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Glauber cross sections for arbitrary excitation of ground-state hydrogen by electron and proton
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The Glauber scattering amplitude for 1s-nlm excitations of hydrogen by charged particle impact is reduced to a
form numerically computable for arbitrary values of n, I, and m. The increasing number of repeated parametric
difFerentiations appearing in earlier methods with the increase of n is replaced in our method by a single contour
integration, which is especially useful for large-n states. In addition, whereas the available closed-form expressions
would involve the calculation of a large number of hypergeometric functions as 1 and m increase for a given n, the
present integral form involves only one hypergeometric function for any n, I, and m. The asymptotic form of the 1s-
nlm amplitude as n~oo is also presented. The procedure is applied for studying the 1s~ns (n = 3, 4, 10, and oo)
and ls +np (n -= 3, 4, and oo) excitations of hydrogen by electron and proton impact. Tabular results of the cross
sections are presented for differential and integrated cross sections in e -H collisions and for integrated cross
sections in H+-H collisions. The qualitative features observed earlier for 1ow ns and np excitations are found to
exist also for n & 3 excitations. The 1s—+ns and 1s-+np cross sections obey an n ' law asymptotically as n '~,
which is in conformity with the analytical results obtained quite generally for 1s~nlm excitations. For proton
impact 1s—+3p excitations, the Glauber results are in excellent agreement with a recent 34-state calculation. A
unified graphical representation of various normalized cross sections above some specific energy is presented,
whence a knowledge of the high-energy Born cross sections for any 1s~ns or 1s—+np excitation suffices to determine
the absolute Glauber cross sections for the process.

I. INTRODUCTION

Highly excited states of atomic or ionic targets
and their collisional formation in hot astrophysical
or laboratory plasmas have attracted considerable
interest in the literature in recent years. ' ' Theo-
retical studies of the high-lying transitions in such
systems can be performed using classical or semi-
classical methods. ' However, such methods are
not applicable for investigating high excitation of
atoms from the ground or low-lying states, where
exact quantum-mechanical cross sections shouM
be calculated. Quantal calculations, on the other
hand, suffer from serious computational difficulties
whenever the principal quantum number n of any
of the initial and final states approaches large
values. This may be the reason for the lack of
exact quantum theoretical data for high atomic
excitation prevailing in the literature so far. Very
recently, however, SQ and co-workers' have been
able to find a general procedure to eliminate the
relevant computational troubles for hydrogenlike
targets and have successfully applied it to calcu-
late the cross sections for various 1s-nlm excita-
tions in such targets by charged particle impact
using the first Born approximation (FBA) and other
related first-order methods. Extension of this
procedure' to the investigation of similar processes
within the framework of more reliable theories
hence appears worthwhile.

The conventional Glauber approximation' (GA)
provides such a theoretical framework for studying
inelastic scattering of structureless charged parti-

cles from neutral atomic targets at intermediate
and high incident energies. For direct excitation
of atomic hydrogen, specifically, the success of
the Glauber theory during the last decade has been
remarkable. ' ' In the region of validity of the first
Born approximation the integrated Glauber cross
sections approach the Born values, as expected.
At lower energies, on the other hand, the Glauber
results are distinctly superior to the FBA values
when compared with experiment and can predict
the physical features in the cross-section-energy
curve, which are obtainable only from much more
arduous theoretical calculations. Furthermore,
the GA-predicted angular distributions for inelastic
scattering of intermediate energy electrons from
hydrogen at angles less than 90' show very good
agreement with observed results. ' 'This has been
confirmed also for the scattering of protons from
hydrogen in a very recent experiment by Park
et a/. ' They measure the angular differential
cross sections for excitation of hydrogen atoms
to the n = 2 level and obtain remarkaMe agreement
with the Glauber results at angles less than 10 '
rad in the center-of-mass (c.m. ) system. In view
of the above success, the reliability of the Glauber
theory for studying inelastic processes in charged-
particle-neutral-hydrogen collisions at intermedi-
ate and high energies can hardly be overempha-
sized. On general theoretical grounds, however,
the Glauber theory has its limitations when ex-
tended towards an incident velocity range e, & I
a.u. or to wide angle-inelastic scattering, and care
must be taken not to extrapolate it too far at such



716 S. K. SU R AN D N. C. SIL

regions.
The Glauber cross sections for various discrete

excitations of ground-state hydrogen have been
. studied by several authors. ' ' However, only

a few works have been concerned with the case
of arbitrary transitions of hydrogen. ' ' Con-
sidering later applications of the methods employed
to cases of more complicated atomic targets, the
work of Thomas and Gerjuoy" has remained as an
important one. They have reduced the GA-scat-
tering amplitude for 1s-ns and 1s-nP excitations
of hydrogen to closed forms. These expressions
are particularly suited for studying the limiting
behavior of the cross sections at high energy or
small momentum transfer and are easily comput-
able as well for low excitations from the ground
state. Formal extension'of this method" to the
case of arbitrary nlm-n'l'm' transitions has been
recently performed by Toshima, ' who has applied
it to calculate the GA cross sections for some of
the relatively high-lying transitions in hydrogen.
On the other hand, Thomas and Franco' have been
able to obtain the 1s-nlm Glauber scattering ampli-
tude for hydrogen in a very compact form in con-
nection with a relatively recent work on the Cou-
lomb modifications of the conventional Glauber
approximation. Kumar and Srivastava" have also
suggested a procedure for evaluating the Glauber
amplitudes for arbitrary excitation of hydrogen
from the ground or low-lying states, which in-
volves an infinite integration with products of
hypergeometric functions occurring in the inte-
grand.

All the methods of reducing the Glauber scatter-
ing amplitude for arbitrary transitions in hydro-
gen discussed above suffer from the common com-
putational difficulty mentioned earlier when these
are employed to study large-n-changing transi-
tions. More. specifically, the trouble develops
from the customary procedure of generating higher
excitation amplitudes through repeated parametric
differentiations. This gives rise to a huge number
of hypergeometric functions in the amplitude ex-
pression making calculations extremely trouble-
some. The various recurrence relations satisfied
by the hypergeometric functions may be exploited
to reduce the final number of such functions, but
that too is a very combersome and laborious pro-
cess. Indeed, Gerjuoy and Thomas' have observed
that the appearance of a very large number of hyp-
ergeometric functions. limit the usefulness of the
method of Thomas and Gerjuoy" for large n.
Toshima, in his actual calculations, also observed
his method unsuitable for n, n' a 1.5. These facts
have led us to. search for a useful alternative meth-
od of calculating the Glauber scattering amplitude
so as to be applicable for high excitations of hydro-

II. AN INTEGRAL FORM OF THE 1s ~nlm GLAUBER
AMPLITUDE FOR HYDROGEN.

For direct collisional excitation of a hydrogen
atom from an initial state 4,.(r) to a final state
4z(r) by the impact of a structureless particle of
charge Z& and relative velocity v, , the Glauber
scattering amplitude in the center-of-mass (c.m. )
system is given by (using atomic units through-
out)

F(i-f; |Y) = * O'P(r)I" (b, r)4',.(r)e"'"d'b dr,

with

I'(b, r) = l —(
~

b —s
~

/b)"" .
Here q = -Z,./v„g= (K, —Kz) is the momentum
transfer vector, K, and K are the incident and
final relative momenta, and s denotes the projec-
tion of r, the position vector of the bound electron
onto the plane containing q and b.

The atomic wave functions can be conveniently
quantized along the direction of the Glauber path
integration as usual. ' ' Thus, we can write for
the ground 1s state and an arbitrary nlm state of
the target hydrogen atom

(2)

0'„, (r) =N„,e "~"r'L„',", (2r/n)Y, (r),
where

(4)

gen from the ground state. We have briefly dis-
cussed in an earlier work (Sur and Sil") how the
repeated differentiations in cases of large values
of n can be eliminated from the final expression
of the scattering amplitude. The details of the
derivations are given in the present paper, where,
in addition, we are now able to further simplify
the procedure for arbitrary values of / and m.

In the present paper, we reduce the Glauber
scattering amplitude for arbitrary 1s-nlm transi-
tions in hydrogen and apply it for studying 1s-ns
and 1s-nP excitations by electron and proton im-
pact. The details of the derivations and the ap-
propriate numerical methods of calculating the
1s-nlm amplitudes are discussed in Secs. II and
III. In Sec. IV we give the limiting asymptotic
forms of the amplitudes as n-. Section V covers
the special cases of 1s-ns and 1s-np transitions,
while in subsequent Sec. VI we present and discuss
the electron and proton impact cross section re-
sults for various discrete s and P excitations as
well as the corresponding limiting asymptotic
values.
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L;()b) is the associated Laguerre polynomial of
order b —a, and Y, (r) represents the spherical
harmonic.

Instead of using the conventional expansion of
J-, given by Schiff" or the alternative form in
terms of the confluent hypergeometric functions
employed by Thomas and Gerjuoy, "we now follow
Sil and co-workers' to use an integral representa-
tion for the associated Laguerre function".

a+1I.;(x)= (-1)"'— „dz (z —1)' ' —
+

we can write

g, (z, q) = —(s/sx)I, „(x,q),
whence Eq. (V) gives

E(ls-nln)b q) = -A„,K,

~'-1 ' x+1 "eI, x, q

(12)

The integral on the right-hand side can be imme-
diately simplified through integration by parts,
giving

x exp ——z —1

where a and b are integers. The integral on the
right-hand side is to be performed along a closed
contour C on the complex z plane, which encloses
the singularity at z =1 of the integrand function.
Inserting the expression (5) in Eq. (4}, we ean
write the product of the wave functions to be sub-
stituted in Eq. (1) as

where we have used the relation (&/&&) =n(b/Sz).
The first term in (13) vanishes since the contour
C is a closed one, so that Eq. (12) becomes

E(is —nlm; q) =A„,K,. dz "' I,„(X,q), (l.4)
ac „,(x)

x dgg —1" e)

with X =1+a/n, whence the Glauber scattering
amplitude given by Eq. (1) becomes

E(is -nlm; q) =A„,K,.

where

d, (b, t))= f r "«'r(b, r)e«'Y;„(b)d'b dr

and

A„, =(N,N„, /8w )(n+l)! (n/2)".

In writing Eq. (V) we have interchanged the order
of integration over z with the integrations over
b and r on the assumption that these latter integra-
tions are well-defined and convergent for each
and every value of z on the contour C, which in-
cludes the singularity of the integrand function at
s =1 only.

Introducing now the generating function

I, (1,Y)) = fr 'r' '1'(b, r)e" Y, («)d bdr, (10)'

where the function C„,(X) has a dependence on
s jn =X-1 rather than on s and is defined via

b„,(1)=(, ) (
'

The troublesome X differentiation of the generat-
ing functions appearing in earlier methods"" are
thus eliminated, and Eq. (14) already gives an inte-
gral form suitable for application in case of ar-
bitrary n excitations of hydrogen from the ground
state, provided of course, the contour integral
can be efficiently evaluated. This has been con-
firmed by actual numerical computations from
Eq. (14) for the is-ns excitation in e -H collisions.
For the corresponding generating function Ioo(X, q),
we have used the final reduced form of the analo-
gous function given by Thomas and Gerjuoy. " As
meritioned earlier, the method of Thomas and

Gerjuoy has been generalized by Toshima for
arbitrary nlrb-n'l'm' excitations. This procedure
ean be used for the reduction of I,„(A., q) given by
Eq. (10) to closed-form expressions which can
then be substituted in Eq. (14}for subsequent
numerical work. But this route does not appear
promising because of the appearance of multiple
summations involving hypergeometric functions
in the expression for I,„(X,q) as l, m increase.
Such complications result from the authors'~"
use of cylindrical coordinates for r in the reduc-
tion procedure, when the Legendre function P, oc-
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curring in the spherical harmonic F, need be ex-
panded in a power series. '

On the other hand, Thomas and Franco' employ
spherical polar coordinates for r and by exploiting
the properties of &, (r) obtain a very compact form
for the generating function [cf. Eq. (B3) of Ref. 7]:

( g Z+(l-I ml )/2
I, (),q)=a (n)I'+(-,')T, v, )a-'-' I:— fi) (u)

(i6)

for l ~ 0, where p, is the azimuthal angle of q in
the plane containing q and b,

a,.(u)=u-'g«l+ 1ml)/'2 iq—, 1+ lml iq; 1+ lmli -u),
with u =A.'/q' and

(„16 . (2.), r(1+i)})r((l+ I m I)/2 —i)})r(1+Im I
—iq)

tm r(i iq)r(i+ I m I)

(i7)

(is)

As we show in the following, Eqs. (16) and (17) especially suit our procedure allowing some very useful
simplifications which are not possible with the form obtainable from the methods of Befs. 2 and 13. The
generating function I)„(X,q) for hydrogen follows as a special case of the corresponding function for hydro-
genlike ions in the Coulomb-modified Glauber approximation of Thomas and Franco. '

Substituting for I,„(X,q} from Eq. (16) into (14), we have

(y) s &+&)-I m) ).i 2

E(is -nlm; q) =A„p) ()})K,&,* (-,')&, p, )&I
' ' dz "' —— h, „(u)

C IeJ

The partial differentiations appearing in the second term of the integral can be effectively transferred to
the first one through repeated application of integration by parts, as in the analogous case of Eqs. (12)
through (14). This yields

] 8 2+(l-Imt)/2
Z(is-nfm. q)-A„,a,„(Z)2-'-&' ' ')~% K, I,*„(-,' v, p, )q

' '"' e„,(X) a,.(u).
c&

(2o)

On substitution for C„,(X), h,„(u), A„„and B, ()7) from Eqs. (15), (17), (8), and (18), respectively, in Eq.
(20), the full expression for the Glauber scattering amplitude for is-nlm transitions in hydrogen, after
proper simplification, becomes

&)
)2+&)-)m) )/2 &2 1 &

& + 1)n
I'(ls-nlm'q) =C D ()})Y*(—,'v 9) )q2&" '") 'K.

nl lm lm
C

n' z —1&

for l ~ 0, where

x 2F, I:(I+ lm I)/2-iq, 1+ lm I
-i)7'I+ lm I' -&'/&f'~

(22a)

, &, ) ))(,.„, )7 I (1+i@)r((l+ Im I)/2 —iq)r(1+ Im I
—i)7)

r (i —i)7)r(1+ I m I )
(22b)

Several points about Eq. (21}may nowbe noted. First of all, Eq. (21) is valid for alln~1. Thus, the Glauber
(ls-is) elastic amplitude is also computable from Eq. (21). However, , it is well known that the' elastic Glauber

predictions are unreliaMe and we are interested here in direct excitations, for which n&2. The greatest ad-
vantage of Eq. (21) is that it involves only one hypergeometricfunctionfor any set of values of nbn. The pres-
ent form supersedes our previous work" based on the methods of Thomas and Gerjuoy, ' and of Toshima, ' in
which one would not be able to avoid the computation «a»ge nu~ber of hypergeometric functions with
increasing values of l, m. Thus, Eq. (21}amounts to a still greater reduction of computational labor than
that achieved earlier, "especially for high aim excitations from the ground state. The contour integral
in Eq. (21) can be analytically evaluated by the method of residues to yield the formula of Thomas and

Franco, which is useful in computing the excitation amplitudes for low excitations from the ground state,
where neither of n, l, m is large In this r.espect, another great advantage of the amplitude expression (21)
is that, for a given set of values of l, m all the n-excitation cross sections can be obtained from a common
computer program. Efficient evaluation of the integral in Eq. (21) depends, however, on proper choice of
the contour C, which we now proceed to discuss.
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III. CHOICE OF CONTOUR AND NUMERICAL METHOD

Equation (21) can be written in the form

F(1s -nlm; q) =C„,K,f„, (q),

where

(23)

(24)

C„, and D,„(p) being given by Eqs. (22).
The integrand in Eq. (24) is, on inspection, found to have singularities at z=1 -n, -n(I+iq), and ~,

the first of which at z =1 arises from the term in 4„,(x) and happens to be the only singularity which ho ld
be enclosed by the contour C, the second at a =-n occurs because of the term X' '", while the rest are the
singularities of the hypergeometric function. Thus the distance of the nearest singular point (z =-n) of the
integrand function in (24) from the point z =1 increases with n. Furthermore, it should be noted that since
X=1+z/n, the integrand function has an implicit z dependence through z/n. Both of these facts can be ex-
ploited to our advantage provided we choose the contour C to be a circle having its center at the origin
(z =0) and with a radius proportional to n. Thus we take

C: z =age', a&1, n~ 2. (as)
The value of the proportionality constant a should be adjusted such that numerical calculation of the hyper-
geometric functions can be done in an efficient manner. %e find that this can be achieved by taking a =0.7.
From Eq. (24), we have

f„, (q) =iaD,„(n)I',*„(kv,q, )q"" '"' '
2 (r-Iml )/2

x dee' ~' ""
I & &&

4' &(~) zF [(I+ ln& I)/a-i&}. 1+ l&n I
-~&I 1+ l&n I'-&'/q']'.

0
(26)

for n ~ 2, where A=I+ac~~ is now independent of n. The n dependence off„, (q} thus occurs only through
the term 4&„,(X). As shown in the following, in the limit of very large n, 4„,(X), and hence, f„,„(q) become
independent of n. The asymptotic n dependence of the Glauber amplitude is thus contained solely in the
term C„, given by Eq. (22a).

The integral in Eq. (26) can be evaluated by employing the usual Gauss-Legendre quadrature method,
preferably aiter breaking the range of integration into suitable intervals.

IV. ASYMPTOTIC LIMIT OF f«~ (q) AS n~~
Let us put y =n/z = 1/(X —1). It is then easy to verify that

f(z + 1)/(z —, 1)]„" =exp(ay) +o (1/n'),

[("-I)/n']' =y-"+0(1/n')

so that from Eq. (15) we have

lime „,(X) =y em~+ (01 /n),
tl~ 'o

(26)

(31}

where l, m are finite. Since ~ is independent of n by our choice of the contour C, we have

»m I- —c.i(~) =I- —(y "e"}.-It'1 a ~ I'1 8
(3o)

On substitution from (30) in (26} we find that the integral in (26} approaches a value indepent of n as n '-0,
the limiting value off„, (q) being given by

f', (q) =[f„,„(q)l. .
=iaD (&I)I'* (-'v 9& }q""'

ag "f 1 g 2+(l-I mt)/2
de e "&&' *'"

I
—— (y "e"),F, [(I + ln& I)/2 —ivy, 1+ ln&

I

—i&I; 1+ In& I; -~'/q'],
0
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where l, rn are finite. As mentioned earlier, the
asymptotic n dependence of the amplitude expres-
sion (23) is obtained from the term C„,. From
Eq. (22a), we readily have

(C„,)„=n-'~', (32)

Thus the Glauber scattering amplitude for 1s-nlrb
excitation of hydrogen shows an asymptotic n ' '
dependence in the limit n- ~.

Equation (31), along with Eq. (23), provides a
useful form for obtaining the asymptotic limit of
the 1s-nl~ Glazer amplitudes.

V. SPECIAL CASES

The Glauber scattering amplitudes for the transi-
tions 1s-ns and 1s-nP have been reduced by

Thomas and Gerjuoy. " As discussed earlier, the
closed form expressions derived by Thomas and

Gerjuoy involve increasing number of repeated
parametric differentiations of hypergeometric
functions as n increases. We have discussed else-
where" how these differentiations can be avoided
from the final expression of the scattering ampli-
tude. However, this method" also would involve
calculation of large number of hypergeometric
functions as E, m increase for a specific value of n.
Our present form of the Glauber scattering ampli-
tude given by Eqs. (23), (26), and (31) are free
from this latter type of trouble also. To show
this explicitly for the cases 1s -ns and 1s -np,
we give the corresponding expressions for the
scattering amplitude in the following.

Inserting l =m =0 in Eqs. (23) and (26) we have,
after some simplification,

E(ls-ns; q) =n '~'E; f„,(q), (33a)

f„,(q) = I'(1+ iq)I'(-iq)q"" '

dec j+ I jq 1 jq $ q (33b)

while the corresponding asymptotic form as n-~ (l, m being finite) is obtained from Eqs. (23) and (31):

[E(le-ns; q)]„„=n""X,.f;,(q), (34a)

f,',(q) = I'(I+ in)I'(- in)e'*" '

2'
x d8e'""~y'(2y'+ 4y'+ 3)X ' "",E,(-iq, I i'; I;--&'/q ) ~

0
(34b)

Equations (33) and (34) are only alternative forms of the corresponding expressions for ls-ns Glauber
scattering amplitudes given in our earlier work. " Indeed, by exploiting the recurrence relations of the
hypergeometric functions and by integrating once by parts, the earlier expressions of Ref. 15 can be re-
derived from Eqs. (33) and (34).

For Is-np, the term Y,*„(~v, y, ) in Eqs. (26) and (31) make them vanish for l = 1, m = 0 (Is-npo transi-
tion), which is already known as the selection rule for Glauber amplitude. The nonvanishing (Is-np„)
amplitudes are obtained by putting l = 1, m = + 1 in Eqs. (23), (26), and (31) as

n'
E(1s-np„;q)=~, 1 n '~'K;f~„(q),

f~ (q)= (ia)I'(I+i@)I (2-iq)e"'&q"" '2M6q .

x d88' A.
' "",E, 1-ig, 2-iq;2 —X q (35b)

The asymptotic form of Eq. (35) as n-~ (but l, m finite) is given by

[E(ls-np„; q)]„„=n'~'K, f ', „(q),

f, „(q)=— —I'(I+iq)I'(2-iq)e~'"~q"" ' d8e~"~X '"~E (I-i9, 2-&9;2; -& IP ) ~

0

(36a)

The expressions (35) and (36) are simpler than those given earlier' in that each involves only one hyper-
geometric function in the integrand.
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Scaled cross section

The center-of-mass differential cross sections
for 1s-nlm excitations are given by 8

I

++
Cb C4

O O

Cg
I I I

CO CD Cb
CD O
LO

O O O

Cv3

I I I I
CD Cb YC

00 M Cb CD

O O O O

=O'„,EC~Kf ~f„, (q)
~

',
on substitution from Eq. (23). In view of the dis-
cussion following Eq. (26) and that in Sec. IV, it is
convenient to introduce the scaled differential
cross sections:

dF(ls -nlm), do'(ls -nlm)
dQ, n1 dQ

d(r(ls —nlm)
nr=O dA

where we have substituted for C„, from Eq. (22a).
Then, from Eq. (37), we have

dF( s-nlm)
~

( ) ~,

Since the Glauber amplitudes are evaluated by
quantizing along a direction which lies in the scat-
tering plane and is perpendicular to q at each K;
and K~, Eqs. (3V) -(39) are dependent on the quan-
tization axis which changes with scattering angle.
However, if the magnetic sublevels are summed
over, the sum is independent of quantization axis.
Thus the 1s-nl differential cross sections,
summed over the magnetic sublevels, becomes

(40)

I
g
+

c0

g
+

I

~ ~

Q

Q
tD

0

8
QI
0

.Q
Vi
Ctt

0$

II

0
O

8

t

O

II

+
LO 00
00

O O

+ + I I I I
CD M W LO 00
CD C4 W-M C9

LO Cg W CD W CO

Cg
I

eqKo
CD

OaOO

+ +
g
CO M W
O O O

CD Cb Cb
LO CO

CD W CD CO

O O-O O O

CO CO

I I I
O

Cg Cg CO
Cb CD.

O O O

+ +
C4

00
O O O

I I I

LOW CD
O4 00 M CO
O4 LO 04
O O O O

I I I I

Cb CO
Cb M LO
00cD ~ CO

O O O O

++
00

I I I
C- 00
00 Cq CO

Cb

O'O O O

Cg
I I I

CD 00

cD. ~
O O O

++
LO M Cg
cD Cb
LO M Cb

~ ~ ~

O O O

C4
I I I I I I I

Cb
cD M v I Cb cD LO M

~ ~ ~ ~ ~ ~ ~

O O O O O O

+++
t Cb~t

W. - O 'cV
CQ

O O O

1 I I I
Cb CO CD

cD

O O O O

Cq O4
I I I

YC~ O
LO

OOO

CO

I I I I I I I I

O M W W 00
CD W LO CO M M 00

~ ~ ~ ~ ~ ~ ~ ~
O O O O O

and

do'(ls nl) ~~ gy ( )~ (41)

'The total 1s -nl cross section can be obtained
from the customary relation

v(1s-nl)=2m dy,
' dv(ls -nl)

1
(42)

where y is the cosine of the angle of scattering in
the c.m. system.

VI. RESULTS AND DISCUSSION

W'e have obtained numerical results of the Glau-
ber cross sections for 1s-ns and 1s-np excitations
of hydrogen by electron and proton impact colli-
sions. For the two projectiles, we have prepared
two general computer programs (PROG1 and
PROG 2) for calculating the scaled s- and P-ex-
citation cross sections for arbitrary discrete n
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TABLE II. Sealed differential cross sections [dc(ls —ap)/dQ] (a20/sr) at various electron energies for the process:
e +H(ls) e +HQP).

Scattering
angle
(deg) n=3

50 eV
n=4

100 eV
n=4 n=3

200 eV
n=4

0.0
3.3
6.7

11.4
16.6
23.4
32.1
50.1
69.9
87.9

0.102(+3)'
0.846(+2)
0.533(+2)
0.244(+ 2)
o.1oo(+2)
0.317(+1)
0.772
0.800(-1)
0.201(-1)
o.s38(-2)

0.798(+2) 0.592(+2)
O.6VV(+2) O.514(+2)
0.466(+2) 0.357(+2)
0.218(+2) 0.186(+2)
0.938{+1) 0.863(+1)
O.316(+1) O.311(+1)
0.806 0.844
0.841(-1) 0.895(-1)
0.209(-1) 0.219(-1)
0.878{-2) 0.926(-2)

0.263(+3)
0.140 (+3)
o.51o(+2)
0.148{+2)
0.407(+1)
0.802
0.125
0.109(-1)
O.229(-2)
0.806(-3)

o.2o6(+3)
0.116(+3)
0.451(+2)
0.139(+2)
0.408(+1)
0.846
0.134
0.114(-1)
o.24o(-2)
o.s44(-3)

O.153(+3)
O.921(+2)
O.385(+2)
o.12s(+2)
0.404(+ 1)
0.897
0.147
O.121(-1)
0.252 (-2)
0.890(-3)

o.584(+3)
O.123(+3)
0.280(+2)
0.524(+ 1)
0.871
o.9vs{-1)
0.118(-1)
0.100(-2)

o.45v(+3)
O.1O6(+3)
o.258(+2)
0.523(+1)
0.923
0.106
o.127(-1)
0.104(-2)

0.338(+3)
0.886(+2)
0.232 (+2)
0.517(+i)
0.982
0.117
0.].36(-1)
0.110(-2)

'x(+y) =-xx10

states. These programs have been checked by
running them for n= 2 and 3 states, when the exis-
ting Glauber results for 2s, 2p (Refs. 9-12), 3s,
and 3p (Refs. 10, 12) excitations are reproduced.
Separate programs (PROG 1A and PROG 2A) have
been prepared for obtaining the scaled limiting
asymptotic cross sections for large ri. The cross
section values predicted by these latter programs
(PROG1A and PROG 2A) agree to within 1% with the
predictions of the corresponding earlier programs
(PROG1 and PROG 2) at a value of n = 20.

The above programs have been employed to ob-
tain the differential and integrated Glauber cross
sections for both 8 -H and O'-H collisions. The
states which have been considered are n= 3, 4,
and for both 1s-ns and ls-np excitations. In ad-
dition, we have run the Is-ns program (PROG 1)
for an arbitrarily high state, viz. , n=10, to show
the usefulness of the present method. 'The scaled

TABLE IG. Scaled total Glauber cross sections
0'(1s ns)(10 mao) for the process: e + H(1s) 8
+ H(ns).

values of the differential and total cross sections
are presented in 'Tables I-VI, while some of the
results are also displayed graphically in Figs.
1-4 for convenient comparison with existing theo-

.ries as wel. l as with experiments where available.
Furthermore, we give in Fig. 5 a unified graphical
representation of the normalized total Glauber
cross sections for both electron and proton impact
collisions. These curves may be used in estima-
ting the relative 1s-ns and 1s-np Glauber cross
sections for any arbitrary value of n ~ 3.

A. Electron impact excitation

'Tables I and II contain our Glauber results of
the scaled differential cross sections (do/dQ) for
electron impact 1s-ns and 1s-np excitations, re-
spectively. The results are given at a number of
scattering angles for 50- 100- and 200-eV elec-
trons. The corresponding values of the scaled to-
tal cross sections (o) are presented in Tables III
and IV.

TABLE IV. Scaled total Glauber cross sections
0'(1s np)(mo) for the process: & +H(1s) e +H(ep).

Energy
(eV)

15
20
30
40
50
60
75

100
150
200
300
400

0.824
2.4Q

3.99
4.25
4.07
3+vv
3.31
2.69
1.90
1.47
1.00
0.761

Q.534
1.93
3.42
3.70
3.57
3.32
2.92
2e37
1.69
1.30
0.889
0.679

1Q

0.304
1.51
2.91
3.20
3.11
2.90
2.56
2.09
1.49
1.14
0.784
0-601

0.268
1.44
2.82
3.12
3.03
2.83
2.50
2.04
1.45
1.12
0.766
0.587

Energy
(eV)

15
20
30
40
50
60

100
200
300
400

1.05
2.19
3.23
3.48
3.46
3.34
2.76
1.85
1.44
1.22

0.803
1.88
2.85
3.09
3.03
2.97
2.45
1.63
1.27
1.07

0.526
1.53
2.45
2.68
2.67
2.58
2.12
1.41
1.08
0.908
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TABLE V. Scaled total Glauber cross sections
o(ls ns)(10 &ao) for the process: H++H(1s) -H+
+ H(ns).

—+ H()g) e + Q (fl5)

Lab
energy
(keV 10

10
15
20
30
40
50
75

100
200
300
500

4.00
3.29
3.42
4.46
5.08
5.26
4.88
4.26
2.61
1.84
1.15

3.67
3.00
3.05
3.91
4.46
4.62
4.29
3.78
2.30
1.62
1.01

3.36
2.74
2.70
3.41
3.89
4.04
3.77
3.30
2.02
1.42
0.887

3.30
2.69
2.65
3.33
3.80
3.94
3.68
3.22
1.97
1.39
0.865

~ 10

O
I-
4J
V)

10
O'l-

1s-ns transitions

The scaled 1s-ns Glauber cross sections for
n = 3, 4, arid 10 states given in Table I are found
to approach the asymptotic values (for n-. ~) with
increasing values of n. Indeed, the scaled cross
sections for n=10 and n-~ agree to within 2%%up

with each other except in the forward direction.
These clearly reveal the asymptotic validity of the
n~ law of cross sections discussed in Sec. IV. A
comparison of our differential Glauber predictions
(not presented here) with the 1s-4s calculation of
Saha et al."using the FBA method and a polarized-
Ochkur-Born (POB) approximation shows that
whereas the POB cross sections are in reasonable
agreement with the Glauber results at small
angles, the FBA cross sections differ widely
from the Glauber ones at all scattering angles. A

TABLE VI. Scaled total Glauber cross sections
0(1s~P)(«0) for the process: H+ +H(1s) H+

+HgP).

Lab
energy
(keV

(xn'/)03)

-5
0 0

i-. . . , l

20 50 ~OO

I a ~ I a

200 500 0000

e +H(r~)~ e-y H(nay

no ~0

R
O
F
O
Lal

N
tO
O
IX
O

0I-
10 (xsam/y )

ENERGY (eV)
FIG. 1. Integrated cross sections for 1s -ns excitation

of hydrogen by electron impact. , present Glauber
(n=4, 10); . , presentolauber (n ~). -- —,McDo-
we11 et al. (DWPO I, n = 4) (Bef. 21); --, Saha et al.
(FBA, n=4, 10) (Bef. 18); -- —.— —,Saha et al. (POB,
n=4, 10) (Ref. 18); ---, Bayne and Heenen (SOD, n =4)
(Ref. 20).

10
15
25
40
50
60

100
200
400
500

0.671
1.16
2.50
3.58
3.84
3.92
3.64
2.70
1.76
1.50

0.638
1.06
2.24
3.21
3.44
3.51
3.25
2.40
1.56
1.33

0.600
0.935
1.95
2.81
3.01
3.07
2.83
2.08

- 1.35
1.15

I

20
I I I s t s a I

50 00
ENERGY (eV)

I

200
a a I

500

FIG. 2. Integrated cross sections for 1g np excitation
of hydrogen by electron impact. —,present Glauber
(n = 3, 4, ~); . , Syms et al. (DWPO II, n = 3) (Hef19);,Saha et al . (FBA, n = 3) {Bef.18); ——,
Bayne and Heenen (SOD, n=3, 4) (Ref. 23); ~, experi-
ment by Mahan et al. (Hef. 20).
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FIG. 3. Integrated cross sections for &s ns excitation
of hydrogen by proton impact. —,present Glauber (n
=3, 4, 10, ~); ~ ~, Shakeshaft Pef. 26);
Bayne and Heenen (SOD, n=3, 4) (Ref. 25); —,Roy
et al. (FBA, n=3, 4, ~) Qef. 24).

0.4 I I l & )»I
5 10

V„(~)
20

FIG. 5. Integrated Glauber cross sections for 1s ns
and ls np excitations in e + H and H'+H collisions
plotted against the square of the incident particle speed
(v&). Cross sections are normalized to the scaled asymp-
totic results.

H +H()s) ~H+H(gP)

)p

O

tA

V)
Vl
O

o

&0

(xH 43)

$0 20
I I I I I JI I I a I I

50 100 200 500
LABORATORY ENERGY (keV)

FIG. 4. Integrated cross sections «»s np excitation
of hydrogen by proton impact. ---, present Glauber (n
=3, 4, ~); ~, Shakeshaft (Ref. 26); ——,Bayne and
Heenen (SOD, n=3, 4) (Ref. 25); --=——,Roy et al.
(FBA, n=3, 4, ~) (Ref. 24).

distorted-wave polarized orbital (DWPO II) calcu-
lation by Syms et al."who take account of target
distortion, predicts 1s-3s cross sections in good
agreement with the. POB and Glauber results at
small scattering angles.

Considering the case of the present 1s-ns total
Glauber cross sections, it is found that for inci-
dent electron energies exceeding 30 eV, the Glau-
ber results for the n= 3 state show reasonable
agreement with the only available experimental
data of Mahan et al." The agreement of the pres-
ent Glauber results for n= 3 and 4 states with the
existing other theories "2 'j is also good except
for the case of a second order diagonalization
(SOD) calculation of Bayne and Heenen, "which
appreciably underestimates all other calculations
and the measurement. In Fig. 1, we plot the
present electron impact total Glauber cross sec-
tions for 1s-4s and 1s-1os transitions at various
incident electron energies between 15 and 400 eV.
Each set of results shows a peak around 40 eV.
'The energy-dependence of the cross sections are
similar to that obtained earlier for 1s-2s and
1s-3s transitions. '" We compare the 1s-4s
Glauber cross sections of Fig. 1 with the 'FBA and
POB results of Saha et al,"as also with an earlier
DWPO ca'jaculation of McDowell et al. ,"in which
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target distortion was neglected (DWPO I). Where-
as the FBA cross sections still approach the
Glauber values at the highest energies considered,
the POB results coincide with the latter ones
above 100 eV. Both the FBA and POB curves,
however, shoot high at lower energies in complete
disagreement with the Glauber curve. On the
dther hand, the DWPO I results are in excellent
agreement with ours even up to 40 eV on the low

energy side, the two results actually coinciding
above 55 eV. The SOD results, "as in the 1s-3s
case, again underestimate the predictions of all
other theories in the energy range 50-400 eV. The
1s-10s Glauber cross sections of Fig. 1 are com-
pared with the only available FBA and POB re-
sults. " The relative features of the calculations
are similar to that observed for 1s-4s excitations.
The scaled asymptotic Glauber cross sections
[(1/10)'ty(ls-ns}) included in Fig. 1 are almost
indistinguishable from the 1s-10s results indica-
ting the n ' dependence of cross sections in the
whole energy range 15-400 eV for n ~ 10.

2. 1s-np transitions

As in the case of 1s-ns transitions, the asymp-
totic validity of the n~ law of cross sections is al-
so observable for 1s-np transitions from the
scaled Glauber differential results of Table II. A
comparison of the Qlauber cross sections with
DWPO II results of Syms et al."shows that both
are in good agreement at small angles.

In Fig. 2, we display the present total Glauber
cross sections for electron impact 1s-np excita-
tions. 'The results for n= 3 state have already
been compared by Syms et' a/. "with their DWPO
II calculations as well as with other theories"'"
and the only available measurement of Mahan et
a/." However, Syms et al. . do not include the
SOD calculation of Bayne and Heenen, "who have
considered the n= 2-4 excitations. The n= 4 re-
sults of Bayne and Heenen happen to be the only
theoretical data available for comparison with our
n= 4 results. We hence consider it worthwhile to
include the n= 3 Glauber cross sections in Fig. 2

and compare these with the SOD as well as the
DWPO II and FBA" results. Whereas the DWPO
II and Glauber calculations can predict the correct
energy dependence of the measured data reason-
ably well throughout the range of energies consid'-
ered, the SOD calculation appreciably overesti-
mates all other results. The 1s-3p SOD cross
sections, however, approach the Glauber values
near 500 eV. These relative features of Qlauber
and SOD calculations are observed also for the
1s-4P transitions (Fig. 2). The asymptotic curve
for 1s-nP excitations displayed in Fig. 2 gives

the scaled values of [(—,')'o(ls-np)] in the limit
n-. The similarity of the energy dependence of
the asymptotic total cross sections with those for
the n= 3 and 4 states is immediately observable.

B. Proton impact excitation

'Tables V and VI contain the present integrated
results of the scaled Glauber cross sections
[do'(1s —ns, np)ldQ] in the proton energy range
10-500 keV for 1s-ns and 1s-np excitations, re-
spectively.

1. 1s-ns transitions

In view of the remarkable success of the Qlauber
theory in predicting the correct angular distribu-
tions for inelastic scattering of intermediate ener-
gy protons from hydrogen, as observed in the re-
cent measurement of Park et al.' for n= 2 excita-
tions, it may be interesting to study the 1s-ns and
1s-np differential Glauber cross sections in H'-H
collisions.

A graphical comparison (not presented here) of
the center-of-mass differential. Qlauber cross sec-
tions for various n reveals that the angular depen-
dence of the proton impact results at lower ener-
gies differ considerably from the corresponding
features in electron scattering. This has already
been observed by Franco and Thomas" for n= 2

and 3 excitations. Thus, the differential curves
for 15 keV protons exhibit minima at small scat-
tering angles for all the n= 3, 4, and 10 states.
This feature of the differential cross sections per-
sists in a gradually less-pronounced manner upto
some higher energies, the reminiscence of which
is observable as a shoulder in each of the curves
for 50 keV. 'The FBA predicted angular differen-
tial cross sections for 1s-4s transitions" are
seen to differ widely from the Glauber results at
all energies and scattering angles.

The minima in the curves for 1s-ns differential
Glauber cross sections at proton energies around
15 keV cause a corresponding minimum in the to-
tal cross sections near 15 keV." This is observa-
ble in Fig. 3, where we plot the 1s-ns integrated
Qlauber cross sections against the incident proton
energy for the states n= 3, 4, 10, and ~ and com-
pare these with the available calculations. ""
Whereas the FBA'4 and Glauber results (for n= 3,
4, and ~) coincide near 500 keV, the SOD" results
(for n = 3 and 4) appreciably overestimate both the
former results throughout the energy range con-
sidered. It may here be recalled that for n= 2 ex-
citations, first-order theories like the FBA, and
distortion methods, as well as the coupled-state
calculations in the impact parameter treatment
neglecting charge transfer channels and the SOD
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calculation, "do not predict any oscillation in the
cross section-energy curve near 15 keV, as ob-
served in the Glauber results (cf. Gerjuoy and
Thomas' ). inclusion of charge transfer channels in
close coupling calculations, on the other hand, do
predict the oscillations in qualitative agreement
with the Glauber calculations. Furthermore, the
Glauber results" show very good agreement with
the experimental measurement" for 1s-2s excita-
tions even below-10 keV. This success of the
Glauber theory has been considered by Franco and
Thomas" to result from a probable implicit inclu-
sion of coupling to charge transfer channels. How-
ever, as argued by Gerjuoy and Thomas, ' this ex-
planation may not be well founded in view of the
inability of the Glauber cross sections to disting-
uish between the positive and negative charge
states of an incident particle. A recent coupled-
state calculation by Shakeshaft" using a scaled
hydrogenic basis set with 34 states predicts cross
sections for the n= 3 state lying between the FBA
(Ref. 24) and SOD (Ref. 25) results above 45 keV.
But, whereas the FBA and SOD results go on in-
creasing at lower energies, the coupled-state re-
sults" fall rapidly below 25 keV in qualitative
agreement with the Glauber curve of Fig. 3. How-
ever, the coupled state results are not available
below 15 keV, and the question whether the oscilla-
tion in the Glauber-predicted cross-section-ener-
gy curve near 15 keV is of a true physical nature
or is just an artifact of the Glauber theory still
remains undecided. Proper elucidation of this
point for n ~ 3 states should hence await further
experimental measurements, as also coupled-
state calculations at low and intermediate ener-
gies. The curves for n= 10 and ~ of Fig. 3 give
the scaled Glauber cross sections [(-,')'F(ls-ns)]
and, as in the case of electron impact collisions,
hardly differ from each other.

2. 1s-np transitions

The present proton impact center-of-mass
Glauber differential cross sections for 1s-np
transitions for various n (not presented here)
show shapes similar to those obtained earlier by
Franco and Thomas. "

The 1s-np total cross sections are plotted
against energy in Fig. 4. The Glauber results for-
the n= 3 state show excellent agreement with the
34-state results of Shakeshaft" throughout the en-
ergy range (15-200 keV) considered. Whereas
the FBA cross sections'4 for all the n= 3, 4, and
~ states still approach the Glauber values at the
highest energy considered, the SOD results" co-
incide with the FBA results above 200 keV for the
3p excitation and with the Glauber results above

150 keV for the 4P excitation. The energy depen-
dence of the scaled asymptotic cross sections is
similar to that observed for 1s-3p and 1s-4p
transitions.

C. A unified presentation of normalized electron and
proton impact total cross sections

As already known, for sufficiently high energies,
the electron and proton impact total cross sections
for a given direct process have the same value
when considered as a function of the relative speed
(v, ) of the incident particle. Our results of the
total 1s-ns and 1s-np cross sections presented in
Tables III-VI conform to these facts. If v; is ex-
pressed in atomic units, the energy of an electron
is given approximately by 13.6 v,' eV, while that of
a proton by 25 v,'keV. Thus, a 200-eV electron
has roughly the same velocity as a 400-keV pro-
ton. A comparison of the 1s-np cross sections of
Tables IV and VI at these energies shows that the
results agree to within 5%.

Furthermore, as we have noted from Figs. 1-4,
the integrated electron and proton impact Glauber
cross sections for various values of n show simi-
lar energy dependence for either of 1s-ns and
1s-np transitions. This is in conformity with the
discussion of Sec. IV where it has been shown that
the cross sections obey an n ' law asymptotically
as n '- 0. We may exploit this fact to obtain a
unified graphical representation of the various
1s-ns and 1s-np total Glauber cross section in
e -H and H'-H collisions by plotting the normal-
ized values of the cross sections. The considera-
tions of the preceding paragraph then suggest that
the normalization be made to the scaled asympto-
tic values of the cross sections.

We have plotted against v& the integrated Glauber
cross sections for both electron and proton impact
collisions after normalizing the cross sections for
n ~ 3 states to the corresponding scaled (i.e., n
cubed) asymptotic values:

lim F(1s-ns, np) = lim n'o(ls-ns, np) .

The H' impact results are normalized at 100 keV,
while the e impact results are normalized at
100 eV. For either process, each of the electron
and proton impact curves for various n show a
complete superposition above some energy value.
For H' impact curves, this occurs above approxi-
mately 75 keV (v,'=3 a.u.). For e impact curves,
the superposition occurs above nearly 65 eV (v',
= 5 a.u. ) in case of 1s-ns excitations and above
about 50 eV (U,'.—4 a.u. ) in case of 1s-np excita-
tions. The results are shown in Fig. 5. As ex-
pected, the e and H' impact curves for 1s-ns ex-
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citations are seen to approach each other at high
incident velocity, while those corresponding to
1s-np excitations coincide above about p,'. = 16 a.u.
It should be noted that Fig. 5 gives the exact
scaled asymptotic cross sections for 1s-ns and
1s-np excitations in e -H and H -H collisions,
while for any discrete state n~ 3, the cross sec-
tions shown are only the normalized values.

1he curves of Fig. 5 may be used to furnish the
relative values of the Glauber cross sections at
any two energies for arbitrary 1s-ns or 1s-np ex-
citation to n~ 3 states. .Furthermore, since the
Glauber and Born cross sections converge at high
energies (see Figs. 1 and 2), a Born calculation
for any given 1s-ns or 1s-np excitation at high en-
ergy (cf. Ref. 24) would then suffice for an esti-
mation of the absolute Glauber cross sections for
that particular n excitation at lower energies.

To illustrate the procedure, we consider the
H' impact 1s-ns curve of Fig. 5. The normalized
cross sections at v,'-=8 and 16 a.u. are read'as

0.197 and 0.106 in units of ma', . The absolute value
of the scaled (n cubed) Born cross sections for
1s-4s excitation at v,'=16 a.u. (E= 400 keV)
amounts to 0.128ma', (Ref. 18). This may also be
taken as the value predictable by the Glauber
method, for the Glauber and Born curves are co-
incident at 400 keV (see Fig. 3). Then we obtain
for the absolute value of the scaled Glauber cross
sections .at 200 keV for 1s-4s excitation in H'-H
collision:

[o'(1s - 4s)]moo„,v= 0.128(0.197/0.106)wa2

which comes out to be 0.024ma', and differs by only
4% from the exact Glauber value, 0.023wa'„as can
be read from 1able V.
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