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Approximate scaling formula for collisianal angular-momentum mixing of Rydberg atoms
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An approximate scaling formula has been determined that permits the rapid estimation of cross sections for
angular-momentum-changing collisions of Rydberg atoms with a variety of targets, using information about low-

energy-electron scattering from the target. The formula is obtained by fitting the results of coupled-channel and
Born-approximation calculations to functions of reduced parameters. Application to Na(nd ) + He, Ne, Ar, N„CH4,
C,H, ; Rb{nf) + He, Ar, Xe; aud Xe(nfj + CO„suggests that the accuracy is about a factor of 2.

I. INTRODUCTION

Considerable attention has been devoted re-
cently to collisions involving Rydberg atoms,
especially the "/ mixing" or angular-momentum-
changing process

R*(nl)+X-R*(nl')+X, l' il
where R* is the Hydberg atom and X is the colli-

.sion partner. It has generally been argued that
one should be able to analyze this process in terms
of the cross section for low-energy-electron
scattering from X. In this paper we present a
very simple scaling formula that can be used to
estimate the cross section for reaction (1) to
about a factor of 2, starting from information
about e-X scattering. This degree of accuracy
is useful because the cross sections may vary by
as much as an order of magnitude over the range
of n considered.

The scaling formula was determined by fitting
the results of coupled-channel and Born-approxi-
mation calculations to functions of reduced para-
meters. These parameters have a reasonable
physical interpretation in terms of the "nearly
free-electron" picture. The determination of the
formula and its physical interpretation are discus-
sed in Sec. II. Section III contains the results of
calculations for several systems, including
molecular targets. The accuracy of the results
for more complicated targets suggests that their
internal structure may play only a minor role in
the collisions studied.

II. THE SCALING FORMULA

A. Determination

Our previous calculations ' of angular-momen-
tum mixing may be characterized as exact or ap-
proximate solutions of a specific, well-defined
model problem. We will begin by summarizing
this problem, and then show how one might ex-

pect to estimate the desired cross sections using
empirical functions of reduced parameters. Then
one additional approximation is introduced to tie
the model problem to the physical system involv-
ing the Rydbe rg atom and an arbitrary collision
partner.

The model problem may be posed as follows.
Consider the system Na*+X indicated in Fig. 1.
The Hydberg atom Na* has principal quantum
number n, and we consider only the initial level
l = 2 and other levels l = 3, 4, . . . , n —1. Assume

E„,-E„,=m, l=3, 4, . . . , n-1. (2)

tr, „= o(nd nl), —
"3

(4)

using the quantum-mechanical Arthurs and Dal-
garnoi3 formalism or the Born approximation as
discussed previously. ' We expect that o, „will
depend on n, A, AE, and v, the relative velocity
of Na' and X. That is,

We wish to find a functional form for 0,
Previously, we showed' that if 4E=O, the re-
sults of the Born approximation may be well fitted
by

2e'733 gE Q

We can write this in a slightly different form by
separating out a factor ttn4a,' (the so-called geo-
metrical cross section of the Hydberg atom), and

This is approximately true for sodium since the
d quantum defect 5„ is much larger than 6, for
l &2. The interaction potential is given by a
Fermi pseudopotential

V(H, r) =2ttA5(r —H).
For the present discussion, & is to be considered
an arbitrary constant. We wish to calculate
0, ,„, defined by

n-i
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FIG. 1. Schematic diagram of coordinates used to
describe the Hydberg atom and its collision partner.

making A/v dimensionless by dividing by the unit
length and velocity in atomic units:

where

52 A. '2=
m'a4 v'~'73'

e o

The constant m, is the electron mass in atomic
units. If b E 10 our previous results' suggested
that in the weak coupling limit a more general
formula could be written

v, ,„~mn'a, P'f(y),

where

(9)

n aohE
y Sv

(10)

f(y) is an approximation to the family of functions
shown in Fig. 2 of Ref. 8 that depend weakly on
the parameter n. In neglecting the dependence on
n we simplify the functional form but introduce
some ambiguity into the determination of f. Eq-
uation (9) is expected to be a reasonable approxi-
mation in the weak-coupling (small 4 or large n)
limit. We now postulate that a more general
formula can be obtained by writing

where

g(p) —Xp' as p-0. (12)
We will find later the constant X has the value
0.715. We performed a number of calculations
using the coupled-channel method and Born ap-
proximation to test the usefulness of Eq. (11).
For the situations previously considered, the
Born approximation could be applied only when n
was large, and the coupled-channel method was
feasible only when n and the number of channels
was small. However, by varying A and v, we
have been able to probe a wider region of P-y
space and still keep the number of channels small.
The results of these calculations are listed in Ta-
ble I.

It was possible to find, empirically, functions
f(y) and g(p) such that the results of the coupled-
channel and Born-approximation calculations were
approximated by Eq. (11) to about a factor of 2.
These functions are shown in Figs. 2 and 3 and
tabulated in Tables II and III.

At this point we have obtained an approximate
scaling rule that can be used to estimate the re-
sults of a model problem involving a Fermi
pseudopotential with arbitrary constant A. . We now
make an additional approximation to relate A to the
low-energy-electron scattering by X. Let

4vrA' = O'„
I

(1. 'I

' i2n ] (13)

o„ is the e-X scattering cross section at the elec-
tron energy 1/2n', which is the average kinetic en-
ergy of the electron in the quantum level n. As
n —~, A. —I-, the scattering length. Some justifi-

TABLE I. Values of 0'f~j as a function of n, v, and L
obtained by coupled-channel calculations.

o, „=mn'a', g(P)f(y),
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y = n2 a DE/hv

I
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FIG. 2. The function f(p), which we interpret as the
probability that a collision between the electron and the
collision partner will cause a change of angular-momen-
tum level of the electron.

5
6
7
8
6
6
6
6
6
6
6
6
6
6
6
6
6
6

v (a.u. )

6.867 x10
6.867 x10~
6.867 x 104
6.867 x10
6.867 x10
6.867 x10
6.867 x 104
6.867 x 10
6.867 x10
1.373 x10
4.856 x 1Q

3.140 x10
3.14Q x10
3,140 x10
3.140 x10
3.140 x 10+
4,856 x10
1.717 x10
1.030 x10

L (a.u.)

1.19
1.19
1.19
1.19
1.19
0.595
0.3
0.15
0.075
1.19
0.841
0.544
0.272
0,137
0.0686
0.0343
0.421
1.488
0.892

4.75
3.82
3.20
2.75
2.41
3.20
3.20
3.20
3.20
1.60
4.53
7.00
7.00
7.00
7.00
7.00
4.53
1.28
2.14

16.21
7.64
4.14
2.46
1.56
2.07
1.05
0.523
0.260
2.07
4.14
4.14
2.07
1.04
0.523
0.260
2.07
2.07
2.07

0; ~/Vrn go
4 2

0.192
0.387
0.440
0.402
0.352
0.324
0,200
0.082
0.025
0.535
0.217
0.102
0.085
0.055
0.024
0.0078
0.171
0.567
0.462
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0.6 TABLE III. Values of the collision efficiency.
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FIG. 3. The function g{P), which we interpret as the
probability of encounter between the Rydberg electron
and a collision partner.

go&E/gv

0
1
2
3

6

8
9

10
11
12
13
14

1.00
0.99
0.91
0.78
0.65
0.54
0.45
0.38
0,32
0.28
0.25
0.22
0.19
0;18
0.17

cation is given for Eq. (13) in Ref. 8. In this
work we find, a Posteriori, that it is reasonably
successful.

With the substitution defined by Eq. (13}, the
final form of the scaling rule is given by Eqs.
(10), (11}, and

(I/2n') }'~ '
m a vn ' 4v )B 0

(i4)

TABLE II. Values of the collision strength g as a
function of p. For P «0.5, g=0.715 p . For p) 3.0, we
arbitrarily set g= 0.60.

0
0.5
1.0
1.5
2.0
2.5
3.0

0
0.18
0.33
0.43
0.51
0.56
0.60

Although the scaling rule is empirical, it can be
related to a natural physical interpretation of the
scattering process. This interpretation will be
discussed in' the next section. Finally, note that
although the preceding discussion has assumed
that the Rydberg atom was sodium, we find that
the formula may be applied to other atoms as
well. The essential feature of the model is that
the initial level is separated by 4E from a nearly
degenerate set of possible final levels. For large
n, the difference in the number of final states for
an initial l=2 or 3 is small. Hence we will test
the formula for collisions involving Na (nd},
Rb(nf), and Xe(nf).

ve
y =-(a6)—',

v

where 65 is the difference in the quantum defects
of initial and final states, and v, = 1/n (atomic
units), the velocity corresponding to the average
kinetic energy of an electron with principle quan-
tum number n. This formula is obtained by ex-
panding

1 1
2(n+ 6, ,)' 2(n+ 6, )' (16)

in the limit 6, «n and substituting into Eq. (10}.
When y is large, f(y) —0 and hence the l mixing
will be small. Equation (15) shows that this can
occur because the inelasticity is large, or be-
cause v, is large compared to v, and hence it is
less likely that a collison will deflect the elec-
tron enough to change the shape of its orbit. Con-
versely, the l mixing will be larger when p is
small. This may occur either because the energy
difference between initial and final states is small,

B. Physical interpretation and discussion

The approximate scaling formula is a product of
three factors. The geometrical factor mn'a,' shows
that the cross section scales with the overall size
of the atom. We interpret the parameter P as a
coupling strength, and g(P) as the probability that
the collison partner will encounter the orbiting
Rydberg electron. P increases with v„, which
gives an effective size of the collision partner,
and decreases with n, because for larger n the
electron "cloud" is more diffuse. We interpret
the function f(y) as the probability that an elastic
collision between the orbiting electron and the
collision partner will cause a transition into a
new energy level. It is interesting to note that-
the parameter y may be rewritten as
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or because the electron is moving slowly relative
to the collision partner and a collision tends
seriously to perturb its orbit.

It is instructive to consider various limiting
values of the scaling functions g and f. We have
already noted that the function g is parabolic as
the argument approaches zero. For large values
of the argument, g tends to saturate at a value of
0. 5 to 0. 6. This number is somewhat arbitrary
since the prefactor mn'a,' could equally mell have
been 2mn a,' or 4mn a,'. Appropriate limiting
values of f(y) are more easily defined. As hE -0
(or v- ~), y-0, and f(y)-1. We can thus draw
the following conclusions about the general be-
havior of l-mixing cross sections. For large
n, f-1, and the angular momentum levels nd and
nl' ~ 2) are effectively degenerate. The decrease
of g, „(n) with increasing n is due to the reduced
coupling strength of the diffuse electron cloud. Qn
the other hand, the (inelastic) cross section tends
to be small for small n because of the smaller
geometrical cross section and the increased im-
portance of the energy-level splitting 4E.

We now consider how the velocity dependence
of the l-mixing cross section is controlled by the
functions f and g. At large n, y will generally be
sufficiently small so that f= 1 for typical (ther-
mal) value of v. (Note that AE~n '. ) Then the
behavior of g(P) shows that o, ,„decreases for
larger values of v. In the limit v- ~, v, „~ 1/v'
but for smaller values of v the dependence may go
as 1/v or weaker. The 1/v dependence corre-
sponds to the intuitive notion that a slower projec-
tile spends more time passing through the Ryd-
berg atom, and consequently has a higher proba-
bility of encountering the electron. The opposite
may be true for small n when the coupling is
stronger. In this case, g(P) may achieve a satu-
rated value of -0.5-0. 6 for a range of thermal
velocities, so that the velocity dependence of
v, „will be determined by f(y). Examination of
Fig. 2 shows that o, ,„mill then increase with

larger values of v, because increasing v has the
same effect as decreasing 4E. Similar behavior
has been analyzed theoretically in other inelastic
collisions by Qlson. "

III. RESULTS AND DISCUSSION

A. General comments

The approximate scaling formula determined
in the previous section has been used to estimate
angular-momentum- changing cross sections for
collisions of Na(nd) with He, Ne, Ar, N„CH„
and C,H„ for collisions of Rb(nf)+ He, Ar, and
Xe, and for collisions of Xe(nf)+ CO, . The colli-
sion velocities used were the mean thermal velo-

cities at the temperatures of the experiments with
which the results are compared. This velocity
is given by

(17)
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FIG. 4. The /-mixing cross sections for Na(nd)+ He.
The calculation of de Prunele and Pascale obtained
upper and lower limits to the cross sections.

where 0 is Boltzmann's constant and p, is the re-
duced mass of the collision system. For colli-
sions involving Na, we used X =430 K, for Rb
T=520 K, and for Xe, T =300 K.

The electron scattering cross sections were de-
termined as follows. For the rare gases Ne, Ar,
and Xe, we used the formulas for the s, P, and
higher phase shifts given by O' Malley" and com-
puted the total elastic scattering cross section in
the standard way. For He, we used at every n
the value 2 =1.19a„(the scattering length) as the
constant term in the Fermi potential [Eq. (3)j.
For N„ following Gallagher et al. ,

' me used
A =0. 7a, at every n. For low-energy-electron
scattering (E ~ 0. 5 eV) from He and N, there is
not a strong energy dependence of the cross sec-
tion. For e-CQ, and e-CH4, we used the scatter-
ing data compiled by Itikawa. " These data are
the total-momentum-transfer cross sections,
which may include inelastic processes, rather
than the elastic cross sections required by the
theory. For the CH, data, Itikawa estimates an
uncertainty in the data of about a factor of 2. At
this level of accuracy, and at the very low electron
energies involved, the substitution of the momen-
tum-transfer cross section for the elastic cross
section is probably not too serious an approxima-
tion. This view is supported by Itikawa. The CQ,
data are more accurate, but the uncertainty in the
scaling formula probably renders the distinction
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I

5

I

13
I

15

104

FIG. 5. The l-mixing cross sections for Na(nd)+ Ne.
The calculation of de Prunele and Pascale obtained
upper and lower limits to the cross sections.

between momentum-transfer cross section and
elastic cross section irrelevant. Finally, the
8 C388 scattering data of M ccorkle et aIt ."we re
used. In this case also, the momentum-transfer
cross sections were measured.

The energy differences 6E of Na were taken to
be the d fsplittings -measured by Gallagher et al. "
The parameter Z in the Bb and Xe collisions were
determined from Eq. (15}, assuming
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FIG. 6. The E-mixing cross sections for Na(nd)+ Ar.
The calculation of de Prunele and Pascale obtained upper
and lower limits to the cross section.

FIG. 8. The l-mixing cross sections for Rb(nf)+ Ar.
The calculation of de Prunele and Pascale obtained
upper and lower limits to the cross sections.
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The calculation of de Prunele and Pascale obtained upper
and lower limits to the cross sections.

I

FIG. 9. The l-mixing cross sections for Hb{nf)+ Xe.
The calculation of de Prunele and Pascale obtained
upper and lower limits to the cross sections.

B. Cross sections

Results for collisions of Na and Rb Rydberg
atoms with rare gases are presented in Figs. 4-9.
The agreement for the case that the collision
partner is He is especially good. Note that the
present results for Na(nd}+ He are determined
using the scaling formula; they differ only slightly
from the coupled-channel and Born-approximation
results presented previously. The good agree-
ment for He suggests that the Fermi pseudopoten-
tial is a rather good approximation when the low-
energy-electron scattering has a weak dependence
on energy. Also, the small polarizability of He
supports the use of a short-range (delta-function}
approximation to the e-He potential. For the
collisions involving Ar and Ne the energy depen-
dence of the electron scattering cross section
does influence the predicted result for n -10-20.
The calculated cross sections are in reasonable
agreement with the data in this range, suggesting
that the approximate method of including the en-
ergy dependence [Eq. (13}]is at least qualita-
tively correct.

We have also applied the scaling formula to
collisions involving more complicated partners.
In these calculations the internal structure of the
target is neglected, although it may of course in-
fluence the electron scattering cross sections
used. The qualitative agreement observed be-
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FIG. 11. The l-mixing cross sections for Na{nd)+ CH4.

tween the calculations and experiment tends to
suggest that the elastic scattering of the electron
by the target is the dominant mechanism of / mix-
ing in these collisions as well as in those involv-
ing rare gases. Note that the formula is not in-
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FIG. 13. The )-Inixing cross sections for Xe(nf )+ C02.
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FIG. 12. The )-mixing cross sections for Na(gd)
+ CSH8. The unusual dip at g =15 is discussed in the text.

tended to be used for a collision partner that has
a charge or large dipole moment.

Figures 10-13 show the calculated results for a
number of molecular targets. The agreement with
experiment is generally reasonable. The excel-
lent results for Na(nd)+ N, tend to confirm, as in
the case of He, the reliability of the Fermi pseu-
dopotential when the low-energy-electron scatter-
ing does not have a strong energy dependence.

It is interesting to consider the structure ob-
served in the experimental data" near n =15 for
Na(nd)+ C,H, . We have considered what form of
the elastic cross section a, y

would be necessary
to lead to the observed form of u, ,„(n), assuming
the validity of Eq. (11). We found that the unusual
structure in o, „(n) for n-13-16 could be fit by
assuming an electron-propane elastic scattering
cross section that exhibits a strong change of
slope, but not a dip, at an electron energy 0.060
eV, which is the average electron kinetic energy
for n=15. This effective elastic cross section is
about a factor of 2 less than 0 of Mccorkle
et al. "for E &0.060 eV, but rises more sharply
for E&0.060 eV. In this region (n-15-17) the
size of the coupling strength parameter P is sen-
sitive to two competing factors. As n increases,
A increases because of the rapid increase in v„
as the electron energy goes to zero. However,
this is nearly counteracted by the factor n '" that

reflects the weaker effect of the increasingly more
diffuse electron cloud. The net effect is that the
coupling strength teeters between these competing
influences. The results of this analysis are only
qualitative, of course, but they indicate that the
unusual structure in the Rydberg cross section
can be related to a plausible behavior of the cor-
responding electron scattering cross section.

Very recently Higgs et al, .' have measured rate
constants for the angular-momentum mixing of
Xe(nf) by CO2 at 300 K. Effective cross sections
are obtained from their data by dividing by the
mean thermal velocity. Figure 13 shows the data
and the calculations, which are in reasonable
agreement. It is noteworthy that the scaling for-
mula appears to be useful for n as high as 40.

IV. CONCLUDING REMARKS

An approximate scaling formula for collisional
angular-momentum mixing of low-l Bydberg atoms
has been determined that gives reasonable results
for a wide variety of systems. Although the for-
mula was determined using calculations that as-.
sumed the collision partner was a rare gas, quali-
tative agreement is also obtained for targets with
internal structure. All the cross sections exhibit
a maximum as a function of n, but the shape and
position of the peak may vary considerably. For
example, Bb+ He has a sharp peak at n = 11, while
Xe+ CO, has a very broad maximum for n -28.
The formulas obtained here show how such con-
trasting behavior may be qualitatively related to
the energy-level splittings of the Rydberg atom,
the energy dependence of the electron scattering
from the collision partner, and the relative velo-
city of the collision.

This work was supported by the Air Force Of-
fice of Scientific Research.
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