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Convective instabilities in cholesteric and smectic-A liquid crystals
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The convective instabilities occurring in cholesteric and smectic-A liquid crystals are investigated by linear stability
analysis. We find oscillatory instabilities not predicted previously and we present a thorough examination of the
stationary instabilities which have been discussed previously in a simplified version by Dubois-Violette and Parsons.
The differences in the convective instabilities in cholesterics and smectics A due to the differences in the underlying
hydrodynamic equations and to the different orders of magnitude of the corresponding transport coefficients and
static susceptibilities are considered in some detail. We discuss the mechanisms of the instabilities which are
different from those of nematics and we obtain the threshold conditions for cholesterics and smectics A for the
critical temperature difference and for the frequency by energy-balance considerations. The influence of a
temperature-dependent pitch is investigated in a separate section.

I. INTRODUCTION

The study of convective instabilities, generated
by external temperature gradients in liquid cry-
stals is interesting both theoretically and experi-
mentally. First convective instabilities are "non-
equilibrium phase transitions" from a state of
higher to a state of lower symmetry. Since liquid
crystals already have a reduced symmetry com-
pared to simple fluids a further reduction of the
symmetry by. convective structures has to be
expected and will lead to new effects. Secondly
the experimental investigation of thermal in-
stabilities in liquid crystals can yield information
on various hydrodynamic parameters like viscosi-
ties and static susceptibilities. Although the ex-
perimental' " and thepretical' ' " effort during
the last years was mainly addressed to the study
of hydrodynamic instabilities in nematics, the
treatment of convective instabilities" " in cho-
lesterics and- smectics A comes now into experi-
mental reach.

In nematics the existence of a stationary and
of an oscillatory convective instability is es-
tablished both theoretically" "and experimental-
ly."" In this paper we repprt thepretically on
two analogous instabilities in smectics A and
cholesterics. Our results contain new predic-
tions, e.g. , an intrinsically oscillatory insta-
bility, and cover and amend previously given
discussipns on the stationary instability. "" In
addition, we investigate the different behavior of
smecticsA and cholesterics, which is based on
different orders of magnitude of some relevant
phenomenological parameters as well as on dif-
ferences in the basic hydrodynamic equations.
Although both types of instabilities are analogous

to those in nematics, their main features and
the underlying mechanisms are quite different
from those in nematics, because of the existence
of an elastic energy in smecticsA and choles-
terics, not present in nematics.

We think of horizontal layers (z =const) of
smectic-A and cholesteric liquid crystals be-
tween an upper (z =d) and a lower (z =0) boun-
dary. The direction normal to the layers is de-
noted by P. For smecticsA, P is identical with
the averaged molecule axis n, while for choles-
terics, P is the pitch axis of the helical geo-
metry. A temperature gradient is applied across
the layers. For a certain threshold value of this
temperature gradient a convective motion sets in.

In Sec. II the basic nonlinear hydrodynamic
equations for smectics A and for cholesterics are
introduced and the differences between them are
discussed. In Sec. III we solve these equations
for the steady heat-conduction state. A linear-
stability analysis of this heat-conduction state is
performed in Sec. IV under the approximation
that the direct temperature dependence of the
layer fluctuations can be neglected ("temperature-
independent pitch" assumption). The threshold
condition for both, the stationary and oscillatory
instability, are then given in Sec. VA for smectics
A; for cholesterics this Sec. V is only valid as a
first approximation. In Secs. V B and V C we dis-
cuss the mechanisms leading to the instabilities
and regain the threshold conditions by energy-
balance considerations. A discussion of numeri-
cal values and a comparison between the two
types of instabilities is given in Sec. VD. The
additional new features due to the correct hydro-
dynamic equations for cholesterics are discussed
in Sec. VI. In Sec. VII we lift the assumption
of a temperature-independent pitch and discuss
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this general case for both types of instabilities
for smectics A and for cholesterics. A summary
of our results is contained in See. VIII. In two
Appendices we derive the influence of a fluctuating

preferred direction P (Appendix A) and discuss the
inclusion of a destabilizing magnetic field in the
case of smecticsA (Appendix B). In the main text
we always allow for a stabilizing magnetic field.

H. HYDRODYNAMIC EQUATIONS

For the investigation of convective instabilities in smectics A and cholesterics we use nonlinear hydro-
dynamic equations whose nonlinear reversible parts were recently derived by the authors" and whose
nonlinear irreversible parts are a straightforward generalization of previous linear ones. "~' For the
momentum density g, the density p, the entropy density o, and the order parameter (layer displacement
along P) R, we have the equations of motion

gg k 0 0 A 2q
—R+vaVaR -/AU( ——p~(V &v)t +f~~RV(v~+gq)qoVtv~ =&Very)+ )pqV~T,

a—p+V pg =0f f

—(t+V (tv =p V(($V &f) )+V)(xoC~TO V)T),

(2.1)

A „—g +V@ +V(p+pg@5( -p)V)(p)+V) $)V)R 2 pg&))q ~ ~'p~ — )(f)pV~Q~+g))qoV~Q~) =V~(&)(~, V&q).
0

Here P denotes the pressure, g~ the acceleration
due to gravity, q, the wave vector associated with
the equilibrium pitch of the helices in choles-
terics, v the velocity, and T the temperature.
The tensors f,&, g, &, z,

&
contained in (2.1) are of

the axial form f, &

= t„p,p& + t,(5,&
-p, p&); their

anisotropic parts are defined by t, =—t, -t„. for the
viscosity tensor v, », cf. Forster" ". The dis-
sipative transport parameters are t' (order para-
meter friction), t', z„, a, (heat conduction), and
five v, (viscosity). For t there is the constraint
$'& fz„C~&,' due to the positivity of entropy pro-
duction. The reactive ones are f„, f„g„,g„and
A.

The hydrodynamics of smectics A and cholester-
ics differ from each other with respect to terms
containing q, (which is not present in smectics A),
i.e. , A =0=g, =g„ for smectics A. For choles-
terics the A terms describe the fact that a ro-
tation of the helices about P is equivalent to a
translation of the layers along P, therefore A =1,
which was already obtained by Lubensky. " The
g terms have no simple geometric explanation
and g„g„are phenomenological parameter s.
This term is quite analogous to the X term in the
director equation for nematics. ""

The equations of motion are completed by equa-
tions of state. As independent variables we use
p and T. The equations of state read (cf. Ref. 23)

1
5] = g]

5p = X@5p —n 5T,
5(t =C T '5T —C„y,T,'p~Vp

4&) =p)p~(X„—C„o'y~) ((R +y2C~T 'p~5T

H (5jg pf pg)V((R

(2.2)

where we have neglected the pressure dependence
of 5a and (p~(y, =0) and nonlinearities in VR, which
will play no role in the following. The isothermal
compressibility X~ and the thermal expansion
coefficient e are related to the susceptibilities
introduced in Ref. 23 by u = /p(t, X and X~ =1/po&
with X = (8'&/Bp') The sus.ceptibility y, is defined
by y,

-=(8'e/S(pep, V,R), and X((=-.[8'e/(Sp, .V,.R)'], p.
Thermodynamic stability requires X„&C„T, y,'.
The last term in (2.2) describes the influence of
an external magnetic field 8 applied parallel to
p. The upper (lower) sign refers to smectics A
(cholesterics). The magnetic field is stabilizing
for X,& 0 in smecticsA and for X,&0 in eholes-
terics. The influence of a magnetic field per-
pendicular to P is discussed in Appendix B. Equa-
tions (2.1) and (2.2) are only valid for HxO; for
H-0 the transverse fluctuations of the preferred
axis are to be considered. This is done in Ap-
pendix A. In cholesterics, satura. 'tion effects are
important for very strong magnetic fields (H
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& 20 (kG) and XJP in (2.2) has to be replaced"
by X, ff'[& +X,ff'qo'(&) +&,) '] '. In smectics A
such saturation effects are negligible.

T" (z) =T, +B—,

R"'(z) =--'z' nx '-II

(3 1)

p"(«)=t.() -xw, «) -«(«.««8' ' —
) () -l««x )

g2
«'«'~ ««'

q «y~ (x '«)x '(f» —x))~d

and for the thermodynamic conjugates

8p" (z) =p() -nz
d

+(p -po)Xz,

, e , e
o "c(z)=o, +C,T,'z +C„y,T,'-z —qX, ,

', (3 2)

yHc(z)—

with the abbreviations

+y2C o and X))=X()—,o y2 ~

The expression for PHc(z) is an expansion in

g~x~z up to linear order, since g~X~z «1 for
z ~ d, = 1 cm. Note, that $, y„and therefore
g can have either sign, while X„ is positive. There
is no difference between smecties 4 and choles-
terics in this regime. The result R" -z26) means,
that the layer distances (or pitch) are no longer
constant as in the true equilibrium state, but de-
pend on z and on the external temperature gra-
dient. This is caused by a sum of two effects,
a static and a dynamical coupling of T and R. The
dynamical coupling, characterized by $ was al-

III. HEAT-CONDUCTION REGIME

If a constant temperature gradient across the
layer is applied to a simple fluid, there exists
a steady state without convection, where heat
conduction is the nnly dissipative process. This
heat-conduction regime is stable up to a critical
temperature gradient. In smectics A. and choles-
terics an analogous regime exists, whose sta-
bility wi1.1 be analyzed in the following sections.
However, this steady state contains not only heat
conduction but also order-parameter friction as a
dissipative process. The latter is induced by the
dynamical coupling of T with P,.V,R characterized
by the dissipative transport parameter (. Ex-
plicitly, by solving Eqs. (2.1) and (2.2) for 9/st
=.0 and v =0 and applied thermal gradient we ob-
tain for the new heat-conduction regime

gHc -0

ready mentioned above. The static coupling is
described by the susceptibility y2. Parts of this
static coupling were already discussed by Par-
sons. " However, this temperature dependence
of the layer distances (pitch) is assumed to be
very weak. Therefore we will neglect this tem-
perature dependence in the next three sections;
its influence on the stability of the heat-conduction
regime will be discussed in Sec. VII. By ne-
glecting the temperature dependence of R (i.e. , $
=O=y, ) the expressions (3.1) and (3.2) of the heat-
conduction regime of smectics A. and cholesterics
are identical to that of simple fluids (and R =0).
In the following we analyze the stability of the
heat-conduction regime within linear-stability
analysis.

(i) div v =0,

(ii) XH5P «c(5T,
(4.1)

(iii) p" (z)-:- p, , except for the buoyancy
force,

(iv) susceptibilities and transport parameters
= const. These approximations are justified for
the same reasons as in simple liquids. However,
in order to meet the last condition of (4.1) it is
necessary to work sufficiently far away from
phase transitions.

We are now left with a set of differential equations"
for T',P', R, and u, v, u) (the Cartesian components
of v). Because of the uniaxial symmetry of our
problem we can assume s/ey =0, without loss
of generality. The heat-conduction state is stable
as long as the disturbances are decaying, i.e. ,
for R, T, v exp(i(dt at) -the condition o-=0 de-
notes the onset of instability ((x) real). Therefore
we are looking for solutions with the time de-
pendence - e'"'. With respect to the space de-
pendence we Fourier transform the set of dif-
ferential equations. Boundary conditions are
given below. To this end we obtain a homogeneous
system of algebraic equations (dropping the prime

IV. LINEARIZED EQUATIONS

In this section we analyze the stability of the
heat-conduction states (3.1) and (3.2) with tem-
perature-independent layer distances ($ =0 =y, )
with respect to infinitesimal disturbances. Small
deviations T(r, t) —T"c —= T'(r, t), P (r, t) -PHc
-=p'(r, t), R(r, t), and g(r, t) from the heat-con-
duction state evolve in time according to the hy-
drodynamic equations (2.1) and (2.2).

We linearize these equations for T'(r, t), P'
(r, t), R (r, t), and g(r, t) and simplify it by the
Boussinesq approximation, which contains in our
case the same assumptions as in the case of sim-
ple liquids, namely,
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on T' and P'):

i&arR —w+tX2R =4(2q, ) 'ik, v q—~,ik„2v,

i~v+psv =A(2q~o) 'ik, X2R,

&+++'((Pp P -+g~Pp T+Pp X &+
=qpPo'g„ik((y ~R,

Pk —ik„cvgzT +ski(X R +ik((P' ~ q~

iuT+ —zv+K T —-K k R =0
d g l

with

X' =X„k'„~X,&'k', +&k'„

(4.2)

(OSI). Explicitly we find" "
4) =Op

gsTi(k) Pod X + &P +kNo
Qgg kl K kl

and

~'(k) = (~„k'+ p;) '[gX'(p'+ s'k')(» k,2 —gX2)

+K k~P, s' +(K2k —fX )k~X po]

(5.2)

pop2 =(2v~ —vs)ko+vsk~ q

poP', =2(v, —v, )k'„+2(v, —vs)k2, ,

II II l

where k„,k, are the components of the wave vector
parallel and perpendicular to P, respectively. In
the expression for X' we have inserted the con-
tribution Ek,4 due to the transverse fluctuations
of the preferred axis. In Appendix A the deriva-.
tion of this term is given. It is important for the
case H-0. The +X,H'k,' term is positive for a
stabilizing field (X,&0 for smectics, X,g0 for
cholesterics, usually). The solutions of Egs.
(4.2) will be discussed in the following two sec-
tions.

gosr(k) Pod P +&X"
&gz P4+ K„k4

&&[kq (/~+K k )(tX + Ic )+po X]

with

P po vs(k() k~ ) + 2 (v~ + vs)k(( k~

&2-& k~~& ~'k2++y4
A Q
K = KII k((+ Klkl

These formulas can be simplified by the assump-
tion p. k '»K» gy', which means that relaxation
due to viscosity is much faster thin thermal con-
ductivity, which is, on the other hand, faster
than order-parameter relaxation. These in-
equalities are fulfilled in most smectics A and
cholesterics. We then find

V. INSTABILITIES IN SMECTICS A (FIRST
. APPROXIMATION FOR CHOLESTERICS)

A. Threshold conditions

A2 A2

gsTz(k)
d X &

Ngg K~k~ —fX
(5.2)

In this section we will put A. =0=g„=g„ i.e. , the
right-hand side of Eqs. (4.2) equal to zero. The
equations are then suitable for smectics A. . In
Sec. VI the actual differences between smectics
4 and cholesterics which show up in the para-
meters A. ,g„,g„are considered. The following
discussion can, therefore, be applied to choles-
terics only as a. first approximation.

Ec(uations (4.2) constitute an eigenvalue problem,
whose associate linear operator is non-Hermitian.
Thus the eigenvalue i~ may become, imaginary and
we have generally to expect solutions with ~ 0.
In fact, there are two solutions of (4.2), one with
~ =0, denoting the onset of a stationary convec-
tive instability (STI) and one with ur v 0 denoting
the onset of an oscillatory convective instability

K k'"'
~2(k) ~ k2 ~2+ II IX Po

)' A4A2

gosI(k) pod
(

p ~ -1
2~~

(5.4)

In order to obtain the true threshold values ~,
= ~(k, ) and g, = g(k, ) we have to specify the critical
wave vector k, . At the top and bottom of the layer
we take, for the flow, so called free-free bound-
ary conditions for simplicity, and for T, R "nat-
ural" boundary conditions, i.e.,

8 so ~Q evT-R -ze — —'————0
~z ez Bz

at 2=0, d. In that case, k;, =s/d is immediately
found, as in simple fluids. For more realistic
boundary conditions k;, can be obtained numer-
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ically. The principal features of the instability
are not affected by our choice of boundary condi-
tions. For the horizontal planes we do not im-
pose special boundary conditions. Thus, k; is
determined by minimizing 8(k) with respect to
k, (or k,'). For the simplified formulas (5.3) and

(5.4) we obtain k) =vB v/d with (STI)

not separable and the instability sets in for
8,(v, k,'—fj') &0, i.e. , if (v,k', —gX') &0 for 8, &0

(by heating from above) and if (w,k,' —fy') & 0 for
8, &0 (by heating from below). We will give num-

erical values for k;, 8, ' and a discussion of their
v, and B dependence in connection and compari-
son with the OSI in subsection VD.

The eigenfunctions belonging to the eigenvalue
~=0 and according to our boundary conditions
(5.5) are

and (OSI)

(5 6)

2(1 R3 ( II 2 1 2 3 Xa 2

V3 7l' V 3/Cg

K
II 0

K~

R p fX s lnktt ~ coskx x

v=p,

u =-R,fy'k;, (k~~) 'cosk;~z sink~+,

R =R, sink'z cosk;x,

T =R, ; (v, k;2 —fy') sink;, z cosk;x,

(5.7)

respectively. For the exact formulas (5.1) and

(5.2) one gets an algebraic equation of fifth and

seventh order for B, which has to be solved num-
erically. In the following subsections we will dis-
cuss the mechanism leading to these instabilities.

B. Stationary convective instability

This instability has already been predicted by
Dubois-Violette" and Parsons. " Although derived
for cholesterics, their results agree with ours
for smectics A. For cholesterics they are valid
only approximately (cf. Sec. VI). Since Dubois-
Violette" and Parsons" have discussed this in-

stability extensively, we will only give a short
comprehension of the main features in order to
be able to compare afterwards with OSI.

As can easily be seen from the denominator
of 8, in (5.1) there are two mechanism involved

which act together for K, &0 and against each
other for w, &0. The first (l'= 0, a, x0) is based
on a coupling of R with T because of the stationary
balance of heat conduction with heat focusing due

to the anisotropy of tc, , , i.e., O' T = (8,/d)z, k,'R
The back coupling is achieved since the buoyancy
force is balanced by the elastic force due to the

layer structure, i.e. , ng~T =X'R. This closed
circuit amplifies itself and becomes unstable for
8,z, &0. There is no convection involved (~=0).
This mechanism is sketched in Fig. 1, shown by
the dotted lines.

The second mechanism (g w 0, &, = 0) consists of
a coupling between ~ and T: VT = —(8,/d)~ (heat
conduction = convective heat transport), between
T and R: agsT =y'R [buoyancy force = elastic
force neglecting a viscous force as in (5.3)] and

between. R and n: w =j'R (permeation effect).
This reaction cycle gets unstable for e, &0. This
mechanism is sketched in Fig. 1 shown by the

full lines. Of course, in nature both effects are

where R, is the constant amplitude. Equations
(5.7) describe two-dimensional convections rolls
accompanied by temperature and layer-structure
undulations. The velocities are small (- gx') and

w 0 0 is solely due to the permeation effect. There-
fore it was argued" that the above described in-
stability is hardly observable. However, it should
be stressed here that the linear-stability analysis
can only describe the onset of the instability, but
is not able to predict what happens above the
threshold. Especially, Eqs. (5.7) only describe
against what kind of fluctuations the heat-con-
duction state becomes unstable at I9„but do not
necessarily yield the spatial pattern above. By
the quite stiff layer structure of smectics A, it
is possible that above 8, layer textures quite dif-

temperature balance

force balanc

W

FIG. 1. Mechanisms leading to the stationary insta-
bility. The dotted (fu11) lines refer to couplings obtained .

for (=0 (~,=0) Icf. the left-hand side of Eqs. (4.2) with
co = 0].
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ferent from Fig. 2, may occur.
We may now look at the instability from a dif-

ferent point of view. The onset of a convective
instability sets in when, for a minimum external
thermodynamic force, the rate of energy fed into
the system equals the rate of energy dissipated
by the system. " The rate of energy transferred
from the gravitational field to the fluid due to the
buoyancy force is

E'„=-g~ d~rap r m r

=ngz d'rT rsvp r .

Kinetic energy is dissipated at the rate

E = & r v'g =-po d'r &.)a, &g v,. r &, v

and elastic energy at a rate

Edis d3~ y ~ Rdis
el i i

d r X V'+XA &-KV' R

Inserting the eigenfunction (5.7) one obtains
(~ =E/v)

8 g yc2 y~2
e,„= ~,~ 7'(k)w(k)= ' ng

g4 g2 ~4
adjs Po & w2(I ) 0 POP (g~~2)2

kin 4 2 pc2 4 2 pc2l. l

(5.8)

The result (5.1) is regained by the threshold con-
dition K„+i„,"„+6 l 0 The approximation con-
tained in (5.3) consists, therefore, in neglecting
&,» with respect to a,".

C. Oscillatory convective instability

The mechanism leading to the instability des-
cribed in the preceding section is not present
in simple fluids, since ~, and y' are zero there.
In simple fluids the convective instability (Benard

z=d

Z=P

FIG. 2. The spatial pattern of the stationary insta-
bility at the critical point; —denotes convective veloc-
ities, + and —denote hotter and colder regions, re-
spectively, and = denotes the layer structure.

FIG. 3. Simplified mechanism leadixg to the oscilla-
tory instability under the assumptions mentioned in the
main text.

instability) is the result of a coupling between T
and zv, which leads at the threshold to the balance
of heat conduction with convective heat transport
and of the buoyancy force with the viscous force.
Of course, an analogous mechanism is present
in smectics A. . However, there are additional
couplings between T and R and w and R [cf.
(4.2)], which cause the overstability of this in-
stability. In fact, for v, =0 and X'=0, Eq. (5.2)
reduced to ~=0 and 9 '=9 ", the usual threshold
condition for the Benard instability in simple
Quids. In order to study the mechanism, we will
simplify the problem for the moment by the
assumption p, k» & » fX already mentioned
above. In addition, there is (Pp, '}'~'» i'
» PX' by the stiffness of the layer structure (cf.
Sec. VD). Therefore, both &o' and 8o~' are
dominated by the y' p,

' terms and ~,» O'. There-
fore, the mechanism described here, is quite
different from that leading to the oscillatory in-
stability in nematics [where &u, «0' (Refs. 14
and 15)].

Under the above assumptions a Quctuating vel-
ocity w=w, cosidt generates [cf. Eq. (4.2)] fluctua-
tions R =(w, /~) sin~t (i.e., no permeation, since
R =w) and T=-(w, /~)(8/d) sinidt (by the con-
vective heat transportation), cf. Fig. 3. How-
ever, by the elastic and buoyancy forces these
Quctuations produce a velocity Quctuation w

= (wo/id')(ngzd 'p, '8+ po'y }cos&dt. The system
becomes unstable (&d imaginary), if ngs8/dp,
&-p, 'y'. Thus, 8, =-dy'/ngs which is equal to
(5.4) under the approximations currently used.
The mechanism, therefore, can be described as
follows: Oscillations of the layer structure are
rigidly accompanied by oscillations of the vertical
velocity (no permeation) 90" out of phase. These
vertical velocity oscillations transport heat peri-
odically up and down and generate vertical tem-
perature oscillations. By the driving external
temperature gradient these temperature oscil-
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w =R,f(r)(f}t sine, f+ &a, cos~, f),
v=0,

C

u= —,". Roy(r)(tx'sin&u, t+v, cos&, t),

(5.9)

lations produce a gravitational force directed up
and down periodically. If g&0 (heating from
below) this "buoyancy" force is directed opposite
to the elastic force of the layer oscillations. If

~

9
~

exceeds a certain threshold
~
&, ~, this buoyancy

force overcomes the elastic force and the system
becomes unstable. This behavior at threshold is
sketched in Fig. 4. It shows a two-dimensional
convection pattern oscillating as a whole. A quar-
ter period later oscillations of the temperature
and of layer deformations occur. Therefore, the
situation is different from that in nematics, "'"
where I) and T are in phase and the order-pa-
rameter fluctuations are out of phase. The reason
again, is that in nematics +, &K, while in smec-
ties A or cholesteries ~,» K'. This happens,
because in the latter ease the elastic energy is
dominating, which in nematics, is absent or only
very weakly produced by a stabilizing magnetic
field applied.

Without the approximations used above, the
behavior is much more complicated. As eigen-
functions to &u =a&, of Eq. (5.4) according to the
boundary conditions (5.5) we find

f-o
z=d

2cuc

0 0 0 0
+ 0 — 00 0 0 0

t=3
2a)c

0 0 0 00 + 00 0 0 0

changes. As in the ease of the stationary in-
stability, we can calculate the rate of dissipation
of kinetic and elastic energy a„,". „, &,",' and the
rate of energy E,„ fed into the system by the grav-
itational field. Using the eigenfunctions (5.9)—
instead of (5.V)—we obtain

FIG. 4. The time-space pattern of the oscillatory in-
stability at threshold; —denotes convective velocities,
+ and —denotes hotter and colder regions, respectively,
and = denotes the layer structure.

R =R,f(r) sin~, t,
S

( ((s, —s (s.k, — X)(
CO +K K

2

(g}('sin~, f + &u, costo, t)',

cosmic~ I ~
(d +K K ')'

with f(r) = sin(k;, z) cos(k„'x) and g(r) = cos(k;, z)
x sin(k;x), Eqs. (5.9) describe two-dimensional
convection rolls (the same spatial pattern as for
the stationary instability), which oscillate with
frequency ~,. Thereby zv, R, and T are not in
phase with each other, For p.'0 '» K'» pX we
obtain

Ao 8

x ( kx (&d —K [K (k j )' —g}t']j sin'~, f

+(u [K(((k ) —gX ]cos ~

(5.ll)

co =R,f(r)&u, co(see, t —&u,
' f}t'),

R =R,f(r) sin~, t, (5.IO)

+((0,' —ic'[~.(k;)' —(X')

+/X'(~,
,

k" —tj )]co,sin~, tcos~, t).
8, ), k„—gXS'= — ~' S ((r)sis st+ " ' " ). ,

C

Neglecting the small phase lags one arrives at
the situation described in Fig. 4. Again, we want

to point out here, that above 0, the actual spatial
pattern of the convection may be more complicated
than described by E(ls. (5.9).

We now investigate the oscillatory instability
with the help of the balance of different energy k in e]. (5.l2)

However, by the nonstationary nature of the
mot, ions here, the kinetic and elastic energy may
not only be changed by dissipation, but also by
their explicit time dependence. The condition
for the onset of an oscillatory instability, there-
fore, reads"
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with

d'r p r, t v' r, t,
E„= d'rx, , &,.R r, t V,.R r, t

Inserting Eqs. (5.9}one obtains

8 1
d r p (QQ + 1UW )et "'" V

R k'2
p,~, k, [(&o,

' —f'X'X ) sin&a, t cos~,t

+ &u, fx'(sin'~, t —cos'~, t)],
(5.13)

el 2 c X sin(, t cos~,t .4m'

The threshold condition (5.12) must be fulfilled
at any time, i.e. , in a synchronouS manner for the
oscillatory time dependence here. Matching the
cos', sin', and sincos terms obtained by putting
Eqs. (5.13) and (5.11) into (5.12), there are two
independent conditions left, which are identical
with the threshold conditions (5.2). As can be
seen from (5.11) there is, for any cycle, a net
gain of energy (J,""~'0 dt & 0) for the system,
if 8&0 (heating from below). The instability sets
in, if &,„ is great enough, i.e., for 6) =9,.

D. Comparison between stationary and osci11atory
instability

We will discuss here, under which conditions
the stationary or the oscillatory instability occurs.
Of course, by heating from above (8, &0) only the
stationary instability can occur, namely, if
x, (k~)' —gy' &0. By heating from below (8, &0),
that instability appears, whose threshold tem-
perature gradient is reached first, i.e. , whose

~ 8, I is smaller. Although the values of 8, depend
on various phenomenological parameters, it is
possible to give a general discussion. The only
parameter which varies over a broad range and
which is crucial for the value of 9, ' is v, . The
second quantity, which can be influenced con-
siderably, is the strength of the external mag-
netic field.

En the following we mill discuss the v, and H
dependence of the threshold gradients 9, and of the
of the frequency ~, for smecticsA and cholesterics.
Although for the-latter the correct threshold con-
ditions are given in Sec. VI, the following con-
siderations are a first approximation for chol-
esterics; the necessary additional discussion is

given in Sec. VI.
The numerical results are obtained under the

assumption d = 1 cm, pitch 2', ' = 50 p,m for
cholesterics, and interlayer distance 500 A for
smectics A. For transport parameters we use
the values of (4-methoxybenzylidene-4'-buty-
laniline) (MBBA)." Since the layers in smectics
A are stiffer than those in cholesterics, the elas-
tic energy -

X~~
k'„ is much greater in smectics A

than in cholesterics (y~~-q,'). Therefore, the in-
fluence of a magnetic field (+y, H'k,') is compared
'to & ~

k } less important for smectics A.
We first discuss the stationary instability. The

adjacent critical value of the transverse wave vec-
tor k;=v 8 v/d is given by the first equation of
(5.6). Its value depends on the magnetic-field
strength. One can roughly distinguish three dom-
ains (cf. Fig. 5} for stabilizing magnetic fields

%iX ii

, for small fields,2K'

, for intermediate fields, (5.14)
I, ~~~X.~ ]

1+, , for strong fields.

For cholesterics we have in the low-field regime
(k;)'= 30 v'/d' and in the intermediate regime
(H z 1 k G)(k~)' = 2 x 10'(v'/Hd') G. The saturation
regime ("strong fields" ) is reached for H & 30 kG
and (k;)'= w'/d'.

The expression (5.14) for H in intermediate fields
is in agreement with Parsons, "that for small
fields differ with respect to the exponent 3 from
Dubois-Violette's expression" (exponent —,'); the
reason is that Dubois-Violette maximized the
denominator of 8, instead of minimizing the whole
quotient. For the critical temperature difference
8ST~(5.3) the magnetic-field dependence is rather
weak.

e, (K)

10--

-- 30

I I I
I I

1 10 10 10 10 10 H(a }
FIG. 5. The transverse wave vector k~ and the critical

temperature gradient &, for the stationary instability in
cholesterics MBBA as a function of an external magnetic
field H.
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The magnetic part of the elastic energy (~,H')
is greater than the nonmagnetic part (-X ~~) only
for fields &5 kG; in that range (k~)' drops -H ' and

X,
H'( k~)'- H increases slowly with increasing mag-

netic field. For cholesterics MBBA 0, '= 16 K
constant up to roughly 1 kG, then slowly increas-
ing up to 35 K for 20 kG (Fig. 5). For smectics
A, 6, 'is too high to be observable in any stabiliz-
ing magnetic field. In order to obtain experimen-
tally relevant values for 0, ', one has to use a de-
stabilizing magnetic field, which reduces the
elastic energy. For fields in the range of 10 kG,
the elastic energy X' goes to zero and P ~', which is
proportional to X', can be made as small as necessary
for the experimental application (cf. Appendix B).

We will now turn to the oscillatory instability.
The transverse wave vector k~ is given by the
second equation of (5.6). For low fields, B= -', and
k~ = w'/2d', as in the Bernard instability in simple
fluids. For magnetic fields JI ~ 10' 6 for choles-
terics

(5.15)

and (k~)' = —,
' x 10'(w'/Hd') G. This behavior is sketched

in Fig. 6. Therefore, k~ for the oscillatory insta-
bility is much smaller than k~ for the stationary insta-
bility. This has the consequence that for the oscil-
latory instability ~x ~H'(k;)' is —for all magnetic
fields available —smaller than y ~,

(k~~)'. Therefore
8,S'[Eq. (5.4)] is roughly independent of a magnetic
field. For MBBA one finds 8,~' = —X,~a 'gz' v'/d'
= -5 K, the absolute value of which is smaller than
8 ~. For smectics 4 a large destabilizing magnetic
field is necessary to lower ]P) to experimentally
useful values (cf. Appendix B).

8CCK )

"310--

10--

10 10 10

I

10 10 H (G )

FIG. V. The critical frequency ~, for the oscillatory
instability in cholesterics MBBA as a function of an ex-
ternal magnetic field H.

The frequency belonging to the oscillatory insta-
bility &u, [Eq. (5.4)] is magnetic-field dependent
since oP, - k~. Again, two regimes are to be dis-
tinguished (Fig. 7} [cf. (5.15)]:

= 10 2 Qz2 for Q ~ $0 Q,
k m 'II

2Pp d j
(5.16)

Hz' G, for H»0' G,&IIX. II (k„vs W ) 10
p,H ( ly. l

We are now abIe to discuss what instability will
actually occur by heating from below (for choles-
terics}. Equations (5.3) and (5.4) show that ~8, ~/
I8."'l =(X»,/X,'„)(~ii(k')' —~. (6)')/(&X —~. (k:)') Is~i

=Q(fp &K, (k~)' by heating from below and Kgk'
&z, k', in any case). Taking into account the magnet-
icfield dependence of r' and (k;)' d iscussed above,
it is easily checked that Q& 1 (for any magnetic
field); only in the unrealistic limit v, ——~ (k,
—+~) Q —1+. Therefore, in cholesterics the oscil-
latory instability always occurs by heating from
below. A stability diagram for cholesterics is
given in Fig. 8.

It should be kept in mind that the differences

I10--
8,

-210--

-3'IO--

10 10 10 10 10 H tG)

FIG. 6. The transverse wave vector k~ and the critical
temperature gradient ~, for the oscillatory instability in
cholesterics MBBA as a function of an external magnetic
field &.
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FIG. 8. The stability diagram for cholesterics.
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between Smectics A and cholesterics discussed
in this section are only due to differences in the
magnitude of parameters, e.g. , the pitch (or inter-
layer distance). Therefore, for smecticlike sys-
tems with interlayer distance in the range 10"' cm
(like the pitch in cholesterics) both iristabilities
will become observable without using a destabiliz-
ing magnetic field. The differences between
smectics A and cholesterics based on their dif-
ferent hydrodyna, mic equations will be discussed
in the following section.

VI. CON VECTIVE INSTABILITIES
IN CHOLESTERICS

In Sec. V we have discussed the convective in-
stabilities in cholesterics on the basis of hydro-
dynamic equations strictly valid only for smectics
A. As already discussed (Sec. II}, there are,
however, more complicated hydrodynamic equa-
tions for cholesterics than for smectics A, due
to the lack of mirror planes and the possibility of
a distinction between left- and right-handed helices
in cholesterics. " These additional hydrodynamics
terms do not contribute to the mode spectrum ur(k)
in linear oqder, of k, but are important if external
thermodynamic forces are applied. We will now
investigate how the results of Sec. V concerning
cholesterics are changed, if these additional con-
tributions to the hydrodynamic equations, which
are represented'by the right-hand sides of Eqs.
(4,2), are taken into account. There are two
sorts of such new terms, one with the parameter
4, and one with parameters g„,, g, ; actually,
A =1 was introduced only to characterize these
terms.

Let us first concentrate on that convective in-
stability, which has already been found by Du-
bois-Violette" and Parsons" to be stationary,
and which ig discussed in Sec. VB. The &
terms, which provide a coupling of the velocity
component v and the layer displacement R [cf.
(4.3)], can easily be taken into account, by re-
placing t - g+ k', (4q', p, p, '„) '. Therefore, the criti-
cal temperature 8, of Eq. (5.1) is changed into

(6.1)

which reduces for p V, p» K
y gx to

A@~d
ag, s.k', q'-[r„+ k', (4q,'p, p'„)-'] ' (6.2)

The value of the critical wave vector k, remains
that which has already been discussed in Sec. VD.
Therefore (k')' «qo, and the new contribution in the
denominator is roughly of the same order of mag-
nitude as «2 In. the stability diagram (Fig. 8)
the curve for 8»~ and the dotted line have to be
shifted to the right at an amount Xm(4q,'po j,'„) '.

However, quite more important than this change
in the value of 8, is the fact, that by this new
term the second transverse velocity component
is no longer zero [as in (5.7)], but given by

v(r) = (2q, p, P',}' —R (r) . (6.3)

The other eigenfunctions are given by (5.7), if,
again K is replaced by f+ k,'(4q', p, j~) '.
the convection pattern is now manifestly three
dimensional, and two-dimensional rolls cannot
occur. This can easily be understood by the
physical meaning of these new terms. They des-
cribe the connection between a translation along
P(= e,) (described by R) with a rotation about P
(described by Vp- V„v) of the helices. Thus,
both transverse velocity components are involved
prohibiting any two-dimensional Qow pattern.
It is obvious in Eq. (6.3), that v(r) is maximal or
minimal, where R(r) and therefore so(r) [and u(r)]
are zero and vice versa.

In order to include the g terms we have to redo
the linear stability analysis of Sec. VA. The re-
sulting formulas are very complicated and we will
not write the general expressions. However, al-
though we do not know the numerical value of
g, =g~~ -g~, we can assume that gqok, ~&1, since
otherwise the gradient expansion which underlies
the hydrodynamic equation, would break down.
Therefore, we expand our results in the small
quantity g, qok~~ . In that case the threshold-gra-
dient temperature 8, is changed from its value
(6.1) or (6.3) only by an additional contribution

(g, q,k~~)' which can be neglected. The most
striking new effect, however, is the occurrence
of a critical frequency &u, w 0 with (in linear order
of 8'~ qo+ii)

W

k'(~'+ «'- "kg+ ( +~ ) (~X & +k po ~ )
o k o

+ g'p'„($4+ k'gy')+, ~(p,'+ K'k')
4q~n, )

(6.4)

where e, is given by (6.1). For j'k ', p, ,»P, fX, 2, &u, (k) simplifies to
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c 2

4J (0 ) = —g~ kf( K
Il g

(6.5)

Therefore, the "stationary" instability obtained by
Refs 18 and 19 and discussed in Sec. V B is not
stationary. We stress here that this nonstationary
behavior is obtained, although we have neglected
(as in Secs. IV and V) the temperature dependence
of the pitch. The mechanism involved has, thus,
nothing to do with a nonuniform pitch in the heat-
conduction state (cf. Sec. VII). The overstability
occurs, since via the g terms there is an additional
coupling between R and 20 (besides that already
present without g), which prohibits the stationary
balance between the energy dissipated and flown
in required for a stationary threshold. Although
there is no simple geometrical explanation pos-
sible for the g terms (like in the case of nematics
for the & terms""'), it can easily be seen from
Eg. (4.2) that R and gu can no longer have the same
z dependence, since A couples to w and V,zo.
Therefore, the dissipation of elastic energy (-R')
and kinetic energy (~2) can match the condition
for the onset of a stationary instability only for
distinct values of z, but not everywhere. If there
are regions (z &z,), where the dissipated energy
is smaller than that flowing in, and other regions
(z &z,), where the contrary holds, there will be a
transport of energy between these two regions. At
the true threshold this energy transfer is un-
damped and oscillatory. The characteristic fre-
quency connected with this vertical transport is
given by Eg. (6.4). It vanishes for g, -0 and

8, -0 for obvious reasons. We cannot give nume-
rical values for ~„since we do not know g, . As
an upper limit (jg, q,k2( -1) for

~
&u,

~
we can take

10 ' Hz (t, =2 h), but probably ~&u, ~
is smaller.

The eigenfunctions belonging to Eq. (6.4) are
now too complicated to give analytic expressions;
especially, by the different z dependence of R and
w (caused by the g terms) there is no single mode
[-sin n',jd)] behavior possible, even for free-free
boundary conditions. Other possible k~~ values
(+j, ) and even solutions (cos}2'~~"'z) have to be includ-
ed by numerical means, a procedure which is re-
quired for realistic boundary conditions anyway
and which is described for the case of simple
fluids in Chandrasekhar's book."

We will now discuss the influence of the specific
cholesteric terms in the hydrodynamic equations
on the oscillatory instability described in Sec. VC.
The numerical values of the critical temperature
8, and the critical frequency ~, are only little
changed (&1'fo) by the A and g terms of (4.2). We
refrain, therefore, from writing the new complicat-
ed expressions and the expressions (5.2) and (5.4)
for 8, and m, are still suitable. The main effects

of these terms specific for cholesterics are, again,
that no two-dimensional Qow pattern and no simple
mode pattern (with respect to z) can occur. The
oscillatory behavior induced by the g, terms is
however, completely eclipsed by the intrinsic
oscillatory nature of this instability. Although in
cholesterics both instabilities are oscillatory,
they are clearly distinguishable. The first ("sta-
tionary") instability occurs by heating from above
and its characteristic frequency is lower than
10 ' Hz (and vanishes for g,- 0), while the second
(oscillatory) one occurs by heating from below
with a frequency in the range of 10 ' Hz.

VII. INFLUENCE OF THE TEMPERATURE
DEPENDENCE OF THE PITCH

g Q) g + ~ ~ ~ —o ~ o -+ g Q (q 7
gg + ~ ~ ~ —e ~ ~

i &uw+ ~ ~ = ~ ~ +iI2 ((j '+q) —R
ll

-I'P+ "= —I2'((g-'+q) —R -2u2 g-& —R,
'"T+" =' " -»l~ &&p&0'x'&

(7.1)

In Sec. III we have found that in the steady heat-
conduction regime the distances between the layers
differ from their constant value in the true equili-
brium state and depend on z and on the tempera-
ture gradient applied. This "temperature depen-
dence of the pitch", which in Eq. (3.1) is described
by R" = -2z'Gd ')j2'q with q= g '+y2CqTO', is
due to a static (via the susceptibility y, ) and a
dynamic (via the dissipative transport parameter
g) cross coupling between R and T [Note, h.owever,
that the pitch of the true equilibrium state (8=0),
namely, 2~@,' is held constant like all other ma-
terial parameters (I3oussinesg approximation). ]
In Sees. IV-VI we have neglected these cross
couplings (y, =0= $). We will now discuss the
influence of y, and g on the stability of the heat-
conduction regime in smectics A and cholesterics.
Since y, and g are small parameters (which was
the reason we neglected them completely in Secs.
IV-VI), we only take into account contributions
linear in y, and $. The linear stability analysis
is then performed as in Sec. IV.

The Boussinesq approximation contains the
same assumptions as usual [cf. (4.1)]ard, in
addition, the neglection of terms proportional to
f,q. (The reversible transport parameters fj~, f2,
which are absent in linear hydrodynamics [cf.
(2.1)], are assumed to be small, at least f2, f~ & 1.
We also neglect terms -q times contributions
due to nonlinear elasticity (cf.Ref. 23).] The system
of algebraic equations for the linear deviations
from the heat-conduction state then reads
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where the ellipses denote all terms already present
for $=0=y2 and which can be found on the left-
and right-hand side of Eg. (4.2). This system of
equations allows, again, for two solutions, i.e. ,
two instabilities which correspond to the stationary
and the oscillatory instability discussed already in
Sees. V and VI without y, and E. However, with
respect to the latter, the differences in ~, and

8, caused by the $ and y, terms are so small that
we do not give explicit new formulas. Equations
(5.2) or (5.4) are, therefore, very good approxi-
mations for the ease gx 0, y2& 0. However, there
are no single mode (sin zz/d) solutions possible
and k2e 2/d; this already happened for choles-
terics by including the g terms (Sec. VI).

We therefore concentrate on that instability
which is stationary in smectics (Sees. VA, and

V B) and becomes oscillatory in cholesteries due to
the g terms (See. VI). Parsons already discussed
the influence of a nonconstant pitch in the heat-
conducting state for the stationary instability in
cholesterics (using the simplified equations strictly
valid only for smeetics A). However, he neglected
the dynamical effect (i.e., put )= 0) and took into
account the static coupling between R and T only
partially, i.e., the term Q, -y25T [cf. (2.2)], while
he omitted the thermodynamic counter term o
-y, sR/Sz Taking. into account the static and
dynamic effect, we obtain for the threshold condi-
tion in linear order,

8"'=8"(y =0=()+O(2)

&uc=I2t, p'„I2~N ' y2C,CT, '„' (lp gp+, Z, p, 4+)Z2

4 1 2 2 gz 0~I+g K P. +P0
2 cpoi

(7.2)+ (o,(g,)A'+ O(2)

with

z c $2[)2 + Al(g~2 z QJ2j + F2~2 ($4+ $2/~2)
dp o

0

2 ~2

+ (A'z2+ j)(pe'j+, k 4p2, 'p, ) +A' '2X (j;+I22z2)
4q0P0

The critical temperature gradient 82~(y2= 0= g) is
given for smectics A. by (5.1) and for cholesteries
by (6.1), since 8, is changed only in quadratic order
of y, and g. The instability is now oscillatory even
for smectics A. In the formula (7.2) for the criti-
cal frequency, A' is zero or one for smectics A
and cholesterics, respectively. The term A'&u, (g,)
denotes the frequency due to the g term in choles-
terics and is given by (6.4). The neglected terms
O(2) are proportional to y2„y2$, p, f,y„f, g, g'„

g, y„and g, $. For P'I,2 ', j,'„»iP, gp, Eg. (7.2)
reduces to

2

(y,C, T, 'z'+ (X') -A'g. g,I2„PP
(Xgg sciiu'

'

(7.3)

Note that neither the sign of y, and ( nor the sign
of g, is fixed. Therefore, for cholesterics, the
new frequency contributions due to y, and $ have
to be compared with that due to g, which was dis-
cussed in Sec. VI. There are no exact data on y2
or g available. By very rough estimates, 22 one
is lead to e, (y„g) & 10 '-10 ' Hz or smaller. For
cholesterics this frequency may have the same
order of magnitude as &uc(g,). In any case, this
frequency seems to be considerably smaller than
the frequency of the oscillatory instability ob-
tained by heating from below.

The mechanism leading to the oscillatory be-
havior was already described by Parsons" as far
as it is rela, ted to the nonconstant pitch in the
heat-conduction regime. But only parts of &,
(7.2) stem from R"c -q8/d, namely, (u, -q(8, /d)
x (i@+gp, z, P4). There are, however, further
contributions ~, -y2g28, /d and ~, - —.)y2, which
are present even if R"c= 0, q= 0 or y2Cct = -T,$.
The nonstationary behavior due to these terms
arises —like in the case of the g terms (cf. Sec.
VI)—from a different z dependence of kinetic
and elastic energy due to simultaneous couplings
of R and BR/sz to m and vice versa. A single
mode behavior is impossible with these couplings
(even for smectics A) and analytic formulas for
the eigenfunctions cannot be given (even for smec-
tics A).

VIII. CONCLUSIONS

As it has become obvious recently it is now pos-
sible to produce monodomain cholesteric and
smectic A liquid crystals of approximately 1-cm
thickness. Therefore, the study of hydrodynamic
instabilities of these types of liquid crystals
comes now into experimental reach. In the pres-
ent paper we have investigated the convective
instabilities of smectic A and cholesteric liquid
crystals, theoretically.

For smectics A we have found a stationary and
an oscillatory instability which have not been dis-
cussed previously. When typical values for the
interlayer distance are inserted into the expres-
sions for the critical temperature difference andfor
the critical frequency we find that both instabil-
ities are out of experimenta, l reach for any stabil-
izing external magnetic field because of-the very
large elastic energy of smectic liquid crystals.

o overcome this difficulty one has to apply a
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large destabilizing magnetic field of order 10 kG
in order to weaken the stiffness of the smectic
layers, i.e., one must approach the Helfrich-
Hurault instability. If one is interested in the in-
vestigation of smecticlike systems with large in-
terlayer distance (comparable to the pitch of
cholesteric liquid crystals) it will be possible to
observe both types of instabilities in experiments.

The same is true for smectic-C liquid crystals.
For these it is straightforward but somewhat ted-
ious to carry out the analogous considerations as
for smectics A. Because the corresponding ex-
pressions for the critical temperature differences
and for the critical frequency look rather unwieldy
we have refrained from writing them explicitly.
Concerning the cholesteric liquid crystals it seems
very important to note that there exists a sta-
tionary instability only in the simplest approxima-
tion. In this case we obtain results generalizing
those of Dubois-Violette and Parsons. Further-
more we predict the occurrence of an intrinsically
oscillatory instability which was not considered
before. When compared with nematics where both

types of instabilities have already been observed
experimentally, it seems important to note that
the mechanisms of the instabilities for choles-
terics are completely different from those of ne-
matics, due to the different orders of magnitude
of the elastic energy and due to the fact that we
have to face a broken translational symmetry in
cholesterics compared to a broken orientational
symmetry in nematics.

'The threshold conditions for both the oscillatory
and the stationary instability in cholesterics
(and smectics) are reobtained by energy-balance
considerations, i.e. , if the energy fed into the
system by the external force is compensated for
by the dissipated energy. If the planar texture is
heated from below we always find (for all ~, ) the
oscillatory instability, contrary to the case of
nematics, where the type of instability (oscillatory
or stationary) depends on the magnitude and sign

of z, . When heating from above the stationary in-
stability is clearly only present for &,) PX'ki'.
The results have been supplemented by a discus-
sion of the dependence of the transversal critical
vector, the critical temperature difference, and
the critical frequency on the magnitude of a sta-
bilizing external magnetic field. Contrary to the
case of nematics the critical frequency does not
vanish for large magnetic fields but reaches a
finite value. If the g, terms and the Lubensky
term are included in the description, there exists
no true two-dimensional flow pattern and a three-
dimensional structure occurs. (Of course its
beyond the scope of a linearized theory to make
predictions for the flow patterns occurring well
above the critical temperature difference. ) In
addition, the stationary instability changes into
an instability with a probably small but finite fre-
quency ~, proportional to g, . 'This means that
no true stationary instability occurs in cholesteric
liquid crystals (contrary to the case of nematics).

The inclusion of a temperature-dependent pitch
leads to a heat-conduction state which depends
on the coordinate along which the temperature
gradient is applied. This dependence is due to a
dynamic and a static coupling between the dis-
placement vector and the temperature. It seems
worthwhile to mention that these additional cross-
coupling coefficients are typical for systems
with broken translational symmetry (smectics A
and cholesterics) and do not occur for systems
with broken orientational symmetries like nema-
tics.

'These additional couplings lead to further con-
tributions to the critical temperature differences
and the critical frequency for cholesterics and

change the stationary instability of smectics to
an oscillatory one. To summarize, it seems to
be very interesting to test the presented predic-
tions experimentally and to get further informa-
tion on the unknown phenomenological parameters
involved.

APPENDIX A: INCLUSION OF FLUCTUATIONS OF THE PREFERRED AXIS

As long as one regards the preferred axis P as completely fixed, only longitudinal gradients of A occur.
Fluctuations of the axis p show up in transverse gradients of R (i.e. , 5p, = V", R). Since e --(V, 5p, )'
(homogeneous rotations of p do not change the energy»' ), these transverse gradients of R are of higher
order in the gradient expansion. In Secs. II and III we neglected these terms in order to shorten the for-
mulas. In Sec. IV we introduced the effect of fluctuating p in an ad hoc manner by writing X'= ~ ~ Ek~ in
(4.2). We will here justify the. inclusion of the Zk,' term.

The basic hydrodynamic equations (2.1) have to be amended by the following expressions' »:

1—g;+ ~ ~ ~ +V~ 5; V»g»~+ $~»V»V;R+ (»~V»V~R+ C;~ +g(~qo+f;P V»V P»
= ~ ~ ~,t 4g 2/0

8—R+ ~ ~ ~ = ~ ~ ~ -4V V Pet m kmt

(A1)
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where the ellipses denote the expressions already
given in (2.1). The thermodynamic force g;i is
given by

&i y
= (K5i'Pr'~+ K'5i'aP y4) Vr V~ft . (A2)

Expressed by Franck elastic constants Z
= 8(K,+ 3K,) and K'='-,'K, for cholesterics" and
K=K„K'=K, for smectics A. Note that X„=qgf,
in cholesterics.

The heat-conduction state (3.1) is unaltered and

in addition to (3.2) there is

yac(&} 0 (A3}

For the linear deviations from the heat-conduction
state one obtains in addition to the expressions
(~ ~ ~ ) already present:

po~+' ' ' '+E ~R qxii K ~R+qog(i E ~R

1 B
p v+ ~ — —~'R= ~ ~,

2qo Bg

B .ypP+ ~ ~ ~ +q g —K"R= ~ ~ ~
~ B.

"
(A4)

R+ ~ ~ ~ = ~ ~ ~ —fK'~R,

with

B' ,
B'

K'~=K 4+%'
Bx Bx Bz

'

After Fourier transformation, all these terms
can be incorporated in Eq. (4.2), where q is put
equal to zero by writing

)('= y'(K = 0= K')+ Kk,'+ K'k'k' (A5)

APPENDIX 8: APPLICATION OF A TRANSVERSE
MAGNETIC FIELD

In the ma, in text we allow for a static homo-
geneous external magnetic field parallel to the
preferred axis p. This magnetic field changes
the elastic energy of the layers. In our formulas
this effect is shown up in X'=P(H= 0) +Xjj'k~2
(plus or minus for smectics 4 or cholesterics,
respectively). Usually, such a field is stabil-
izing the equilibrium layer structure since X,& 0

Since P(K= 0=K') already contains X„k'„, we
neglect K'k,'k,

)
in favor of X„k'„, because q, » k~.

Thus, the inclusion of the term Ek~4 in X' in Sec.
IV (and as a consequence in Secs. V and VI) is
justified. For i)4 0 (used in Sec. VII) there is an
additional term, q(8/d}X, ,

'ik, (Kk~2+ K'k'„) in the
equation for w, which is not covered by the re-
placement (A5). However, this term can be ne-
glected against the term ik„q(8/d)R, already pres-
ent [cf. (7.1)j, since k~3«k„q', .

(X,& 0) for smectics A (cholesterics) in most
cases.

In this Appendix we will deal with a transverse
magnetic field H&P. For cholesterics. such a field
drives the system towards the nematic phase tran-
sition. " By the use of Boussinesq's approxima-
tion we have to avoid the vicinity of any phase
transition. Thus, we will discuss the case HLp
for smectics A only. For smectics A, on the
other hand, a destabilizing magnetic field (of
course, it destabilizes the equilibrium layer
structure of plane layers not the smectic phase
itself) was required, in order to reach the con-
vective instability (cf. Sec. VD). For the usual
case X,& 0, which we will assume in the following,
a field HLp' acts as a destabilizer.

The transverse field introduces a second pre-
ferred direction perpendicu ar to p(= e,), i.e. ,

8/~ H
~

= e„. Thus, we can no longer put 8/Sy = 0
(or k, =0 (or k, =0) by symmetry. We have to re-
peat the linear stability analysis of Secs. II-V
with k„4 0 and with the magnetic-field dependence
of p, different from that of Eq. (2.2):

Qi= Q~(H= 0) -g, H2 —.2BR
Bz

The heat-conduction state is unchanged and given
by (3.3). The algebraic system of equations for
linear deviations from the heat-conduction state
is as given by Eq. (4.2) (A. = O=g~=g„ for smectics
A), except for the following changes:

i~v+ p,'v+ik„+(p, , ——p, )k,k, iv= 0,
Po

X'=y, k'-g, H'k'+K(k'+ k')'

k'= k'
II gP

k~2= k~2+ k„.
We have neglected thereby, the possible splitting
of the transverse components of the material pa-
rameters, e.g. , g~ into x and y components, the
difference between which, e.g. , y„—q, would be
prppprtipnal tp H .

The threshold conditions for the two instabil-
ities are the same as given by (5.1) and (5.2) if
one replaces there X', k(, kJ by their new expres-
sions (82}. The main difference to the case of a
stabilizing magnetic field now shows up in the
magnetic-field dependence of the critical trans-
verse wave vectors. For fields H&10' and 10' Q
for the stationary and oscillatory instability, re-
spectively, there is no field dependence at all.
Thus, k„' and k,' are equivalent by symmetry and
without loss of generality k;= 0, k„'= k) with (for
STI)& (ki ) = (g ~~ iiiid /2Kj ii K) 7I' /d = 7 x 10' x (ii'/d')
[cf. (5.14)j and (for OSI), (k;)'= -', w'/d'.
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If H cannot be neglected in the formulas (5.1) and

(5.2) and (B2), i.e. , if H& 10'G for STI and &10'G
for OSI, the transverse wave vectors k„and k, are
clearly distinguishable. The minimum of 8 is ob-
tained for k„'= O and

II2
(k')'= —'— (STI) (B2)

and
H2

(k'„) =2 ' — (OSI).
2 P'Kg+%

Therefore, (k'„)' increases, if the destabilizing
field increases. This is easily understood, since
the elastic energy is lowered in that case, which
reflects in undulations of the layers on a shorter
length scale. For (k')'=0 the two-dimensional
convection rolls (cf. Secs. V B and VC) are still

eigenfunctions at the threshold.
By the strong magnetic-field dependence of (k;)'

the numerical values of the critical temperature
gradients 8, ' and 8, ' will also depend heavily on
H. For small H, [8,T'~ and

( 8, '~ are outside any
practical range. Qnly for magnetic fields, for
which'„m'/d'+17(k") =X~'(k„')', will there be small
enough temperature gradients 8,. That reg™~s

obtained for H= 1O kG. If p' is chosen so that X'
= 0 exactly, then 9,T'= 0 and no longer describes
a convective instability, but the mell-known
Helfrich-Hurault transition""'" (since T= 0,
w=v =u =0, H~0). For the oscillatory instability
"'=0(H=10 kG) means that

2 2
6tosx ~ X~0 &~i ~1+ ~2 ~s 4

&gp 2d 2+~ v3
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