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It is shown that the Boltzmann equation for isotropic scattering of Maxwell molecules, considered by Bobylev,
Krook, and Wu (BKWj, can be written in the form of an energy-space kinetic equation. A transformation leads to a
new class of kinetic models, possessing exact solutions of the BKW type.
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f(v, t) is the velocity distribution function (dimen-
sionless units), 8 is the scattering angle for the
collision (v) + (») - (v') + (» '), d 0 = sin8 dp d8, and
@ (cos8) represents the collision frequency, equal
to the product of the relation velocity g=- ~v —»~
and the differential cross section. For Maxwell
molecules (p-1/y'), h is independent of g, but

depends upon 0. The BKW mode, which displays
the approach. to equilibrium for a class of initial
conditions in the form of (2), was first obtained"
for "pse'udo-Mmovell" molecules for which g is
equal to unity, in wh. ich case X =~6. Although it
was later shown" that (2) and (3) also holds for
a general& (cos8) (in which case x depends upon
Lt) and thus for the true Maxwell molecules, we
will consider only the pseudo-Maxwell molecules
in this paper, and by the BKW model we will al-
ways mean a system of such molecules. Note
that a constant value of h. does not follow from
any known intermolecular potential.

Following the discovery of (2) and (3), Tjon and
Wu (TW) (Ref. 5) devised a soluble kinetic model,
described by the simplified kinetic equation

I. INTRODUCTION

Several years ago, Bobylev' and Krook and Wu'

(BKW) independently discovered that the Boltz-
mann equation (BE) for a spatially uniform system
of Maxwell molecules,

= —'I dft dwk(cos8) ff(v', t)f (w', t)
~t 4~ ~

—f(v, t)f(w, t)],

(l)
has an exact, nonequilibrium solution (the "BKW
mode" ) given by

where F(x, t) is the energy distribution function,
related to f(v, t) by

F(x, t) = 4vv f(v, t), x = v'/2. (5)

where
(6)

For al1. d, these models possess a general. ized
BKW-mode solution. Other kinetic models, also
defined by an equation of the form of (6), with
the corresponding expressions for A", have been
considered by Ernst and Hendriks, ' and Futcher
and Hoare. Note that these models are also re-
lated to an earlier model considered by Kac.'

As reported in a recent letter, " I have found
a new class of kinetic models that exhibit BKW-
mode solutions. This class can be thought of as a
d-dimensional general. ization of the BKW model,
giving the latter for d = 3 and the TW model for
d=2. I wrote the kinetic equations for this new
class in the following general form

3F(x, t)
dy 8(y, t) dz F(z, t)t (y, z;x)

0 0

This model is intimately related to the BKW mod-
el, as we will discuss below. Equation (4) is ap-
parently of a much simpler form than the BE, (l),
and has proven to be advantageous for numerical
calculations. ' Tjon and Wu showed that (4) can
be interpreted physically as the kinetic equation
for a spatially uniform, two-dimensional system
of Maxwell molecules that scatter diffusively,
such that momentum is not conserved. Ernst'
generalized the TW diffusive-scattering argument
to d dimensions, to yield a whole class of models,
characterized by the kinetic equation

& F(x, t)
dy(F(y, t)F(( -y, t)&(x, y; $)

x 0

-F(x, t)i (g-x, t)f'(y, x; ~)],

SF(x, t) +F(x, t) = J — dy F(y, t)F(& y, t), —

(4)
—)"(x, )) f d) F(), t) f dz )'(x, y;z), (8)

0 0
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with each model characterized by an explicit ex-
pression for P. The purpose of this paper is to
give a detailed derivation and discussion of this
result.

H. THE KINETIC EQUATION

The first term on the BHS of (8) represents the
gain inF(x, t) duetoallcollisions (y)+ (z)- (x)+ (y+z
—x}, and the second term represents the loss due to
all collisions (x)+ (y)- (z)+ (x+ y-z). P(y, z; x)
is the collision rate for (y)+ (z)- (x)+ (y+z -x)
and characterizes the particular model being con-
sidered. Identity of the particles implies that P
has the symmetries

Equation (13}implies that M, (the total mass) is
constant, and by virtue of (9b), that M, (the total
energy) is also constant. We assume that the
units of f and x are chosen such that M, = 1 for
all models, while the value of 3f, will depend upon
the model. Following the conventions in the liter-

TW 8KWature, , we take M& —1 M f 2.
Equation (8}, much like Eq. (6), is of a very

general form, containing most features of the BE
of uniform systems, including binary collisions,
and the Stossahlansatz. However, since the direc-
tion of the velocity does not appear, momentum
conservation is not necessarily observed, and thus
(8) describes the inelastic models mentioned above
as well as models that derive from the usual BE.
In Sec. III, we show that the BE for the BEGS Inodel
can be written in the form of (8).

P(y, z;x) = P(z, y;x),

P(y, z;x) =P(y, z;y+z -x),

(9a)

III. P(y, z;x) FOR THE gK~ MODEL

and conservation of energy implies that P(y, z; x) = 0
whenever x& (y+z). P also has an inverse col-
lision symmetry, which will be discussed later.

For example, for the class of models of Ernst,
P is given by

I( / ) MBKw
/ )M„ (14)

Krook and Wu' showed that the moments in their
model, MB~, when renormalized according to

P(y, z, x)=~(x, y, y+z), x&(y+z)

and for the TW model, we have simply

(10}
satisfy the equation

dt
' " n+1,.„„ (15)

1
0&x& (y+z)

P (y, z;x) =

0, x& (y+z).

Here, P versus x is a step function, which implies
that particles come out of collisions so that all
allowed energies are equally probable.

It follows from (8) that in general the moments
M„, defined by

r P(y, z; x) dx= 1,
0

(18)

then (13) becomes

where the sum is over all 0& j &n, with j=n —z.
If we assume that F(x, t) for this model satisfies
an equation in the form of (8), it follows that M „
also satisfy an equation in the form of (13). If
we further assume that

dd. (t)=- f d" F(x, ))dx,
0

satisfy the equation

dy F(y, t)
0

(12) d MBKW
+ u„' =

~i dyF(y, t)
0

dzd(z, )) I dodd'(y, z;x).
0 0

dz F(z, t) dx P(y, z;x)
0 0

[x"—-'(y~ ~ z~)~ .(13)
Comparing (15) and (17), and making use of (12)
and (14), we deduce

dy F(y, t) dzF(z, t)x"P(y, z;x) = P dy F(y, t) dz F(z, t)y'z'.~~ ~~ ~

I (n+ 3/2) I"(3/2) 1
0 0 n+ 1 0



918 ROBERT M. ZIFF

Since F(x, t) is an arbitrary function of x (at a
given t), it follows that

x"P(y, z; x) dxn t~

tt

0

Here and in the following expressions of this kind,
-we assume y & z; when y & g, y and g should be
interchanged in the expressions on the BHS.

Thus, we have cast the BE for the BKW model
in the form of (8), which entails only two integra-
tions rather than the BE's five. Note that P' ~
as a function of x is symmetric about x=(y+z)/2,
as is required by (9b), and has the interesting
property that it is constant in the mid-range,
y&x&z.

IV. THE GENERATING MODEL

Other kinetic models can conceivably be con-
structed by choosing alternative expressions for
P, consistent with (9). As one possibility, sug-
gested by some of the features of PB", we consid-
er a model in which P is given by

0, 0& x&y

1
P*(y,z;x)=(, y&x&z

8 —y

(20)x) z;

We call the kinetic model defined by (20) the "gen-
erating model", for reasons that will be apparent
later. In this model, the energies of the outgoing
particles are restricted to lie in an interval bound-
ed by the energies of the incoming particles. To
calculate the moment equation, we note that

J t
+n+1 n+1~

x "a+(y,z;x) =
0

' ' h -yl n+1

1„„Zy'", (21)

and assuming that M0: 1 lt follows that the mo-

r(n+3/2)r(3/2) ~ y'z'
n+ I;~„p(i+3/2) I(1+3/2) (18}

which is consistent with the assumption (16). In

the Appendix, we show that (18) may be inverted
to yield the following explicit expression for P

~
X/2

arcsin ~, 0&x&yy+gj

1 X/2

p'~(y, z;x)= (arcsin y, y&x&z
yg y+g

arcsin 1—x '/' z&x&(y+z).
y+z

(19)

ments of this model, AP„', satisfy (15}without re-
normalization of the moments.

Besides being satisfied by M„K', renormalized
according to (14}, Eq. (15) is also satisfied by the
moments of the TV'f model, ~~, when renorma-
lized according to

M*„=M'„w/n!. (22)

( )1/2 1/2 (23)

RKW(xt x
( )/, .

x
(24)

Similarly, using (14) and (22), we can derive rela-
tions between solutions of the generating model,

and F and F" as follows.

e 'F'"(x, t)dx= gn=o

-s "~*„
n=0

oo
1

F*(z, t) dz
&0 1+ZS

This implies that

dxe"'JI dzF*(z t) 'e x/z

0 0

(25)

(26)

In the same way, we find

F (x, t) = F*(z, t)z "'e *'dz.mew

0
(27)

The two transformations above are essential. ly
Laplace transforms, and thus can be formally
inverted. Because the model defined by (20) gen-
erates solutions to both the TW and BK% models,
and because we will find that it lies at the base
of a whole class of models, we call it the generat-
ing model.

Equation (27) is identical to a transformation
considered by Alexanian, "in which F*(z, t) is
interpreted as a "temperature" distribution func-
tion. This interpretation is motivated by the fact
that (2V) is formally equivalent to a superposition
of equilibrium distributions 2(x/m)' 'z '/'e " * at
temperature z. Alexanian derived a kinetic equa-
tionfor F*, Eqs. (2} and(3) in Ref. 13, which

It is through this link that the TW and BIQV models
are related; Barnsley and Turchetti" have shown
that any solution of one model can be transformed
into a solution of the others, as follows
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is equivalent to (8) and (20) above, although of a
much different form.

The equilibrium distribution for this model, F pqp

can be found from (15). Setting

dt's„'/dt

= 0, and
assuming ~0 = I*, = 1, it fallows that M„*= 1 for
all n, implying that"

BKW mode:

x 'e *t" (1-a
E& '(x, t) = „(a-m+&na)+ x] . (33)I'ma '

k a

The moments of this class are related to those
of the generating model by

F +„(x)= 5(x-1). (28) I& & =[r(n+m)ir(m)]i!f„*. (34)

Evidently, the restriction that P* imposes on the
outgoing particles causes the distribution function
to sharpen and eventually turn into a 5 function,
at which time all the particles will have the same
energy or speed. From the point of view of the
temperature distribution interpretation of I'*,
Eq. (28) states that a uniform temperature has
been achieved.

Using the expression for the moments that cor-
respond to the BKW mode, '

M„=a" '[a+ n(1- a)], (29)

with a(t) given by (3), we find the exact solution
(also given by Alexanian")

8
F*(x, t) = 5(x -a) —(l.-a)—5(x -a).

~x
(30)

Note that (2) can be recovered through the use
of (27). Besides being singular, (30) is negative
at x=a (for all finite t) and therefore is unphysical
as a distribution function. As t increases, the
coincident singular functions in the two terms of
(30) move towards x = 1; at t = ~, the second term
vanishes and (28) follows.

Even though this model exhibits singular behav-
ior, it might prove useful for numerical studies,
similar to those done on the TW model. ' The
advantage of this model is that the distribution
function does not spread in energy space as time
increases, thus el, iminating the need to impose
numerical. cutoffs.

V. A NEW CLASS OF MODELS

The major significance of the generating model
is that it can be used to create new models. We
observe that (23) and (24) can both be obtained
from the transformation

&&o

P"(x t)= —, F*(z t)z e-'dz
r(m) &,

(31)

I"& '(x) =x 'e "/r(m)

and using (30) we find the generalization of the

(32)

with m= 1 and m= —,', respectively. Equation (31)
defines'an infinite class of models for all m& 0,
of which the TW and BKW models are special
cases.

From (28) a'nd (31) we find that the general equil-
ibrium distribution is given by

(36)

where q( ~ is a form of the incomplete beta function
given by

14

q' '(u) = (m —1) [v(1-v)] 'dv.
0

(37)

For ~ integral, q( ) is a simple polynomial in u.
For gyes nonintegral, we have the expansion

q&m& (u
u 'r(m) ~ (-u)'r(i+m —2) sin(m —1+i)&&

&T ' 0 i!(m —1+ i)

(38)

Explicit expressions of q' ' for m=-,', 1, —,', 2, 2,
and 3 are given in Table I. Note that the results
for m=1 and m=-,' agree with (11) and (20). Plots
of the corresponding P' ) are given in Fig. 1. For
example, P"' is in the form of a trapezoid.
goes to ~ at x = 0 and x = (y+ z), and the resulting

I

increased production of particles at zero energy
leads to an equilibrium distribution given by (32),
which becomes infinite as x- ~. .Note that for
0& m& 1, the lower limit of the integral in (37)
cannot be zero but must be adjusted (or the con-
stant of integration chosen) so that the normaliza-
tion (16) is satisfied. The expression of q&'t'&

given in Table I is consistent. with this require-
ment.

As &pe increases, it can be seen from Fig. 1 that
&& )- 0 in the shoulder regions, 0&x&y and y &x
& (y+ z). In the mid-range, y & x& z, where y & &

To complete the description of these models,
the corresponding P' ' must be found. Mimicking
the derivation of (19), we find

J x
"P& '(y, z;x) dx

0

r(m)r(m+n) p y'z'
n+I,.„„r(m+i)I'(m+ j) '

In the Appendix, we show that (35) may be inverted
to yield the following expression for p~ ):

q' &i, 0&x&y( x
Iy+z '

P'"&&X «& = „, &&q'&~~ ), y& x«(y+z) ' t y

(yz) ~y+z

q' &i1-, z&x&(y+z)()I' x
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TABLE E. Some explicit expression for q ~(u).

q(teal) (u)

2u
[u(1- u)1~~2

Equation (40), which is a generalization of the
series expansions that have been given for the
BEGV model' and the T% model. ,

"may be proven
in the following way: It follows from (40) and the
orthogonality of I.'„'(x) that

arcsinv u

(-1)"r(m)n! "d &.&(,) ...)( ) (41)

3 {arcsiny(« —(1—2u) [u(1 —«))~~2}
8

u u3"

By virtue of (31), we may also write c„as

c„= x —& "I'*x,t dx.
0

(42)

F*(x,t) = lim mF' '(mx, t) (39)

is a solution of the generating model.
Ernst and Hendrik' have shown that a solution

of the P( ' model can be written as a series of
generalized Laguerre polynomials,

is a constant, P' & must therefore approach the
value 1/(z -y) as m-~, by virtue of the normali-
zation, (16). Thus, the generating model P* rep-
resents the infinite-m limit of the class P'"&[which
can also be proven directly from (36} and (37)]
suggesting that the kernel in the integral transfor-
mation (31) should become 5(z —x) when m-~.
However, the latter does not follow, because the
units of I' &, defined such that ~g~'= gyes, are in-
consistent with the units of p*, for which I*,= 1.
If we rescale the units so that M', ' = 1, implying
that F'"'(x, t) is replaced by mF' '(mx, t), then in-
deed the kernel in (31) becomes 6(z —x). This
means that for any solution F' '(x, t) of (36),

Using (42), a direct calculation of Bc„/st along
the lines of (20) may be made, and (15) follows.

Note that the above relation (42) was introduced
by Alexanian" in connection with his representa-
tion of F*(x,t},

F*(x, t) = g ", — ()(l-x).c„(t)
n=0

(43)

f' '(x, t) = r(m)x' F' '(x, t), (44)

Although it can be verified from (43} that (42} is
identically satisfied for each z, this clearly does
not converge to F*(x,t) since each term is always
zero for x~ l. Thus, the term-by-term applica-
tions of (31) to (43}, and (39) to (40), which appear
to show the equivalence of (40) and (43), are not
valid in this case.

Besides being related to Fy through (31), a solu-
tion I" ' of the model P' ) is related to a solution
p'(™+1'of t;he model P( +" through a simple trans-
formation. From (31), it follows directly that the

f& '(x, t), defined by

F' '(x, t) = F',",'(x) g c„(t)(-1)"I,' "(x)
n=O

where coefficients c„(t) satisfy an equation that is
identical to the Krook-Wu moment equation, (15).

are interrelated by

f'"'(y, y)= I &t *"(y, y)yy,

sf "&(x,t)
~x

(45)

(46)

P(y, z;X)
m" 3
m= 5/2

m = 3/2

More generally, we have

, ( )
1 "&tzf( &(z t)
( ) ( )1-() (47)

I

y+2
m=l

m = I/2

which includes (23), taking m = —', and 5 = -', .
It can be shown that these kinetic models satisfy

an II theorem. Besides the symmetries of P listed
in (9}, we need an inverse-collision symmetry
of the form

0
0 y+Z

P& )(y, (-y;x) =P("&(x, ] -x;y}. (48}

I"lo. 1. I (y, z; &) plotted as a fUnction of x, for
y/(y+ z) = 0.3 for the class of models given by (36).

The P' ' we have found do not in general satisfy
this relation, but by inspection of (36), it can be
seen that
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P'"'(y, z;x) —= (yz)™1P™(y,z;x) (49) (50)

satisfies (38). Note that Futcher and Hoare' intro-
duce this symmetry on the basis of the require-
ment of detailed balance in equilibrium. Consid-
ering an 8 function given by

and using (8) and the various symmetry properties
of P, we find

d( J dy Jt dz P( '(y, $-7~x)[F(y)F($ —y) —5'(x)F($-x))pnF(y)F((-y) —lnF(x)F(( —x
dt . 40 p 0

&p

)1

(51)

where F(x) = xl ™—F' '(x, t). This proves the mono-
tonic approach to the equilibrium distribution.

VI. CONCLUSIONS

Our new class of soluble kinetic models has been
characterized by a kinetic equation in the form
of (8) with P' '(y, zx) given by (36). These mod-
els, which are a kind of generalization of the
model of BKW, each possess an exact solution,
related to the BIGV mode, and thus show explicitly
the approach to equilibrium.

The mathematical basis of this new class was
the generating model, whose kinetic equation is
given by (8) with the particularly simple expres-
sion P(' given by (20). The link between the gen-
erating model and the new class was provided
by the integral transform, (31), and the corre-
sponding moment relation, (34), was used to find
an explicit expression for the P' '. Conceivably,
it should be possible to generalize this procedure
by considering other integral transforms than
the one given in (31), and thus generate still fur-
ther classes of models from P*, although the
models that can be generated from I'* are prob-
ably restricted to those that are physically re-
lated to the pseudo-Maxwell molecule. That is,
it is doubtful that more general solutions of the
BE—representing more general forms of k(g,
cos8)—can be generated this way.

The equilibrium solution, (32), is apparently
in the form of the general equilibrium distribution
of a (2m)-dimensional system, suggesting that
P( & represents the kinetic equation for some (2m)-
dimensional. model. However, the physical mean-
ing of these models for dimensionalities other
than two and three (when the TW and BKW models
are given) has not been explored. One question
to be considered is whether the new models follow
from the complete, momentum-conserving BE
with a wel. l. defined g, as does the BKW model,
or whether, like the TW model, they represent
some kind of modified kinetic equation. Note that
the solution (33) is identical in form to the BKW-
mode solution in Ernst's (2')-dimensional diffu-
sive scattering model, except that A. (t) in (3) is

given by m/2(2m+1) in Ernst's model, instead
of by ~6, given here.

In a forthcoming paper, we will present the
derivation of an explicit expression for P*(y, z; x)
for a general scattering function It (cose) and thus
for the Maxwell. molecule.
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(,~ (n+1)(-sx)"

( )
( sz) ( sz) (A1)

(=, I (m+i), , I'(m+ j)
'

By partial integration, the LHS can be written

eP( ' " -sx"
dxx sx „, I'(n+m)

(A2)

since P(™(y,z;x) = 0 for x&y+z. Using the inte-
gral representation

(-sx)" x'
Q I( )

=
( 1)

e'*(x-t) 'dt, (A3)

we can write (Al) and (A2)

APPENDIX

Derivation of (19) and (&6). We prove the gener-
al expression (36), which includes (19) as the
special case, nt=-', . Multiplying (35) by (-s)"(n+1)/
I'(n+ m), and summing over all n, we find
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t' 9+8 s~ (m ) 1'x

dx x2 ™t dte "(x—t)
0 0

= (m —1)(yz)l ™
Jl e '"(y -u) 'du

0

t= y+z

l xdf dt= dt l dx, (A5)

and on the RHS of (A4} we make the change of var-
iables (u, v)- (u, t) where t=u+v:

dM ', dg = dt dQ~
0 0 0 a

where g and b depend upon t, y, and z, and are
given by

(O, t), 0&t&y
(a, b }= (0, y), y & t & z

(t —z, y), z & t & (y+ z). (A7)

This change of variables is illustrated in Fig. 2.
Thus, (A4) can be rewritten

p$'+ z g~(m)dte" dx(x —t) ' x'
0

SV ~ ~ m-2d~ A4
0

On the LHS of (A4} we interchange the integrations, St= z

zt=y

yy

FIG. 2. The change of variables (u, v)—(t, u), where
t =u+ v.

(i) Say z & t & (y+z). According to (A7), the
limits of the integral on the RHS of (A9) are (t,
y+ z), identical to the limits of the integral on
the LHS. Since (A9) is valid for all t in this range,
it follows that

=(m-1)(yz)' "f . ae"
0

Bg = —(m —1)(yz) "[x(y+z-x)1&-m m 2

~X
(A10)

du y -u z —t+u
a

(AB)

We have, by the uniqueness of the Laplace trans-
form,

p+z g~(m))
dx(x —t}

OX )

b+z
= (m —1)(yz}' " dx(x —t)

a+z

x (y+ z —x) ', (A9)

where we have also let x= M+z on the RHS.

(ii) y&t&z. Now the limits on the RHS of (A9)
are (z, y+z). Comparing the two sides of (A9),
and using that P'"& satisfies (A10) in the range

(i), we deduce that

g p(m)
=0

BX
(A11)

g p(m)
= (m —1)(yz)" [x(y+z —x}1

~X

Integrating (A10) —(A12}, we find (36) and (37).

(iii) 0&t&y. The limits of the RHS of (A9) are
(z, z+t This time, . replacing x in the RHS of (A9)

by (y+z + t —x), and using both (A10) and (All),
we deduce
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