1 mj (1 2)

22O oo

Se=j(2ev) (-(m, +m )(gc +Dg vD)v2((m, —m )Dggesic —2D[e(i) —e(0)[ Pjg eeoc),

OO s

=js(2 j)ev((m +m )(-Dd +Dg ) —2i(m, —m)D g sic —2D[e( 1) —e(0)) gjg-cos ).f=1

Using expressions for A, B,D, as given by Eqs. (3.27), and co, d, go, as expressed by Eqs. (D2), (D4),
and (D5), we see that

—(m, +mm)(Aco+Dgo+D)+2i(m, -m2)D csin =0,j2' =

( Bd +Dgo)(m, + m-, ) 2i(m,-'m, )D Q—gj sin =0.j2F =
f=1

Hence,

M=-i(2wv)22D[e(1)- e(0)] g jgjcos

Using Eqs. (3.24b) and (3.2Vc) as well as the expansion formula (2.14), we write M as follows:
P Q EM=2(2wv)'4m, m, sin' —,K, csc' ——, + ——1,1 —q' 4K' A, sn'2K y K ' 2e' '

Similarly,

%=2(2wv) 4m, mm sin —
2 I",csc' ——~, + ——1

q m', m & 1 E
A. 1 —q 4K' A, )) sn'2K/z K 2v'

4)

(E5)

Substituting Eqs. (E4) and (E5) in Eqs. (3.5) and noting that

a, = Xq/(I —q'), b, = rq/(I —q')

we get the following:

[m, m2(2vv)2-m, —m2]a, +[e(l)]b, =(2rv)24m, m sin
~

—
~
a, csc' ——, + ——1~

E i@''.4K' A. sn'2K/A. K )i w'

(E 6a)
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Also,

[e(-&)]a,+ [m, m, (2mv)'-m, m-, ]b, =(2n v) 4mm, sin'~ —5» csc'——, + ——l
la

Equations (E6a) and (E6b) will be simultaneously satisfied if

(E6i )

1 E l . , m't'
-m, -m, +4m,m (2K'v)' ~, , +——l

~

sin'
&sn 2K/x K )

e(-l)

or if

e(l)

E-m, -m +4m,m, (2Kv)'~, +—-l sin'—
~ sn'2K/y K

( ), m~+m, + [(m, +m, )' —4m~m sin'2m/Z]~~'

E . 2m
mjm' ~2K/ K

—1 sin-
sn 2K/X K

As Eq. (E"I) is identical with the dispersion relation (3.22), our solution satisfies Eq. (3.5).
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