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Angular distribution of light scattered from critically quenched liquid mixtures
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Light scattering was used to determine the structure factor S(k,r) of two binary mixtures which were quenched

through the critical point. The experiments, which were carried out in isobutyric acid-water and 2,6-1utidine-water,

show that the normalized structure factor has the scaling form S(k,~) =E 'F(k/E) where E ' is the size of a

growing domain and F(x) is time independent. Our findings are in approximate agreement with those of Marro et
al. , who obtained S(k,~) from a computer simulation of a quenched A -B Ising lattice. The computer experiments

yield an initial time dependence in F(x), whereas the light-scattering meosurements reveal no evidence of this

transient effect over the (dimensionless) time interval 6(~ & 1000. The experiments spanned the temperature range

3X10 '&e &2X10 ', where'=~Tf/T, —1~. In this interval the integrated scatteringcross section at every instant

of time is proportional to e'" with 0,22 & 2, & 0.33.

I. INTRODUCTION

We have measured the angular distribution of
laser light scattered by liquid mixtures which have
been quenched into the two-phase region near the
critical point. These measurements provide in-
formation about the growth rate of nucleating and
coalescing domains in the fluid. Our aim was to
test a conjecture of Marro, Lebowitz, and Kalos'
(MLK) that the (normalized) structure function
S(k, r) is of the homogeneous form

where K '(7) is a measure of the size of a domain,
and where E(k/K( ))vis independent of time. This
same scaling form for the structure factor was
first proposed by Binder and Stauffer' and subse-
quently invoked by Binder el; a/. ' ' in theoretical
studies of spinodal decomposition.

In the computer simulations of MLK, the struc-
ture function was evaluated for an Ising A -B lat-
tice which was quenched (at r =0) from an initially
disordered state to a temperature and average
composition that lay inside the two-phase region.
The simulation showed that the time dependence of
F(k/K(v)) disappeared after an initial transient
period 7, . 'The "settling time" increased as the
lattice composition approached its critical value
and as the depth of quench decreased.

Though our experiments were carried out on a
fluid, which has additional degrees of freedom that
are known to influence phase-separation dynam-
ics,' ' Eq. (1) was indeed found to hold. However,
no transient behavior was detected, even though
the samples were of critical composition and the
quench depths were orders of magnitude smaller
than in the computer experiments.

Two critical mixtures were studied, isobutyric
acid and water (I-W) and 2, 6-lutidine and water
(L-W). All quenches were carried out in the vic-

inity of the upper critical temperature in I-W and
the lower critical temperature in L-W. Thus
I-W was driven into the two-phase region by rap-
id cooling, while the L-W sample was "quenched"
by a heating pulse. '

The quenches were very shall. ow in order to take
advantage of "critical slowing down"', the final sam-
ple temperature Tf never differed from the critical
temperatures T, by more than 9 mK. Under these
experimental conditions phase separation could be
studied over the interval 6& rS 1000 [see Eq. (6)
for a relation between v and real time 1] .

To preview our results the reader may wish to
glance at Figs. 5 and 6, which show F(K) vs K
—= k/k„(t), where k„ is the photon momentum
transfer at the angle of maximum scattering.
From these graphs it is obvious that Eq. (1) holds
very well and that the same function F(K) char-
acterizes both mixtures.

A partial analysis of our angular distribution
measurements in I-W and L-% have been present-
ed in a previous publication by Chou and Goldburg
(CG).' In that paper, attention was focused on the
time dependence of the maximum in scattering in-
tensity s(k„, $) and on the collapse rate of the
"ring diameter" k„(t) itself. Whereas MLK found
that Eq. (1) was best satisfied when K was taken
as the first moment, ky of the structure factor,
this parameter will here be identified with k .
This means we will ignore the evidence from both
the computer and laboratory experiments' ' that
k „'(I ) has a somewhat different time dependence
than the diameter of a growing cluster and prob-
ably k, ' as well.

The remainder of this paper is organized as
follows: Experimental details are presented in
Sec. II, and the results in Sec. III. Section IVA
contains a comparison between the measurements
and the computer simulations of MLK, and brief
mention of the theoretical findings of Furukawa' and
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II. EXPERIMENTAL

The experimental arrangement has been fully
described in CG and in an earlier paper by Gold-
burg et a/. " The reader is referred to these ref-
erences for details.

The I-W and L-W samples were of critical
composition and were located in a water bath
with a temperature stability of +0.1 mK over'
1800 sec, which was the duration of the longest
run. The cells, which are schematically illus-
trated in Ref. 11, were reentrant in shape, with
an optical path length of only 100 p, m to minimize
multiple scattering. The critical compositions
and temperatures of I-W and L-W are c, (I-W)
= 38.6 wt. % acid, T, (I-W) = 26.08 'C; (Ref. 12)
c, (L-W) = 28.1 wt. % 2, 6-lutidine, T, (L-W)
= 33.37 C."~" Two other parameters which will
be needed to relate laboratory time f to the dim-
ensionless spin exchange time v of MLK, are the
composition diffusivity D and the correlation
length $. In the one-phase region they have the
following values:

D(I-W) = 2.51x10 'e"0 cm'/sec (Ref. 12),

P(I-W) = 3.57' '"' A (Ref. 14),
(2a)

(2b)

Schwartz. ' In Sec. IV Bour findings will be compared
with those of Wong and Knobler, ' who have also
used light scattering to study phase separation in
I-W. A reanalysis of their critical-quench data
provides a check of Eq. (1) at a single quench
depth. This research is summarized in Sec. V.

Iz(t). The origin of time was taken as the instant
at which I~ started to decrease precipitously.

To measure I (8, t ), a rotating mirror arrange-
ment was used to reflect the scattered light into
two photodetectors. A minicomputer recorded
I(8, f ), Iz(t), and the background intensity II (8),
which was measured just prior to each quench.
Dividing [I(8,t) -Is(t)] by I~(t ), to correct for
multiple scattering, gave the "corrected inten-
sity, "

»»(I», t) =- »»(8, t) =[I(0, t ) -I,(e)]if,(t), (3a)

where the photon momentum transfer k is related
to Hby

I»= (4wn/X, ) sin(g/2) . (3b)

III. RESULTS

Figures 1 and 2 show typical angular distribu-
tion measurements, i.e., s (I», f ) vs I» at the var-
ious times indicated. The quench depths hT&
= ~T& —T, ~

were 3.4 mK(I-W) and 0.6 mK(L-W).
The solid lines were drawn by eye through the
data points. Note that the intensity maximum,
s(I»„, &), increases rapidly as the ring collapses,

Here ~, is the vacuum wavelength of the source,
and n is the refractive index of the mixture.
Treating the mixtures as ideal solutions, one cal-
culates n(I-W) = 1.35 and n(L-W) = 1.38. The valid-
ity of the Born approximation is assumed, in
which case»»(I», t) is proportional to S(k, t)

$(L-W) =2.0e '" A (Ref. 14).

D(L-W) =0.29x10 'e' "' cm'/sec (Ref. 14), (2c)

(2d) IO =

I I »»
I —W

h, T&
= 5.4+0.3mK

t = l?0 sec

The light source was the 6328-A line (vacuum
wavelength) from a He-Ne laser whose output
was attenuated to -0.3 mW to prevent local heat-
ing of the sample.

Prior to a quench, the sample was permitted to
reach thermal equilibrium at a one-phase tem-
perature T, which was typically several mK from
T, . Variation of b, T» =

~ T, —T, ~
in the range 1-10

mK produced no observable effects.' " The L-W
mixture was quenched by applying a voltage pulse
to a Nichrome heater in the water bath, while in
I-W cooling was produced by quickly injecting a
few ml of ice water into the bath. With both
schemes the final two-phase temperature T& was
reached in -3 sec.

Quenching of the mixture initiated the recording
of the angular distribution of the. scattered light,
I (8, t ), and the intensity of the unscattered beam,
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FIG. 1. Scattering intensity 4(k, 5) versus k at different
times in I-W. The quench depth AT&=3.4 mK.
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FIG. 2. Scattering intensity in L-W as in Fig. 1 with
4T&= 0.6 mK.

i.e., as k„(t) decreases.
The rather wide scatter in the data points at

each t reflects the granular appearance of the
scattered light. The size of each speckle is in-
versely proportional to the diameter of the laser
beam and is therefore of little physical interest.
The temporal lifetime of these speckles, on
the other hand, contains information about the
dynamics of phase separation. So far this phen-
omenon has received little experimental atten-
tion"' "and only recently has been addressed
theoretically. " Rather, existing theories' ""'"
and computer simulations" have so far been con-
cerned with the azimuthal average of S(k, t), so
that information contained in the lifetime of the
spatial fluctuations is averaged out.

The data of Figs. 1 and 2 have been replotted in
Figs. 3 and 4 to show 0'„(t)s(k, t) vsI7. Each set
of data points (open squares, closed triangles,
etc. ) shows an angular distribution at a different
t, but all measurements are for a single quench
depth, viz. , those of Figs. 1 and 2, respectively.
Again the solid lines in both figures were drawn
by eye through the data points. The scattered in-
tensity is in relative units, but the incident beam
did not vary from run to run.

To test Eq. (1) the measurements in Figs. 1-4
were repeated at various quench depths in the
range 1 to 5.8 mK in I-W and O.6 to 1.9 mK in
L-W. All the results are summarized in Fig. 5
(I-W) and Fig. 6 (L-W). Here we have plotted the
function

IO

k/k
FIG. 3. Unnormalized scaling function k3 8(k, t) versus

k/k in I-W with the quench depth b,7&=3.4 mK.
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FIG. 4. Unnormalized scaling function k3 8'(k, t) versus

k/k~ in L-%' with the quench depth 4T&= 0.6 mK.
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E(Z) = tI'„(t )&(K, t ) (4a) IO

as a function K, where the normalized scattering
intensity tI(K, t ) is defined as

4(r—)) , 4(=r))(,f 4(K))r d, lC) . (4b)
K~

The upper and lower limits on the integral are
the maximum and minimum measured values of
K. They were K (I-W) = 0.5, I7, (L-W) = 0.4, and

K, (I-W) =K, (L-W) = 2.0. Because s(K, t) is so
sharply peaked at the intermediate value K=1,
the integral is insensitive to variation of these
limits.

The normalization of 8 removes all adjustable
parameters in the function E(K). These measure-
ments show E(K) to be independent of time and of
quench depth and reveal no appreciable difference
between the E functions measured in the two crit-
ical mixtures; when Figs. 5 and 6 are superim-
posed, they are in almost perfect registry.

The measurements in Figs. 5 and 6 constitute a
confirmation of Eq. (1) only if multiple scattering
is relatively small so that s(k, t) is proportional
to the normalized structure function I) (0, t ) of
MLK. While it is difficult to assess the influence
of multiple scattering, the best evidence that
multiple scattering is not important, comes from
the absence of a systematic dependence of E(K)
on quench depth in Figs. 6 and V. (Multiple scat-

IQ
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0'QIO I

2

FIG. 6. I {K)versus K in L-W at the three quench
depths shown in the figure.

tering is a strongly increasing function of quench
depth. ) Reference 6 contains a more detailed as-
sessment of the multiple-scattering problem.

An additional limitation of this experiment was
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FIG. 5. Normalized scaling function E {K)versus
K= 0/k~ in I-W at the indicated quench depths.

FIG. 7. Unnormalized scaling function A~g@, t) versus
I-W at the four values of K indicated on the right.

The dashed line is.the integral k3 I() I S(17,t) d X' versus
6e
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the parasitic scattering. This background inten-
sity limited the range of wave numbers 0, and k,
over which S(k, f ) could be determined. The com-
puter simulations of MLK contain a corresponding
limitation on the range of K; in their critical
quench runs, the upper and lower bounds on K
were K, = 5, K, = 0.2. The dimensionless wave
number Z(f ) of MLK is the ratio of k to k, (t )

where k, (t ) is the first moment of S(k, I ).
Figure 7 is a log-log plot of k'„s(Z) vs c =

~ T& I
T, —1~ in I-W. The solid straight lines are least-
squares fits to measurement~ at four values of
Z in the interval 0.6 &K &1.25. All of these lines
have approximately the same slope, showing that
s(Z, I) o-e'~ with 0.22& A. &0.33. The solid circles
in this figure show the (time-independent) integral
of the angular distribution of the scattered light,
o(e) vs e, where

o(~) -=s(k. I )k2dk . (5)
kg

The solid line drawn through these points has a
slope A. =0.30+0.05. All the measurements in Fig.
7 suggest that ~ is equal to the critical exponent
p which describes the shape of the coexistence
curve. '" " The temperature dependence of a(c)
is seen to be entirely different from the scatter-
ing which arises from spontaneous fluctuations.
As T-T, , the latter integral diverges as ~ & (y
= 1.25) rather than approaching zero.

The data in Fig. 7 support a crude model in
which closely packed domains, each of volume
k ', contribute incoherently to the scattering. In
the Born approximation each domain will contri-
bute an intensity proportional to (b, c)' k„', so that
s(k, t) ~(ac)'k„' f(klk„) where f(klk„) is a form
factor, and where the miscibility gap (Ac) o-e is
proportional to the electric field scattered by each
domain. In CG this model was invoked to explain
why the product k'„&(k„,t ) f(1) is almost time-
independent in I-W and L-W. Those previously
published measurements of ring intensity appear
again in Fig. 7 on the line labeled K=1.

IV. COMPARISON WITH OTHER WORK

A. Computer simulations and theory

The published studies of MLK" were concerned
only with the time evolution of A-B lattices of
noncritical composition. However, these authors
have extended their calculations to include lattices
for which c = c, . Again it was found that S(k, 7)
evolved into a scaled form, with the function
E(Z) losing its explicit time dependence after a
sufficiently long time, v, . This settling time was
longer for the critical quenches, presumably be- .

cause diffusion slows down as T-T, [see Eg. (6)

belowj. Indeed, they found r, =3x10' at e =0.41,
whereas v, =2000 at e =0.11.

To compare the results of MLK with experiment
one must relate ~ to t. For this we take' "

7=(D/$')t 0-e"t . (6)

With this equation and Eg. (2) our data are calcu-
lated to be in the interval 6 = v = 10'. Though
quench depths in this experiment were four orders
of magnitude smaller than those of MLK, there is
no evidence of a time lapse before which E(K) de-
pends on time.

Our measurements will now be compared with
the critical-quench computer experiments of
MLK. '4 At their shallowest quench depth, e = 0.11,
E(K) is maximum at Z =Z = 0.8, with the peak
occurring at E„=E(Z ) = 1.6 +0.2. The full width
of this function at half maximum is AK, ~, = 0.7.
Similar values of K, J', and 4K, ~, are obtained
in the deeper quenches, e = 0.22 and 0.41. Figures
5 and 6 yield similar values of these parameters.
There it is seen that K =1.0 in both I-W and L-W,
whereas E„(I-W)=1.6 +0.3 and E (L-W) =1.5 +0.1.
The widths of the peaks are found to be b.K,~,(I-W)
—0.5 + 10% and bZ& /2(L-W) = 0.45 + 5%.

It should be borne in mind that the computer
simulations of MLK are not obviously applicable
to fluids because the cluster-growth mechanisms
are different; the lattice clusters grow by spin
exchange, whereas the fluid domains grow by dif-
fusion. This difference in coarsening mechan-
isms has long been recognized' and has been the
subject of subsequent theoretical' ' " and
experimental' "investigations.

Furukawa has also calculated. S(k, 7) starting
with Eq. (1), using the diffusive-growth model of
Binder and Stauffer' to obtain the average cluster
size K '(7). His approach contains approxima-
tions that seemingly apply to off-critical quenches
only. In any case Ref. 8 does not contain an ex-
plicit expression for E(K) Furukawa's . analysis
is applicable to a binary fluid mixture, and in
fact he compares his results with the off-critical
light-scattering measurements of Wong and Knob-
ler. xo

Schwartz' has also observed that S(k, ~) obeys
Eq. (1) for 7&100. He has obtained a numerical
solution to the spinodal decomposition equations
of Kawasaki and Ohta" and thereby was able to
remove some restrictive approximations these
authors were required to make. Schwartz finds
that K = 1.0 and that b.K», approaches 0.40 when
7 ~ 100. Schwartz's analysis is not applicable at
very large 7, and in fact he does not carry the
calculations of E(Z) past ~= 200.
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B. Experiments of %kong and Knobler

We have reanalyzed the critical-quench angular
distribution measurements of Wong and Knobler"
to extract information about F(Z). Figure 3 of that
paper shows I(k, t) at a single quench depth, LTD
= 0.9 mK (e = 3&&10 '), and at five values of f in
the interval f = 36 sec (v= 5) and t= 360 sec (v = 50).
Their angular distribution measurements spanned
the wave-number range 2x10' cm '& k&ox10'
cm '. In reduced units this corresponds to Z,
= 0.5, Kb = 2.0, as in the present measurements.

The background uncertainty in I(k, t) was suf-
ficiently large that their measurements at t=36
sec could not be included, and at- t=84 sec there is
uncertainty in the normalization of s(k, t) needed
to obtain s(Z, t). Nevertheless, the data in Fig.
3 of WK could be fitted to Eq. (1), yielding. a func-
tion E(Z) which was qualitatively similar to our
own. The main difference was in the measured
peak height, E . This parameter turned out to be
somewhat dependent on t in their measurements.
For example E„(t= 360 sec) = 2.7, whereas E
(144 sec) =E„(84 sec) = 1.0. At f = 84, 144, and
240 sec, their data give ~K, ~, =0.7+0.1. The dif-
ference between the measured E in both experi-
ments and the results of MLK, may merely reflect
the differing definitions of Z [recall that we take
Z = k/k„, whereas MLK normalize k by the first
moment, k„of S(k, 7')].

V. DISCUSSION AND SUMMARY

We have measured the angular distribution of
light scattered from critically quenched mixtures
of isobutyric acid and water, and 2, 6-lutidine
and mater. The measurements cari be fitted to the
scaling form, s(k, t) =73 F(Z), where Z=k/k„(t).
The scaling function E(Z) is sharply peaked at
X=1, and is independent of time over the dimen-
sionless interval 6a 7S 1000, where v. is related
to t by Eq. (6), and is the same in I-W and L-W.

This experiment was motivated by the computer
simulations of Marro et al. ' Our findings are
similar to theirs, but there are striking differ-

ences. For example, the computer simulations
show that E(k, v) is initially time dependent,
whereas the laboratory experiments give no evi-
dence of this. The computer studies show that
this transient behavior disappears after a time 7,
which increases from 300 to 2000 as the quench
depth c decreases from 0.41 to 0.11. A theoretical
calculation of Schwartz' also shows F(Z, v) to
have an initial time dependence; in his analysis
7.,=100 even very near the critical point. The
theory of Schwartz and the mork of Kawasaki and
Ohta" take the fluid degrees of freedom partly
into account. It therefore differs from the com-
puter simulations, which produce cluster growth
by spin exchange rather than by diffusion.

Putting the laboratory experiments aside there
remains the problem of understanding why the
spin-exchange model'of MLK predicts a much
longer settling time than the calculations of
Schwartz' and, by implication, the analysis of
Kawasaki and Ohta. " Perhaps 7, is reduced by
coupling of the composition fluctuations to the
velocity field in the fluid. Were this coupling fully
taken into account, 7, might decrease even more.

Phase separation in its initial stage (7 s 10) ap-
pears to be dominated by'diffusion, whereas in the
late stage (200' vs 1000), surface-tension effects
probably control the rate of domain growth. ' ' "
As a result, the exponent P which characterizes
this rate (k~~t @), changes from p= —,

' to @=1.
In spite of a crossover from one growth mechan-
ism to another, there is no corresponding change
in E(Z). This is the most surprising result of our
experiments.
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