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Robert J. Harraeh and Ray E. Kidder
Laurence Livermore National Laboratory, Livermore, California 94550

(Received 25 August 1980)

Energy deposition (preheat) by suprathermal electrons in laser-irradiated targets is described using a model based
on Spencer's electron transport calculation. Approximate analytical, as well as numerical, solutions are found for the
specific energy deposition $d„(J/g) and fraction f of energy transmitted beyond a given depth, measured in
curvilinear ranges. Example calculations'are presented for homogeneous targets of gold, aluminum, and carbon. The
application of the model to treat multilayer composite targets is briefly considered. The parametric dependence of
these results reveal that the most significant parameter by far. is the source temperature T„of the hot or
suprathermal electrons. The predictions of the preheat model are shown to be in good agreement with experimental
data on gold and aluminum disks irradiated by Nd-glass laser pulses at the 10"W/cm' level. Included in the theory-
data comparison are predictions for these experiments based on several other simple models and large code
simulations of the experiments. Future aluminum disk experiments in which T„ is accurately measured could
provide a sensitive test for the theories.

I. INTRODUCTION

A problem of central importance in laser fusion
and laser equation-of-state (EOS) studies is target
pieheat by suprathermal electrons generated near
the critical density surface of a laser-irradiated
pellet or disk. These very penetrating electrons
run into the target ahead of the ablation shock
wave. The energy they deposit heats the target
core, degrading the implosion in the laser fusion
experiment, or deleteriously perturbing the in-
itial state in the laser EOS experiment.

This phenomenon is currently modeled in large
laser-plasma-hydrodynamics computer codes
using descriptions based on multigroup flux-lim-
ited diffusion theory, or Monte Carlo methods. It
is desirable to have a much simpler description
to gain insight into the relative importance of
different physical parameters and to expedite tar-
get design for experiments, leaving more detailed
but clostly and time-consuming large code calcu-
lations to do fine tuning on a near-optimum design.
Previous theoretical models" based on single-
group steady-state diffusion theory have had some
success in describing high g materials, e.g. ,
gold, in which electron-ion scattering is dominant.
The simple diffusion theory approximation break@
down for lower atomic numbers and for targets
which are thin compared to several mean free
paths for electron-ion scattering.

The model we present is based on a calculation
of electron transport by Spencer, ' using his mo-
ments method. After deriving the model in Sec.
II, we apply it to several specific target media in
See. III. The expressions we obtain for energy
deposition versus distance in gold, aluminum, and
carbon, representing high, medium, and low atom-
ic numbers, have a surprisingly high degree of
analytical simplicity. The predicted sensitivity of

electron energy deposition to various parameters—
laser intensity and wavelength, target thickness,
and target composition —is briefly discussed in
Sec. IV. In Sec. V we show that the results of the
model agree well with experimental data reported
for gold' ' and aluminum' targets irradiated by
Nd-glass laser pulses. Also included in the com-
parison are predictions for these experiments
based on several other simple analytical models
and numerical results derived from large compu-
ter code simulations of the experiments. The re-
sults for aluminum are shown to be especially
sensitive to the value of the hot electron source
temperature, g, , suggesting the importance of
future Al disk experiments in which T, is accur-
ately measured. In See. VI we remark on the ap-
plication of our model to describe hot electron
preheat in multilayer composite targets. Finally,
a brief summary and conclusion is given in Sec.
VII.

II. DERIVATION OF THE MODEL

The model we adopt is shown schematically in
Fig. 1. Its main features are distilled from the
following widely accepted picture of the laser-
plasma interaction process. Intense laser radia-
tion propagates through a corona of hot blow-off
plasma ablated from the target. The laser beam
is attenuated by inverse bremsstrahlung (IB) ab-
sorption as it propagates up the plasma density
gradient. Electrons heated by the IB mechanism
comprise a thermal or cool, in contrast to supra-
thermal or hot, Maxwellian distribution. A turn-
ing point is reached by a laser ray at a location
(or before, depending on the angle of incidence of
the ray) where the density of plasma-free elec-
trons equals the critical density n, (cm ')
-=10"/[X(p, m)] ', where A, is the laser wavelength.
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FjG. 1. Schematic diagram of the laser-plasma inter-
action, showing variation of target temperature and
density with position. Laser light penetrates to the
critical density surface or less, depending on the angle
of incidence 8 of a ray. The distribution of suprather-
mal electrons generated near the critical surface by
resonance absorption of laser radiation is approximated
as a plane isotropic electron source, with Maxwellian
velocity distribution characterized by a temperature T„.
Hot electrons emitted or back-scattered into the half-
space z&0 away from the target core are reQeeted back
by space-charge electric fields, ultimately depositing
their energy in the dense core along with all other hot
electrons.

Shock front
Ablation front

Of the laser energy that survives to reach the
turning point, part is reflected back through the
plasma; the remainder is absorbed by collective
or resonant effects, going into the production of
a distribution of suprathermal electrons at the
critical density surface. ' The overall fraction of
laser intensity absorbed by suprathermal elec-
tronsiswrittenasoI„whereI, =I,(t) is theincident
laser intensity(i. e. , beforeinteracting withthetar-
get). Hot electronsareemittedpredominantlyinto
the corona, downtheplasmadensity gradient, but the
creation of space-charge electric fields draws
them back into the target core where their energy
is deposited.

As indicated in Fig. 1, we assume that the crit-
ical surface plane at z =0 is an isotropic source
of hot electrons, generated with a Maxwellian dis-
tribution of velocities corresponding to a tempera-
ture T„(average electron energy 3kT„/2) which
adiabatically follows the laser intensity I,(t). An

approximate relation between the hot electron tem-
perature and laser intensity, neglecting a weak
dependence on the cool or thermal electron tem-
perature and an even weaker dependence on the
ion temperature, is'

kT, =a, (I, X')",

where I, is expressed inunits 10"W/cm', A. in
pm, kT in keV, and Qy Q2 are parameters with

drr,(v)=
(d /d), Z=mv'/2,

V

x=/r, (v).

(4)

f (v) denotes the velocity distribution of electrons
in the source plane, which we take to be Maxwel-
lian:

somewhat uncertain, slightly target-dependent val-
ues typically in the ranges 2 to 5 and 0.3 to 0.43, re-
spectively. The contribution to core heating due
to electrons emitted intothehalf-spaces &0(away
fromthecore) isassumedtoequalthecontribution
from electrons originally emitted into the core,
z &0, due to the buildup of a repelling space-
charge barrier.

The principal quantity we want to derive is the
energy deposition function Wd, (l) which specifies
the amount of electron energy deposited per unit
cross sectional area, between concentric spheri-
cal or parallel plane surfaces at z =0 ance z =L.
Throughout this paper, distances such as z and l
are expressed in units g/cm', that is, they
represent an integral of the target density over
length traversed by an electron. The z direction
is chosen to lie perpendicular to the source plane
at z = 0 and the observation plane at z = l .

For its derivation it is useful to express the
desired energy deposition function W~, (l) in the
form

W...( )=f(d)f d'vf dzB,.,(z, v),

in which t is the time, d'v=dv„dv„dv, is a three-
dimensional velocity element, / is a penetration
depth (mass per unit area), and h„p(z, v)d'v gives
the specific rate of energy deposition (energy per
sec per gram) in a plane of thickness ds at x due
to electrons having source plane velocities in the
interval (v, v+dv). The specific-energy deposi-
tion rate 8~, (z, v) can be expressed in terms of
Spencer's' dimensionless energy dissipation func-
tion J for a monoenergetic electron source. The
result is

8...(zv)d viz=,2W. ('g—„( Z, r(x)f(v)d'v—

(3)

On the right-hand side of Eq. (3), (dE/dr)„ is the
stopping power for electrons with initial velocity
v, where E is the electron kinetic energy and r
is distance in (g/cm') along the actual path of
electron motion. Zp, (x) is a dimensionless energy
dissipation function. ' Its dimensionless argument
x represents the perpendicular (z-directed) dis-
tance from the source plane z = 0 to the parallel
plane at z, normalized to the curvilinear or resid-
ual range r, =r, (v)(g/cm'):
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(6)

where m is the electron rest mass and k is
Boltzmann's constant. No is the total number of
electrons generated in the source plane per sec
per unit area. For the laser problem, we have h „„(z)dz/W,„,= 8(x,)dx, 8 (x,')dxo . (10)

z (g/cm'):

('z, (z)dz=f d) J 4zz'du(z, (z, z)dz, (9)
~ OO 0

which gives

~ of.(f )

(3/2)kT„
(7) Here, W,~ is the totaL laser fluence (energy per

unit area) absorbed in the source plane:

J (x)= )
—"'- dp, .(v)

PI (8)

Table I gives computed values of Jp, (x) for car-
bon, aluminum, and lead, for the initial energy
E = 25 keV. An important property of the J func-
tions is their insensitivity to electron energy E;
e.g. , the difference between J vs x curves foz 25
and 50 keV is negligible for our purposes. How-
ever, a very significant implicit dependence of J
on g enters through the E or v dependence of the
argument x = z/r, (v). Another convenient property
is that the J's change only slightly with P for
large Z, e.g. , the J values for gold (Z =79) are
practically the same as for lead (Z = 82).

Integrating Eq. (3) over the distribution of elec-
tron velocities, Eq. (6), and also integrating over
the full time duration of the laser pulse, we find
a relation for the total energy per gram, 8~, (z),
deposited in a plane of thickness dz at depth

where I,(t )(W/cm ) is the time-dependent incident
laser intensity and o is the fraction channeled into
hot electron production. The factor X in Eq. (3)
is a normalization constant discussed below.

The quantity Jp, (x) in Eq. (3) is a dimensionless
energy deposition function for a plane isotropic
(PI) source of electrons. Since Spencer' evaluates
J 's only for plane perpendicular (PP) and point
isotropic (PtI) sources, it is necessary to derive
Jp, . Et is easily found that

g~=o I, t dt,

and g(x) is an integral' over the Maxwellian vel-
ocity distribution, Eq. (6):

g(x, ) = — J»(x(x„y))y'e +dy,dE

0 y

where y is a dimensionless velocity variable,

y = v/(2kT„/m)') '

(12)

(13)

and the normalized distance. ,variables x and x,
are defined by

x(x., y) = z/r, (y) = x, r, (1)/r, (y),

x, = [x]„,= z /r, (1) .

That is, xo is measured in curvilinear ranges
r, (1)= r, (kT„) fo-r electrons with initial energy
kT~ or velocity (2kT„ /m)'~'. Rewriting Eq. (2)
in terms of the variable S~,p (z), we have

l

W„,(I ) = $„,(z)dz .
0

(16)

)( () f (.'.....-(z)=dz=. ZZz.
0

(17)

The normalizationof $~,(z, v) has been chosen"
to assure that conservation of energy is satisfied,
l.e. y

Carbon
Jp) (x)

Aluminum~ Lead

0.025
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2.74
2.00
1.59
1.29
1.01
0.749
0.488
0.243
0.059

5.5 x10 4

3.05
2.28
1.76
1.33
0.921
0.547
0.247
0.0671

5.2 x10
4.6 x10 6

5.15
3.36
1.49
0.43
0.073

5.2 x10 3

~10 4

TABLE l. Dimensionless energy dissipation function

Jp& for a plane isotropic source of electrons with start-
ing energy E= 25 keV.

III. RESULTS OF THE MODEL FOR C, A1, AND AU

Application of the basic equations of our model,
Eqs. (10), (12), and (16), to a specific target
medium requires knowledge of J„(x) and data on
electron stopping power dE/dr and electron range
r, as functions of starting energy E = mv'/2. Ref-
erence 11 provides accurate data on dE/dr and r,
for a wide range of materials.

Our procedure is to fit the numerical data for
these three functions by simple analytical expres-
sions valid throughout the electron energy range
of interest (about 1 to 200 keV). Then the integrals
of the model are evaluated analytically (as well
as numerically) to get expressions for h~„(z) and

w„,(I ).
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Data" on electron stopping power and range in
Au, Al, and C over the range 1 & E & 200 keV are
fairly closely approximated by expressions of the
form

and for aluminum and carbon,

(1-Bx), 0&x& B '

dE—=aE ")
dK

(18)
0 x&B-

E.
(21)

r (E) yE1+ p (19)

J p, (x) —= (4.7)e "", 0 ~ x ~ ~ (20)

where E =mv'/2 is the initial energy of the elec-
trons and a, b, and p, are constants for a given
material. Table II gives their values for C, Al,
and Au, and Fig. 2 illustrates the accuracy of Eq.
(19) for gold and aluminum.

Similarly, energy deposition functions Jp, (x)
for the three target materials, given earlier in
Table I, are represented accurately enough for
our purposes by the following analytical expres-
sions. For gold (or lead),

/

with" A=2.75, B=1.6 for Al and A=2. 2, B=1.25
for C.

Substituting the approximate analytical relations
given by Eqs. (18), (19), and (20) or (21) into Eq.
(12), we find that the integral g(x, ) takes the form

C, F(x
h

(22)

where kT~ is measured' in keV, C, is a constant
[with units(keV)" &/(g/cma), for examplej and Y

is an integral over the source velocities which de-
pends on the dimensionless depth x,. g (x,) is
measured in units of keV/g/cm'. In particular,
for gold, aluminum, and carbon, respectively:

2.34 x-10'
g(xo) ( ()ter )0,72

i( v(x,))' " e "dy

2.86x10' ",„v(x,) '" (23c)

where, in Eq. (23b) for aluminum the function
v(x, ) is given by v(x, ) = (1.6x,)' '44 and in Eq.
(23c) for carbon it is v(x, ) =(x,/0. 8)' '". The
parameter x, is given, as before, by

x, = sir, (kr„),

(26)

Numerical integration of the y integrals in Eqs.
(23a)-(23c) produces the curves for g vs xo
shown in Fig. 3. A second numerical integration

and the relationship between x„x, and the vel-
ocity- (y-) dependent curvilinear range r, (y) is

104 y ~ ~
~

y ~ I ~
$ ~ I ~ I

I
I ~ I

x =g /r, (y) =x,y-'&" »,

since, from Eqs. (13) and (19),

TABLE II. Parameters a, b, and p in the stopping
power and range-energy relations, Eqs. (18) and (19),
for carbon, aluminum, and gold, based on Hef. 11.

0
cn
L

C
4)

(g

C

10

102-

10
10 4

I ~

10 2

P

Al
~P

~
H

Au

10
~ ~ ~ I s

10

~ ~~ ~

C
Al
Au

1.3 xlp~
8.5 x104
3.4 x104

4.6 x10 6

6.77 x10 6

1.9 x10 5

0.78
0.72
0.6

a b
Material [(keV)'"/(g/cm )] [(g/cm2)/(keV)'"j p

Electron range, rp(g/crn )

FIG. 2. H,ange-energy relations for electrons in alum-
inum and gold from Ref. 11. rp is the curvilinear or
residual range measured along the path of motion. The
straight lines, corresponding to Eq. Q9) with param-
eters as given in Table II, are suitable approximations
below about 200 keV.
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g~„(l) f,'b«, (z)dz f",""g(x,)dx,
W,b, W,b, f0 8(xo)dxo

(27)

aIld

xo(l) =l/r, (kT'„) . (28)
o

X

10-'—
0-

I

O

I-

102-

10
0 05 10

(kTg, )"
(

-8Wxo

&g Y(~) '
with values of parameters from Table III.

to evaluate Jg dx, gives the desired final results
for the energy deposition shown by the points in
Fig. 4. Specifically, Fig. 4 shows the fraction f
of hot electron energy transmitted beyond a depth
x,(l), where

f = 1-[W„,(l )/-W,„j, (26)

a

10 2

1.5 2.0 2.5 3.0

~xp

FIG. 3. Variation of the integral g(xp) vs Mxp fol car-
bon, aluminum, and gold targets. The points are de-
rived from numerical integrations of Eqs. (23a)-(23c);
the straight lines are given by the equation

Though the equations of our model are not com-
plicated and their numerical solution is easily
carried out on a pocket programmable calculator,
the appeal of the model is greatly enhanced by

expressing the solutions in analytical form. %e
find that all three of the curves in Fig. 3 are
closely approximated by the functional form
y(x, ) ~exp(-p~x, ), or

8(x,)
p2 -8+go

8(x,)dx, =
0

(29)

f(l ) = (1+p Ex,(l ) )e ~ ~*0"'

= 1 —W«y (l )/Wab,

(31)

As indicated in Fig. 4, this equation agrees with
the corresponding numerical results of our model
to within 6'f~ in all three materials for f values
down to 10 ', and the error increases slowly for
greater levels of attenuation.

Equations (30) and (31) comprise the major ac-
complishment of our simple model of preheat by
suprathermal electrons. These expressions imply
that the electron energy deposition in these three
quite dissimilar materials Au, Al, and C (and
presumably others), is represented to a good ap-
proximation by a single "universal" curve, shown
in Fig. 5.

TABLE III. Parameters appearing in the exponential
approximation to P(xo) for gold, aluminum, and carbon:

AWo)
F( )C~/(kTb(keV))y

— 0

with values of the material-dependent constants
as given in Table III. Thus the specific energy
deposition is given by

p
2

h«~(l)=[Wb, /r, (kT, )] 2
exp(-pv'x, (l)) . (30)

The great utility of Eq. (29) or (30) is its easy
integrability, yielding analytical expressions for
the total transmitted and deposited energy:

-310 I . I

2 3 4 5 6 7

"o(') = '("o

FIG. 4. Fractionf of electron energy transmitted
beyond dimensionless depth xo(l ) in carbon, aluminum,
and gold. The points are obtained by numerically in-
tergrating the equations of the preheat model; the solid
curves follow the analytical approximation, Eq. (31).

Material

Au
Al
C

Y( ) C
(kev)
{g/cm2)

1.6 xl0' 0.6
2.34 x10' 0.72
2.86 x105 0.78

5.35 3.31 0.118
2.30 2.17 0.213
1.5 1.85 0.272
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FIG. 5. Universal curve f Eq. (31)) describing the
fraction of suprathermal electron energy transmitted
beyond a depth l (g/cm2) for arbitrary electron source
temperature Tz and target material parameters p, ro.

IV. PARAMETRIC DEPENDENCES

100

The model's predictions regarding sensitivity
of electron energy deposition to different parame-
ters is readily seen using Eq. (31). Laser and
target properties enter only through the product
of factors p[x,(l)]'~2= p[l/r, (kT, )]' '. As noted
earlier the electron range function r, (E) is tabu-
lated for many materials and follows the power
law given in Eg. (19) over the limit& energy re-
gion of interest. The characteristic energy value
E = kT„depends on laser intensity and wavelength
approximately as in Eg. (1). The para. meter p
varies for different target materials as indicated
in Table DI for Au, Al, and C. Interpolating be-
tween these three data points, we see in Fig. 6
that the value of p for a material of arbitrary 2

should be given roughly by

p
-=(0.59)ln(g/0. 3) .

Combining these results, we have

(32)

(0.59)ln(Z/0. 3)gl /b
P 0 =

(k )(1+P)/ 2
~A

where the constants p, and b from Eq. (19) are
identified using range-energy data, as in Table
II, and kT„ is evaluated, e.g. , using Eg. (1). By
far the dominant sensitivity is to the hot electron
temperature, with a concomitant strong depend-
ence of hot electron preheat on laser wavelength
and intensity. Specific examples are treated in
the foll. owing section.

V. COMPARISON TO EXPERIMENTAL RESULTS
AND OTHER CALCULATIONS

Data on suprathermal electron energy deposi-
tion has recently been reported for Nd-glass-
laser irradiation experiments on gold' ' and
aluminum' "disks at the 10"W/cm' intensity
level. In this section we compare this data with
the predictions of our model, other simple mod-
els, and large-code numerical simulations.

In both sets of experiments the principal diag-
nostic for inferring hot electron energy deposi-
tion (preheat) is a determination of the tempera-
ture history of the back surface of the disk by
measuring rear surface luminosity versus time
using an optical streak camera. The theory-ex-
periment comparison therefore necessitates an
equation-of-state model to determine the tem-
perature rise associated with a given amount of
preheat. We adopt a simple analytical EOS model
for multiply ionized matter due to Zeldovich and
Raizer" "to describe gold and aluminum plas-
mas in the 10 ' to 10' eV temperature range. We
find that between about 2 and 100 eV the EOS
model results are fairly well represented by the
following formulas. For gold, the specific inter-
nal energy as a function of temperature and den-
sity is given by

N
L

E
c 10—
E0

= (0.59) In (Z/0. 3)

8 —= (kT)"q„„(p,), (34)

where h is measured in k J/g, kT in Ev, and the
density-dependent coefficient q A„equals 1.4, 0.8,
and 0.5 for p, =10 ', 10 ', and 1 g/cm2, respect-
ively. Similarly for aluminum in this tempera-
ture range,

(»)'"v,
~ (p.), — (35)

1-- I I

0 1 2 3 4

FIG. 6. Variation of parameter P with atomic number
Z.

with q A&
-—12.6, 8.7, and 5.3 for p, = 10 ', 10 ',

and 1 g/cm', respectively. In the temperature
range below 2 eV, this EOS model predicts that
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the internal energy asymptotically approaches a
density-independent value given by S(kJ/g)-=(0.734)kT (eV) for gold, and h (kJ/g) =—(5.37)kT
x (eV) for aluminum.

The gold disk experiments of Rosen et al.' '
featured 2 to 25-p, m-thick disks that were irradi-
ated over a spot size roughly 180 p, m in diameter
using 800 J of Nd-glass (1.06-y. m) laser light in a
pulse of about 1-ns duration and nominal peak in-
tensity 3x10"W/cm'. Since the spot size is
large compared to the thickness, the hot electron
preheating should be one dimensional to a good
approximation. Rosen eI; a/. inferred from x-ray
measurements that 4 J out of the 800 J incident
went into hot electrons; thus the absorption par-
ameter o is estimated to be 4/800=0. 005. They
also concluded from the observed x-ray emission
spectrum that the peak value of the hot electron
temperature was kT„= 35 keV.

A comparison of data and calculations for the
gold disk experiments is shown in Table IV. Re-
sults derived using the models of Caporaso and

Wilson, ' Lee and Trainor, ' Rosen, "and the pres-
ent authors are shown along with those from
Rosen's detailed numerical simulations. " As
mentioned previously, the models of Refs. 1 and
2 are based on steady state diffusion theory.
Rosen's model consists simply of a postulated
form for the differential equation governing the
decline of electron energy with distance into the
target. The theoretical predictions are compared
both with regard to temperature and specific ener-
gy deposition at the back of the target, but only
the temperature was measured in the experiments.

The necessity of going through an EOS calcula-
tion to derive a temperature, before comparison
can be made with the data, dims the discrimina-
tion between various theoretical models of hot
electron preheat. Inaccuracies associated with a
given EOS then come into play, and part of the
discrepancy between calculated temperatures in
Table IV originates from the use of different EOS
models. Furthermore a substantial uncertainty
is associated with what density to use for the back
surface layer, since this state variable was not
measured. In most of the laser shots a kilojoule
or more per gram was deposited in this layer,
which is easily enough to vaporize the material,
producing densities of about 10 ' to 10 ' g/cm'.
For thicker targets and/or lower laser intensities
a value of p, closer' to normal density is more
appropriate.

Inspecting Table IV with these reservations in
mind, we conclude that all qf the calculations are
in reasonably close qualitative and quantitative
agreement, both with respect to each other and
the experimental data on the scale of accuracy
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set by the experimental measurements. Gener-
ally, Rosen's simulations using the laser-plasma-
hydrodynamics code LASNEX" predict a more,
severe attenuation of hot electron transport in
gold than is indicated by the models. The models
give an exponential decline of S~~ with distance,
going as exp[- b,x,(l) 2], where b, and b, are con-
stants with b, =1, —,', 5, and —', for the models of
Hosen, "ourselves, Caporaso and Wilson, and
Lee and Trainor, ' respectively. Apart from such
differences in detail, it appears that all of the cal-
culations properly account for the important gross
features of the data, e.g. , that prompt preheat by
hot electrons is very substantial for the 2-p, m
gold disk but practically negligible at 25 p,m.

In the aluminum disk experiments of Trainor and
Holmes' "the disk thickness and laser pulse dur-.
ation were kept fixed at 12.5 p, m and 0.3 ns, re-
spectively. Data were taken at two levels of inten-
sity separated by a factor of about two. The par-
ameter a was estimated to be 0.3, based on earlier
similar experiments. The hot electron tempera-
ture at the critical density surface was assumed to
be given by Eg (1) w. ith suitable values chosen for
the parameters a, and a„about which we will say
more.

Table V presents the data and compares the pre-
dictions of our model with ones reported by Lee
and Trainor' for these measurements. A couple
of extra intensity values are added to better com-
pare the calculations.

We find for these aluminum disk irradiations
that the calculated energy deposition is extremely
sensitive to the values we select for the poorly
known parameters a, and a, in the formula for g„..
The reason is that the exponent p v'x, (l) in Eq.
(30), involving the dimensionless penetration depth
x,(l) = l/r, (kT'), has quite large and intensity-

sensitive values for the 12.5-p. m-thick aluminum
disk. As Eg. (33) shows, this is principally due
to the smallness of the curvilinear range r, and
its strong dependence on hot electron tempera-
ture: r, (kT„)=6.77x10 '(kT„)'". For example,
let the exponent a, in Eg. (1) have the often quoted
value a, = 0.425, and examine the effect on 8&ep of
several diffex'ent but reasonable choices for a„
e.g. , a, = 2.6, 3.54, and 5.2; Then for the 5.1
x 10"W/cm' intensity we calculate that the specif-
ic energy deposited in the back surface layer
(assuming a =0.3) is, respectively, 11.2, 90.4,
or 530 (kJ/g). We find that our energy deposition
model and EOS model give full agreement with the
measured back surface temperatures if, for alum-
inum, the choices a, = 3.54, a, =0.425 are used in
Eq. (1). Lee and Trainor used the same a, but
set a, = 2.6. We conclude that an accurate inde-
pendent determination of g„ in the aluminum ex-
periments, as was strived for in the gold exper-
iments, would provide a critical test of different
theoretical models.

VI. MULTILAYER TARGETS

Up to this point we have assumed the target is
a single homogeneous medium, but our model can
be used to estimate hot electron preheat in the
important practical case of a multilayer compos-
ite target. To illustrate the procedure, we con-
sider the simple example of a two-layer disk
composed of a fairly transparent (to hot elec-
trons) material A, backed by a strongly scattering
material B in which we want to evaluate hot elec-
tron preheat. The semi-transparency of the front
disk may be due to its thinness or low atomic
number or both. The idea is to replace the A
layer by an equivalent thickness of B material so

/

TABLE V. Comparison of data and calculations for 12.5-pm thick aluminum disks irradiated by Nd-glass laser
pulses (0.3 ns duration, 1.06- pm wavelength).

Laser
intensity,

lo, fflIX

(10~4 W/cm')

Assumed hot
electron

temperature
k TIl(keV)

Present
model

LT
model
{Ref. 2)

Present
model~

LT
model
{Ref. 2)

Predicted total energy
deposited per gram at

rear of target by hot electrons,
g~,p (kJ/g)

Expt b Simulationd

Back surface temperature rise, kT {eV)
LT

Present model'
model' {Ref. 2)

1.0
2,0
2.7
5.1

3.72
4.99
5.69
7.43

2.73
3.67
4.17
5.46

0.052
2.08
8.22

90.4

0.295
5.03

15~

120~

1.0
4to5

0.04
0.40
0.96
4.53

&0.1
0.5
1.2
4.1

2.5

Values computed using cr= 0.3, v.
z,

——0.3 ns, l =3.375 &&10 g/cm and Iom&x, k7.'& as indicated.
" Data obtained by J.Trainer and ¹ Holmes (Ref. 13).' Values calculated assuming the density at the back surface to be po-—0.1 g/cm3.

Simulation by Y. Lee (Ref. 2) using the LAsNEx code.
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that we can deal with a target composed entirely
of B material.

The equivalence is defined in terms of the en-
ergy transmission factor f(l) [Eq. (3.1)]. The
thickness l„(g/cm') of material A is to be re-
placed by a thickness l~" of B such that hot elec-
tron energy transmission through the two are
equal, taking into account the copious backscat-
tering of electrons into A. from B. The original
composite A-B target of thickness (l„+ls) is thus
replaced by a homogeneous B"—B one of thick-
ness (ls + ls). '.Thisprocedure can be general-
ized to an arbitrary number of layers of any
materials', , B, {",. . . , first forming B"-B
from A-B, then C'"-C from (B' -B) —C,
etc. , taking into account at each step the differ-
ence in albedoes or effective electron energy re-
flection coefficients of the adjacent layers.

A relation for the energy transmission factor
f„(x„)for hot electrons through material A to
the A —B interface at depth x„ is

(1-6l,)f"'(x,)
~~(0&(2„)]. (36)

f (0&(x eff ) f (x ) (37)

Here the reQection coefficient or albedo {R~
represents the effect of electron backscattering
by the high-g material B, neglecting the albedo
of the semi-transparent A, layer. f„"' represents
the energy transmission factor for a homogeneous
target [the same quantity as in Eq. (31)]. In the
numerator of Eq. (36), f '„" is evaluated at t'h e
dimensionless thickness x„=lA/r(0A&(kT„) of the
A. layer; in the denominator it is evaluated at 2x„.
The hot-electron temperature T~ is entirely de-
termined by the A. material. The derivation of
Eq. (36) assumes that all the hot electrons crea-
ted at the surface x=0 of material A. travel
through A. (We assume that electrons initially
directed into the region x & 0 of vacuum and blow-
off plasma are turned back by a plasma sheath,
as discussed earlier. ) Some electron energy is
then deposited in medium A on the electrons first
transit to the A. —B interface. Backscattering
from medium B sends back into A a fraction S~
of the electron energy that reaches this interface.
Some of the backseattered electrons are trans-
mitted through A, , reflected by the plasma sheath,
and make a second transit to the A -B interface.
Summing over an infinite number of such trans-
missions and reflections gives Eq. (36).

The defining relation for l~ is obtained by
equating the transmission factor f„(x„)to one for
a material B of thickness xs" =- l s"/r',~'(kT, ):

Inserting for f(" and f"' the simple forms in Eq.
(31) gives an implicit equation for x ~":

(1-6t„)(1+$„)e
[1-$ (1 ~g„~' )]

where

4 PA[xA(lA)] (39a)

~
eff

P [ eff (l
eff

)]1/2 (39b)

VII. SUMMARY AND CONCLUSIONS

The model of hot electron preheat developed here
is recommended by four principal features: a
sound theoretical basis, versatility, analytical
simplicity, and reasonably good agreement with
experimental results obtained to date. Being
based on Spencer's' electron transport ealeula-
tion, it is applicable to materials of any atomic
number, not requiring validity of a diffusion ap-
proximation. Though Spencer's theory pertains to
a homogeneous medium, we have shown how the
preheat model ean be used to estimate energy
deposition in multilayer composite targets. On
the other hand, collective effects due to mutual in-
teractions of source electrons are not included in
Spencer's treatment, and therefore are missing
in our model as well.

All of the important physical quantities appear-
ing in the model, including the elect&'on energy
deposition functions b000(J/g) and WA,„(J/cm'), are
expressed in terms of simple analytical formulas,
making it easy to discern the various parametric
dependences. The most important parameter by
far is found to be the hot electron temperature,
1'~, which itself depends on laser intensity and
wavelength in a somewhat uncertain way. The
comparisons we have presented among different

As a specific example, let material 4 be a 2-
p, m-thick layer of aluminum and B be a gold layer
10-p, m thick. Further suppose that the Al front
surface is irradiated by a step-function Nd-glass
laser pulse with intensity 8.4x10" W/cm', which
gives kg~= 9.2 keV. The albedo of gold can be
approximated by the value" appropriate to a gold-
vacuum interface and plane isotropic electron
source distribution: SA„-=0.6. We then, find that
lA'0 = 10 ' (g/cm'), or lA'„'/p', ""'-=0.5 pm; i.e., —,

'
&(m

of gold is equivalent. to 2 p, m of aluminum in the
sense of Eq. (37) at this T„ level. The description
of electron energy deposition in the gold portion of
the Al-Au disk then proceeds as if it were a single-
layer gold disk.
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theoretical model results and experimental data
suggest that future experiments, especially ones
on aluminum targets in which 7'h as well as the
back-surface temperature is accurately mea-
sured, can provide a sensitive test for the pre-
heat models.

ACKNONI. EDGMENT

This work was performed under the auspices of
the U. S. Department of Energy by the Lawrence
Livermore National Laboratory under Contract
No. W-7405-ENG-48.

~G. J. Caporaso and S. S. Wilson, Lawrence Livermore
National Laboratory Report No. UCRL-83308, 1979
(unpublished).

2Y. T. Lee and R. J. Trainor, Lawrence Livermore
National Laboratory Report No.UCID-18574-79-4,
1980, pp. 34-41 (unpublished).

L. V. Spencer, National Bureau of Standards Mono-
graph 1, 1959 (unpublished).

4M. D. Rosen, Lawrence Livermore National Laboratory
Report No. UCRL-83022, 1979 (unpublished).

5M. D. Rosen, D. W. Phillion, V. C. Rupert, W. C.
Mead, W. L. Kruer, J.J. Thomson, H. N. Kornblum,
V. W. Slivinsky, G. J. Caporaso, M. J. Boyle, and
K. G. Tirsell, Phys. Fluids 22, 2020 (1979).

J. S. Pearlman and M. K. Matzen, Phys. Rev. Lett. 39,
140 (1977); K. G. Estabrook, E.J.Valeo, and W. L.
Kruer, Phys. Fluids 18, 1151 (1975); D. W. Forslund,
J. M. Kindel, K. Lee, E. L. Lindstrom, and R. L;
Morse, Phys. Rev. A 11, 679 (1975).

K. G. Estabrook and W. L. Kruer, Phys. Rev. Lett. 40,
42 (1978).

SThe product (dE/dk)„J (x) gives, for a point isotropic
source, the energy deposited in a spherical shell of
thickness dp at radius p per source electron (each
with initial energy E= mv /2), where x= p/ra(v) with

rp(v) defined by Eq. (4). For a plane isotropic or plane
perpendicular source this product specifies the energy
dissipated per unit area in a plane layer between z and
z+dz by electrons having kinetic energy E atz =0,
normalized to one electron per unit area in the source
plane.

Notice that the dependence of P(xp) on normalized pene-
tration depth x =x(y) enters only through the argument
of Jpi in the energy range of interest x (y) takes the
form x —xpy n = constant.
The appropriate choice for the normalization factor K
in Eq. (3) is

16 rn(k Ta)
%,= . ~ 4(xp)dxp,

h p

with P(xp) given by Eq. (12).
~~M. J.Berger and S. M. Seltzer, National Aeronautics

and Space Administration Report No. NASA SP-3012,
1964 (unpublished). This stopping power data pertains
to cold matter, , not warm plasmas, but we expect the
differences would have small effect on our results.

~2The coefficients in Eqs. (20) and (21) are chosen to
give both a good fit to the numerical data and to satis-
fy Spencer's (Ref. 3) relation

Jpr(x)dx

By Eqs. (18) and (19) this approximately equals
(1+V).
R. J. Trainor and N. C. Holmes, Lawrence Livermore
National Laboratory Report No. UCRL-50028-79-3,
1979, pp. 10-14 (unpublished).
Y. B.Z el'dovich and Y. P. Raizer, Physics of Shock
Waves and High-Temper ature Hydrodynamic Phenom-
ena (Academic, New York, 1966), Vol. 1, Chap. 3.

~5Zel'dovich and Raizer's EOS model requires a knowl-
edge of the ionization potential I(m) for any degree m
of ionization. For gold we use values derived from a
relativistic Hartree-Fock-Slater calculation by J.H.
Scofield private communication). Those for alumin-
um are taken from the Handbook of Chemistry and
Physics, edited by R. C. Weast (Chemical Rubber Co.,
Cleveland, 1970}, 51st edition.

~PM. D. Rosen, private communication. A description
of his model will appear in Lawrence Livermore Lab-
oratory Report No. UCRL-50021-79, 1980 (unpub-
lished).

~~G. B.Zimmerman and W. L. Kruer, Comments Plas-
ma Phys. Controlled Fusion 2, 51 (1975}.
G. J.Lockwood, G. H. Miller, and J. A. Halbleib,
IREE Trans. Nucl. Sci. NS-22, 2537 (1975).


