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Spin polarization of electrons induced by strong colhsional magnetic fields
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We calculate the spin polarization of 1scr vacancies and emitted b electrons induced by the strong magnetic field

(~B,„~-10"6)in collisions of very heavy iona (Z, +Z,= 178). The electron excitations are determined by the
solution of coupled-channel equations within the quasimolecular basis states including the vector potential. The
formulation is extended to the many-electron case. Spin polarizations of the order of 5-10 % for impact energies
below the Coulomb barrier are predicted.

I. INIODUCTION

During the last years more and more interest
has focused on the behavior of electrons moving
in strong magnetic fields. Several years ago J.
Rafelski and B. Muller pointed out' that the strong-
est magnetic fields on a microscopic scale acces-
sible to experimental observations are created in
collisions of very heavy ions with (Z, +Zs)» 1.
Their magnitude can simply be estimated by con-
sidering the magnetic field strength produced by
a circular current along the symmetry axis. It
follows from Biot-Savart's law that

x

I
B(r)

I
—s &o (r2+ ft~) s/2

mhere R denotes the radius of the current loop
and r the distance from its center. The heavy
ion current I is given by I= (Zt + Z2) e v„,/2rrA
Assuming Zq+&2 ——178, v„,=0.1c, and R=15 fm,
the maximum magnetic field strength (r =0}gets
IB I

=4X10' G. In superheavy quasimolecules
the 1so electron moves almost adiabatically
close to the 'nuclei and is highly localized. Hence
it may serve as test particle for the high —B
limit of quantumelectrodynamics. For r» R,
B is of the dipole-type IB(r)

I
-r . The 1sa-

Bohr orbit is located at about r -100 fm where
we still find IB(r= 100 fm) I= 10"G.

The electric and magnetic field strength as
mell as the corresponding density distributions
for two colliding heavy ions moving on straight
lines with classical impact parameter b can be
found in Ref. 2. In preceding papers, the Zeeman
splitting of innermost bound electrons and spin
polarizations due to dynamical excitations in
superheavy quasimolecules have been calculated
using first-order perturbation theory. In this
paper we present a treatment of the dynamical
behavior of electron configurations under the
action of time-varying Coulomb and magnetic

.fields. Within the adiabatic, quasimolecular pic-
ture we solve for the first time the coupled-
channel equations for the electron-occupation
amplitudes with inclusion of the scalar and
vector potentials in the transverse Coulomb gauge.
Retardation and electron-screening effects are
neglected in our calculations. The first is justi-
fied as long as the heavy ions are, not relativistic.
Electron screening will probably only change
the magnitude of ionization, but should have very
small effect on the polarization. With an extended
version of the developed computer code, in prin-
ciple, it is possible to predict ionization proba-
bilities and 5-electron distributions for the next
heavy ion accelerator generation up to S„,= 500
MeV/u. Different techniques ' must be applied
for the theoretical description of ionization phen-
omena in relativistic heavy ion collision.

This paper is organized as follows. The single-
electron-coupled channel equations for adiabatic
basis states are presented in the next section.
In Sec. III the vector potential in the Coulomb as
well as in the Lorentz gauge is derived and a
multipole expansion is performed. Section IV
is devoted to the calculation of the basis states
for electron wave functions and to the evaluation
of matrix elements of the magnetic interaction.
In Sec. V the many-electron formalism is dis-
cussed and expressions for the polarizations of
particles and holes are derived. Our numerical
results for the system Z, + Z = 178 (pb+ Cm}
are exhibited in Sec. VI. We have chosen this
particular quasimolecular system because cur-
rently it is the heaviest system where the 1so
ionization probability has already been measured'
at GSI.

II. DYNAMICS OF A SINGLE ELECTRON
IN THE FIELD OF TWO COLLIDING

HEAVY IONS
In this chapter we present-the basic formalism

for single-electron excitations in collisions of
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. 84 ' =a@
at (2.1)

where & is the Hamiltonian, which is specified
below.

The time-dependent wave function C,(t) is ex-
panded in terms of the complete adiabatic basis
states Pt

very heavy ions. Starting from an adiabatic
basis set we calculate the occupation amplitudes
a,&(t} of an electron moving in the combined elec-
tric and magnetic field of both scattering ions.
Our considerations are based on the notations
and results of Refs. 8 and 9. The dynamical
behavior of the electron 4, is described by the
time-dependent Schrodinger equation (g = c = 1}

x exp(tX „), (2.7)

with the phases
X)A,

=
Xy Xn ~ (2.6)

As usual, we split the BlBt operator into its radial
and rotational coupling components

a ~ 8—~R——t(0 'J .
et 8R (2.9)

The computation of the B/Bt coupling matrix ele-
ment is described in detail in Ref. 12. We adopt
the same notation and the results of that article.

HI. THE VECTOR POTENTIAL OF TWO
COLLIDING NUCLEI

ferential equations for the occupation amplitudes
a,.~(t),

a,&(t)=-para«&l (&s g~ ( )+i(('&IH'(t)l(', ))

with the phase

(2.2)

(2.s)

Starting from elementary classical electro-
dynamics we first wiQ derive the vector poten-
tial in the Coulomb gauge created by the colliding
nuclei. Except for a gauge function the scalar
potential V and the vector potential X are deter-

. mined by the solutions of the inhomogenous wave
e(luations" (c = 1):

The sum in Eg. (2.2) is understood to include an
integration over continuum states. The basis
states Pz are determined as solutions of the
stationary two-center Dirac equation"'"

H, Q =[np+Pm, + V (r, R(t))](t(&(r,R(t))

= E,(R(t))(t&~(r, R(t)) . (2.4)

The method of solution first proposed in Ref. 1
has been extensively discussed in Ref. 12. The
relativistic Dirac Hamiltonian H, depends on
time parametrically via the internuclear separa-
tion R(t) entering in the two-center Coulomb po-
tential V (r, R(t)).

The total Hamiltonian in (2.1) is split into

QV'V+ —(v .A) =4vpe
Bt

BVI&'A —
p

A —V] V.A+
)
=4vgeSP & et &

(s.l)

(3.2)

where p and J denote the heavy ion charge and
current density, respectively. Assuming point-
like nuclei we have

p(r, t)= Q Z,e5(r —R,.(t)), (3.3)

J(r, t)= Q Z ev (t)5(r —R (t)),
j=l,2

(3.4)

with v, being the heavy ion velocity. The trans-
verse Coulomb gauge is defined by

H=H +H', (2.6) v A=o
C (3.6)

where &' contains any interaction responsible
for electron excitations which is not included in

In the case of magnetic interactions it is
given by

H -o. A (2.6)

with the vector potential A created by the current
of both colliding ions. A factor -e is included in
the definition of the potentials V and ~. Inserting
the ansatz (2.2) into E(l. (2.1) followed by pro-
jection leads to a set of first order coupled dif-

V,(r, t) =-e ' cPr~p(r, t)
lr- r'l (3.6)

With E(l. (3.3) the two-center Coulomb potential
becomes

+le +2e (3.7)

and hence one obtains in this gauge the instantan-
eous Coulomb potential as
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The vector potential obeys the differential equa-
tion

(3.8)

netostatic expression

(3.20)

with the transverse current. "
J(r', t)J (r, t)= —f xvx ' d'r~ .

4m lr —r'I

Writing

Jt=J —J
and with the longitudinal current

(3.9)

Inserting now the transverse current (s.i2) and

integrating by parts finally yields for the vector
potential in the Coulomb gauge"

- (- ) g Z,e'v, (t)
'~ ~ ' 2l r R, (-t) I

g Z,e'f, (t}'[r R,-(t)][r -R, (t)]
2 2 I P —R s(t) I

'
-

( )
1 - &''J(r', t) ~

4w )r- r') (3.11) g(»+~ o&
C C

(3.21)

one finds with Eg. (3.4)'3 The corresponding result in the Lorentz-gauge,
Az(f', t) follows from (3.18), (3.4), and (3.21)
neglecting also retardation:

(3.22)

ep
V Ai+ — =0

leads to the equations

82
V VL, —

2 V~=4@Pe

(s.is)

(3.14)

Q2

V AL, —,A1, =4gJe .et' (3.15)

Employing the retarded propagator

In the Coulomb gauge (3.5) all magnetic and
retardation effects are completely contained in
the vector potential. On the other hand, the
Lorentz gauge

We investigate now the influence of the vector
potential (3.21) in the Coulomb gauge on spin po-
larizations of E vacancies and 5 electrons. This
problem has been already studied inconsistently
in Ref. 3 employing time-'dependent perturbation
tl&eory for the dynamical excitations of electrons.
The inconsistency came about with the choice of
the quasimolecular basis states, calculated with
the scalar potential (3.7) in the Coulomb gauge,
while the vector potential was treated in the
Lorentz gauge (3.22). However, " we shall see
that according to the correct results of this art-
icle, the final conclusions of Ref. 3 remain valid.

For simplicity we will restrict our following
derivations to symmetric systems with

5(t' t+ I r —r'I)—
Gr, t;r, t

the solutions can be expressed as

(3.16)

Z1 Z Z (3.23)

(3.24)

and choose our coordinate system according to

81=—R2=- 2R,

t&(r', t —ir —r'I) d r',
Vz r, t =-e I+-&t

(~ )
J(f, t- lf'-I" I) ~,AI, , t =-e, y

(3.17)

(3.18)

In the same way it results from Eg. (3.8)

As a basic approximation we neglect now all
retardation effects (t —

~

I'- f
~

- t). Their influence
on the scalar potential was estimated'4 to be of
the order of 0.1% for heavy ion velocities below
the Coulomb barrier. Thus we employ the mag-

V1= —V2= —P V ) (3.25)

i.e., the coordinates are measured from the
geometrical center of the colliding system. The
nuclear trajectories arp prescribed as Ruther-
ford hyperbolas in the x-z plane with the z axis
connecting both nuclei. R(t) and v(t) denote the
internuclear separation and the relative velocity

'of both nuclei. v can be divided into its radial
and azimuthal components

v=v„e~+v~e~ = v„e,+ v~e„, (3.26)

with the radial velocity v„=R(t) and the rotational
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velocity

v„b
vo R(f) ' (3.27)

where y denotes the polar angle with respect to
the z axis. The multipole expansion of the gauge
term A,"' is more complicated. According to our
choice of the coordinate system we can write

R= R, v„= ~v(f=~)
~

istheasymptoticheavyion
velocity and b denotes the classical impact pa-
rameter.

Next we perform a multipole expansion of the
vector potential (3.21). For that purpose we shall
make use of the following expansions":

1»
A, = —4Ze

I

—[vox+ vz(z+ aR)]~(2& & 2 t & f+2R
)r+- I'

1»
+ [vox+ vz(z —~aR)] g -; (3.34)

I jt'- 2R I3

1 ~ l r&'

~p g~
= ~ (+1) &+1 Pg (cosy),

l

with r&=min(lr
Also

(3.28) and we may decompose this gauge term into

A~+'= —zZe (E„5„+E,5,) . (3.35)

2 l
= -Q (+I)'(2l+ 1) „,P, (cosy),

l =0 a l +1

(3.29)

Notice that O„and 6', are not orthogonal. %ith
z = r cosy and the expansion (3.29)-(3.32), it
follows that

E~ f+] vz g Q, Pj(cosy) t ~x
2 l 0 2 r l+1

OO l
= g (+I)'(1+1), P, (cosy), (3.30)

l=0
LA 1 rl +1

+ vo ~ +, (2l+ I) —P, (cosy)
2 l-1,3

for r&a; and
2 l

(+1)'(21+1) „,P, (cosy), (3.31)
l=0

r'"
OO rl

E.=(+)vz Z
l

(3.36)

= + g (+1)'I «P, (cosy) . (3.32)Xl'
r 1 rl +1

(2I+ 1) —P, (cosy)
i=&42

(3.37)

for r &a. With (3.28) we immediately derive for
the Lorentz term in (3.21) (X = —25)

A,"' = a Az=-(v„e, +voe, ) 2 ... P, (cosy)
l J.~ 3

(8'.33}
= —k Ze'(G, 6',+ G,O,),

In (3.36) and (3.37) the upper (lower) line is valid
1 1for r&zR (r&aR) The fictit.ious divergence in

the z~-terms can be eliminated by combining the
corresponding succeeding terms of the series
expansions. Finally one can make use of the
relation

—P, (cosy) =~2zZ (2l'+ 1)r l

r 1&t'
[y, ,(cosy) —y,~,(cosy)] .

1 0-1 0 00
(3.38)

Now the vector potential induced by the heavy ion current is expressed by the radial coordinate r and
the polar angle y. If equation (3.38) is inserted into (3.36) one finds after some elementary transforma-
tions

E„=f$ vz, P,(cosy),'„—v o —, v'2z
~ 2 ~

[I'«, (cosy) —y,„,(cosy)]
2 laO 2 rip,

(3.39)

In the same way one obtains for I'

E,=(+)v&~ P,(cosy) ...+Vo 42vl ( [y,„,(cosy) —y, ,(cosyg (3.40)
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IV. ELECTRONIC WAVEFUNCTIONS
AND MAGNETIC COUPLING MATRIX ELEMENTS

In order to solve the stationary Dirac equation
(2.4) with the two-center potential (3.7) and (3.24)
in the CouLomb gauge, we perform a mul. tipole
expansion'" of the basis state wavefunction P(f'):

(I)
"-"(y.(.) x.'.

~
' (4.1)

wit '6

(4.2)

j.
l for j=l —2,

K-
—l-I for j = l+~,

with the total angular momentum j =
I I

r—r2. The
magnetic quantum number p, denotes the projec-

(4.3)

X."= Z (I, -', j, u -m, m) 1'r" (y)X
m= &1/2

f„(r) and g„(r) are small and large components of
the radial wavefunction. K is connected to the an-
gular momentum through

tion of the total angular momentum on the axis
connecting the two nuclei (e axis). With (3.28)
also the two-center Coulomb potential can be
expanded into multipoles which yield for symme-
tric systems and pointlike nuclei

V(fr, R) = g V r(r, R)Pr (cosy),
l=0, 2

with (Z, = Z, = Z)

(4.4)

(4.5)

d K+ 1g„—(r) = (E+m)f„(r) — g„(r)

—Qf„(r)Vr(x, R)A( )r r „),
R, l

d K —1—f„(r)= f„(r)—(E m)g„(r)—

+g A('r)Vr(+ R)A&, r, a)
R, l

(4.6)

Vr(r, R) = —2Ze'

The coupled radial equations then read (see, e.g.,
Ref. 12)

with

Ar"..r, m) =&X." IPr IXm&

(- 1)" "(/„, 2,j „, p, -m, m)(lz, a,j„,lr, -m, m)[(2l„+ 1)(2lz+ 1)])~'
a=a&/2

0 0 0 m-p, 0 p. -m
(4.7)

For the numerical treatment of eqs. (4.6) it is
convenient to transform the radial differential
equations to a logarithmic scale. Writing E„
=rf„,G„=rg„, and x=r,e", it follows that

dC„
rrG„+ (E+m-)F„r F„VrrA—~( „, ~) )

R, l

(4.6)
" = rrF„—(E -m)G„r+Z G&VrrA(„, r rr) ~

gl
Extensive numerical studies of the two-center

Dirac equation for electronic bound states were
performed by Betz et al. for the symmetric
systems Pb+ Pb and U+ U in Refs. 12 and 17 and
for the asymmetric system Pb+ Cm in Ref. 18.
With the multipole expansion of the vector poten-
tial (Sec. III) and the two center wavefunctions
we are now able to evaluate matrix elements of
the magnetic interaction for bound states

(4.9)

n is expressed in the standard representation"
by

0 a
D=

o 0
(4.11)

The angular integration in (4.9) can be performed
analytically.

In heavy ion collisions excitations to the con-
tinuum play a major role for inner-shell vacancy
formation" and can therefore not be neglected.
However, continuum solutions of the two-center
Dirac equation are. unknown at present. Therefore
we are forced to apply the monopole approximation
of the tmo-center potential, where only the term
with l =0 in the expansion (4.4) is retained. This
monopole approximation was first proposed in
Refs. 19-21. Its validity has been investigated
in Refs. 12 and 22. Then the basis states simplify
to wavefunctions with good angular momentum":

H'= ~Ze2[(G, +F,)u,+ G„u, +E„u„j . (4.10)

Using Eqs. (2.6), (3.33), (3.39), and (3.40) one
can write g(r) x„"

0„„(f')=
~f(~) x-".

(4.12)
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with the usual radical equations

dg K+ 1= (E+ m —Vo)f — g,dr

df z —1f—(E —m —Vo)g .
dr y'

(4.13)

ly" for both bound and continuum states. For
the calculation of excitations induced by the vector
potential and of the diagonal interactions leading
to a Zeeman splitting of electron states we still
need the matrix elements (4.9).

First we consider matrix elements of the type

The monopole potential for pointlike nuclei is
simply"

4Ze'
for r& 2R,

with L being even andM = —1, 0, +1. Using

(4.15)

V,(r, 8) =
2Z8

for r&~R .r

(4.14) 0 cr„

0 0 (4.16)

For the more realistic case of extended nuclei
we refer to the discussions of Hefs. 12, 22, and
23. Equations (4.13) have been solved numerical- OrXg ——X g & (4.17)

we find after angular integration" "
dgDg f' g Xl,j, p ~l~j, p; ~

— g, j~p (4.18)

with the abbreviation

X(l', j', p. '; l,j, p, ; L, M)= g (-1)" (l', 2, j', p.
' —m, m)(l, 2, j, p-m, m)

m=+&4

-p. '+nz p -m M 0 0 0

(21'+1)(21+1)(21+1))'1 1'

4w (4.19)

Here l and j denote the orbital and total angular momentum related to ~, whereas l and j are connectet'.
with -z and can be taken from Eq. (4.3). The selection rules for this matrix element are p' = p, +M and
l'+ l+ I being even.

Next we consider the matrix elements

(4.20)

with

1 0
(Tg

0 -1
(4.21)

Here I. is odd and again M = -1,0,+1. Thus we get

M, =i r'dr DI r g' Y l', j', p, ';l, j, p;I, M — 'g Y l, j', p, ';l, j, p,;I,M
0

with the abbreviation

Y(1',j', p, '; l, j, p, ;L,M) = g sgnm(-1)" "(l', k,j', p'-m, m)(l, a, j, p —m, m)
m~yI/2

(4.22)

(21'+ 1}(21+1)(21 + 1))'1' 1'

4m p'+m p. -m M 0 0 0
(4.23)

~, differs from M„only by the signum in the sum and by the exchange of the angular momentum quantum
numbers l and l. This leads to the modified selection rule: l'+ l+ I is even.
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'V

Finally it is necessary to calculate the matrix elements

m„= Q „„~D,(r)~„Y„~y„„&

with
0 1

e

1 0

After angular integration one obtains (L is odd)

with

z g ~l g p' »g~pL~O @ZAN 'g 'p &l~g~p~I~O
0

Z(f »g» P» l»g» P;I » 0) = Q (- 1) (l, 2»g» P +St» —82)(l» 2, g» P, —81» 1th)
m~+&/2

(4.24)

(4.25)

(4.26)

L l' l L'
(21 +1)(2'1+1)(2I+1))'1 1

4w (4.27)

(4.28)

—p,
' —m p, -m 0, 0 00

Obviously this matrix element exists only between states with p, '= p, +1. 1'+ l +L must be even.
Having obtained all results relevant for the general case now we focus our attention to the magnetic coup-

ling between nso states in the monopole approximation (j = 2, l = 0, f = 1). Then the angular momentum
coefficients simplify to

X(0, 2» %2» 0» 2» +2» 0, 0)=X(1» 2» +2» 1» 2» +2» 0, 0)=

Y(0» 2» k2» 1» 2» M» 1» 0)= Y(1» 2» +2» 0» 2» k2» 1, 0)=-
a'4w

(4.28)

Y(0» 2» T2» 1» 2» k2» 1» Wl) = Y(1» 2» T2, 0, 2» k2» 1,+1)=S(';)' (4.30)

(4.31)Z(0» 2, Tz» 1, 2» +2» 1, 0)= -Z(1, 2» +2» 0, 2, +2t

All other possible coupling vanish due to the se-
lection rules or due to the triangle rule. If we
insert the values (4.28)-(4.31) into the corres-
ponding rhatrix elements we find that all con-
tributions to couplings between s states with the
same magnetic quantum number just cancel in the
Coulomb gauge:

&s'+-.'~a ...~s+-,'&=0.

This is different from the Lorentz gauge, where
we obtain

(S'+
~ H~, „~S +-2'

&

2'
iV, ~'«~2(fs'-f'Z) (4»)

0

1, 0)=w
1 1

v 3 q4~

which is the same ig the Coulomb as well as in
the Lorentz gauge. Futhermore we note that ac-
cording to the selection rules in symmetric sys-
tems, all. magnetic mixed couplings between

1 1
s +3 and p, /2+ p- states vanish in the monopole ap-
proximation.

For the magnetic coupling between py/2 states
we found the same results as for the s»2 states
except for an overall minus sign in Eq. (4.N).
In just the same way as we treated the magnetic
interaction it is possible to investigate the in-
fluence of higher electric multipoles (1 ~ 1) of
Eg. (4.4) on nso states in the monopole approxi-
mation. In this case we have to compute the
matrix elements

~+so, ek ~
(4.34)

However, also in this case there is no contribution
to the Zeeman splitting: Due to the minus sign
in the integrand of (4.33) the diagonal matrix ele-
ments (s =s) vanish. For the spin-flip transitions
we find in summary the simple result

(s'+2 ~a' ~s+-2'&

gg2 oo

in» r'dr 2 (fg'+ f 'g)
0

M. =&y'„„~a.(@„„&, (4.35)

with

H, =g VP, (cosy) . (4.36)

Using the angular integrals (4.7) we find immedi-
ately that M, = 0 for states with ~ = -1, which
again underlines the validity of' the monopole
approximation for the calculation of nso ioniza-
tion. The radial coupling matrix element of Eq.
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(4.3V)

(2.7) and (2.9) are presented in Ref. 12. The only
nonvanishing matrix elements of rotational in-
teraction involving s states in the monopole ap-
proximation are determined by"

(s+ a iJ„is+ a) =W ai,

hold.

and

a j+,r+= aj-, r-

a j+,r„aj,r4. ~

(s.9)

(5.10)

with

&o =bv„/Ra;

this leads to

(sea
i

—i~4 is+a)=+bv„/2R .

(4.38)

(4.39)

D~„I,=Dg a =Dy ~= g, R ~~
' (5.1)

where the "+ "and "-"sign denotes the corres-
ponding spin projection. The matrix elements of
magnetic interaction (4.34) obey the following
relations:

V. POLARIZATIONS AND MANY-ELECTRON
ASPECTS

Before we start to discuss explicitly polariza-
tion phenomena, we first derive some symmetry
relations for the occupation amplitudes. For this
purpose we introduce the abbreviation

d / I/2,ta isa =d, ga, (a=cos(aP),
d |pa, ia = —d, ga, ga

= sin(aP) .1/2 I /2
(5.12)

For this purpose we represent the wavefunction
by

(5.13)

This leads to

These results imply, that no spin polarization
with respect to the quantization axis (the s axis
connecting both nuclei) can be observed. The
polarization is expected to be oriented in the
direction of the magnetic field strength, i.e.,
the y axis orthogonal to the scattering plane. In
order to calculate the spin pol'arizations along
the y axis we have to rotate the coordinate system
applying the rotational matrixes D ~ (a, P, y)":

DJ, (& P y) &

&anadem-,

(P)&-lm (5.11)

with

The coupled channel equations (2.V) then read

a j+,y+ 4g j+, r+

aj+, r-&pre

(5.2)

(5.3)

I/2 Dl/2 I/2+Dl/2 -I/2
Xg I/2, I /2~y «I jets I/2~y

I f2 ~l/2 I/2+ p)1(2 I/2
Xg I/2a - I/2xy 1/2 -I/2 Xy

and correspondingly for the amplitudes

nl/2 & + nI/2
y4 I/2, 1/2 g+ I/2a I/2 g- 7

(5,14)

and

Aj g
= -~ ag„r Deere

-jx '

a, „,A,„e-j~~,

a) ~
——-Q a) D~„s "ri+Q a) „Al„s

r- r+

(5.4)

(5.5)

(5.15)

1 (ic„-c,).
(5.16)

DI!2 ~I/2
y- -I(2,1/2 g+»I/O, -1(2 g-

Inserting now the Euler angles u = a v, P = am,
y= 27t we finally get for the amplitudes with re-
spect to the spin projection along the y axis

1=~ (-C +ic ),

D jxa j &+
——— g j r+~jre

+g a, „A,„e-'",~ (5 6)

which have to be solved with the initial conditions

or
a,.~.(t = —~) = s„~,

a, ~ (t= —~)=6,

(5.V)

(s.8)

If we neglect the magnetic interaction, the spin-
flip amplitudes (5.5) and (5.6) will vamsh.

The two sets of differential equations are solved
consistently if the following symmetry relations

So far we have described only the fate of a
single electron influenced by the collision dy-
namics. Now we start to discuss some aspects of
the many electron problem" " "where we
follow the lines pointed out in Ref. 8. %'e expand

. the field operator g in terms of the complete
adiabatic basis states y, :

d t y s-fxa+ Q b y ~-fxa
a&& q&E

(5.1V)

where the subscript s or y denotes quantiza-
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(5.16)

with

tion along the g or y axis, respectively. From
(5.17) we find the operator relation (q & E)

d.'„=2 &~„,I~„.) d .'...
q& P

Comparing (5.22) and (5.17) we are left with

i, .= g a„, „8„',+g a„„dt
r+ &F r-&P

+Q a„„b„+Qa, „b,
(5.25)

&~, , l~....& = «,-., (~,-,.&= —1~~2 ~ (5.19)

(5.20)

(5.22)

The number of created fi0)ps q with positive-spin
projection {q+&E}along the y axis therefore is

1P„=(g(d„„d„„P)
= a(g(d t, ,d, „,(g)+ (P (dt,d, ,(g)

+ 2i(p d, ,d, , g) —fig dt, d„, g& .
(5.21)

Alternatively, we may expand ttI in terms of the
single-particle wave functions C, (t) with definite
bound'ary condition at t —, already containing
the dynamical excitations

g =g et @,(f}+gS,e,(f},
q &11' q&E

b„g)=0 for s)E,

d„, ((&=0 forr&E,

(5.26)

(5.27)

(bh~ b J 64m i~ ' (5.26}

All other anticommutators vanish. In particular,
the additional expectation values of the type

This transformation may be employed to evaluate
the required expectation values of Eq. (5.21)
since the operators d„b, are constructed such
as to destroy the Heisenberg ground-state vector
l&»

with the definitions for operators for holes

2, =P for q&E

d~ = b, for q&J" .

(5.as}

(5.24)

which did not appear in Ref. 8 lead to

S S+yQ~ S+ ~ gk ~ S yQT S yak
s && s-&p

(5.29)

(5.30)

Finally we obtain for the number of created
holes N,' with spin projection along the y axis

(5.sl)

The spin polarization of holes q along the y axis is defined by

N" —Na"
N~ + N"

a+ a-

This yields
ig QS~g~CSy g++ 'S &~ QS S C C ~

Si&'

la„„p+Z la, „I'+Z la„, I'+ Z la,

(5.32)

(5.33)

where c.c. denotes the complex conjugate. The same structure as in (5.34) can be obtained simply by
taking the O„expectation value of 4,. With

and

4~=&,Xg + X

0 -i
Cy=

0

(5.34)

(5.35)
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it follows that

&4, la, I 4,) . (c.*c —c*c,)
(@,I@,) Ic„l'+ Ic I

which supports the validity of our result (5.33). With the completeness relation'

(5.36}

a~, a~& = a,*~a„=6~, ,
4

the time-reversal-symmetry relation

(5.3V)

la„(t= }l= a„(t= ) (5.38)

and the symmetry relations (5.9) and (5.10), one ean rewrite g, and simplify Eq. (5.33).

q -,t+ Q-, t'-

1 — Q la, „ I' —Q la,
(5.39)

In just the same manner we ean also evaluate the number of created particles p (e.g. , 6-electrons} with
spin polarizations along the y- axis.

N~r=&(Lb~~ „b~ „l p) for p&F .
%'e obtain

"l = '&&I ' .."«..I &&+l&~Cb' ..b. ..I@-&+-'i-&@lbl-,.~b...!@) --', &&Ib'....b.-,.l&& .
Vrith

i„,=Q a„.„dt.+g a„„d' +g a,.„b„+g a,

(s.4o)

(5.41)

(5.43)

it follows for the matrix elements of the type

M~=&&lb~...b~..l&&= Z a~,n.a,w+ Z a,*,n. a, -
re&It' y&E

The number of created particles then yields

(s.43)

+ gz ~ ~e~a~o~+~ r pv r- p+ -gz ~ a~&+a~~+ j r-,I+ r-,p+

The spin polarization of particles along the y axis is

(s.44)

+x; 2; la„„'+ g la„ l'+ g la„, l'+ p la„, l'
~&It' ~ & ~ w&E r-CE

(s.4s)

Again this may be rewritten as

31 (s.46)g la„ ~
I'+ Q la„ ~l'r~

Furthermore we note the fact that particles and holes have opposite spin polarizations. Finally we remark
that the spin polarization along the x axis vanishes as was expected on physical grounds.

VI. RESULTS AND DISCUSSION

We solved the coupled-channel equations (5.3)-
(5.6) for the nso states by numerical integration.
In the monopole approximation, the radial coupling

I

(5.1), the rotational coupling (4.38), and the dia-
gonal and off-diagonal magnetic interaction (4.34)
are taken into account. Since in the present com-
putations spin-up and spin-down states have to
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~10
V)

-5
1

1S5—2Sd
lSd~4S5——1sd-ES5, E=500kev

20

I

40 60 100 150 200
R(fm)

FIG. 1. Comparison of the radial and magnetic coup-
ling strength in units of k=m = c =1 versus internuclear
separationR. We show [D~~c „~c/R[[Eg. (5.1)j and sep-
jA& - -, /e

~
[Eq. [4.34)j fore=2 ~ 4 and a continuum

state with kinetic energy 8 =500 keV, respectively
(Zg + Z2 =178).

1 I . 1 I I

200 400 600 E(keV)

FIG. 3. Differential cross section for 6-electron
emission with respect to kinetic electron energy. The
number of correlated 6 electrons and 1sg vacancies are
considered using Eq. (36) of Ref. 8.

10

Zj +Zp -178

CD

~10
Cf)

10

10 I I

0 20 40 60 b(fm)

1 I 1 1 1 1

200 400 600 E(kLV)

FIG. 2. Number of created 1sg vacancies per
col,lision with impact, parameter b. Two different
ion energies are considered for the system Z&+Z2= 178.

FIG. 4. Differential probability versus kinetic
electron energy for emitted 6-electrons correlated with
1scr vacancies at the impact parameters b= 0 and 20 fm.
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0.02—
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I
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FIG. 5. Zeeman splitting of the 1sa- state induced by
the strong magnetic fieM in the col.liding system Z&+Z2
= 178.

I

40

be treated explicitly we had to reduce the number
of considered basis states slightly compared with
the calculations of Ref. 8. As bound states we in-
cluded the 1so up to the 5so state whereas the
integration over the positive energy continuum
between E=mc~ and $=3m' has been performed
with 13 grid points. The dimension of the re-
maining system of coupled-channel equations
therefore is n = V2 (real and imaginary part treated
separately). In Fig. 1 the absolute value of the
radial coupling (5.1) D„, «,/R

~

and the magnetic
coupling (4.34) ~&~ „„«,/v~ is compared for
n =2, 4 and for a continuum state with kinetic
energy S= 500 keV. The off-diagonal magnetic
coupling strength is found to be typicaQy by an
order of magnitude smaller than the radial coup-
ling for the considered two-center distances
between R =23 and 200 fm. One should keep in

FIG. 7. Spin polarizations of emitted 6 electrons
stemming directly from the 1so. state versus kinetic
electron energy, using Eq. (5.46).

mind that these matrix elements enter almost
quadrakically in the excitation probability. There-
fore only a minor contribution to the vacancy
production probabilities due to the time-varying
potential can be expected. As a main result we
found that the additional magnetic interaction does
not change the total ionization probabilities but
leads to spin polarizations of electron states. The
created polarization is preserved during the
collision despite the importance of the multi-
step excitation processes. As dominant effect
the Zeeman splitting of the 1.so state gives rise to
a stronger ionization of one of the usually degen-
erated spin states whereas the other becomes less
ionized. However, the total sum remains almost
exactly the same as obtained with the radial
coupling only. The number of created iso' vacan-
cies per collision with impact parameter b

(6.1)

,(b)

- 0.10—

—0.08—

—0.06

- 0.04

—0.02

0 20 40 60

b(fm)

80 100

FIG. 6. Spin polarizations of 1sg vacancies versus
impact parameter.

is shown in Fig. 2 for the system S,+Z =178
with E„~=5.9 and 3.6 MeV/u. The Fermi surface

denoting the highest level being occupied at
the beginning of the collision (t =-~) was chosen
to be E=4so. For central collisions we found

P~, (0) =0.16 and 0.013, respectively, which is
about 10% smaller compared with the corres-
ponding probabilities of Hefs. 20 and 21 due to the
reduction of the number of basis states. The
6-electron spectrum for the same system and
impact energies is displayed in Fig. 3. A coinci-
dence measurement of 5 electrons with measured
1sa vacancies is required. For the corresponding
calculation of the number of correlated particle-
hole pairs we refer to the formalism of Ref. 8.
The differential probability for 5-electron emis-
sion with respect to kinetic electron energy for
the impact parameters 6=0 and 2o fm can be taken
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from Fig. 4. For higher heavy ion energy, the
5-electron distribution shows a weaker dependence
on E reflecting the higher Fourier frequencies
attainable in this collision.

The Zeeman splitting of the 1scr level as func-
tion of internuclear separation 8 is given in Fig.
5 for a collision with E„b=5.9 MeV/u and b =20
fm. Using Eq. (4.34) it has been evaluated ac-
cording to

(6.2)

At the distance of closest approach it reaches a
maximum values of &E (R =30 fm) =32 keV.

The spin polarization q, of created 1sa vacan-
cies has been calculated according to Eq. (5.40).
Its dependence on impact parameter is presented
in Fig. 6 (q=1so). As can be seen, g, =0 for
head-on collisions since the rotational velocity
vo from (3.27) is zero in this case. lts maximum
value is obtained for medium impact parameters
between b =30 and 80 fm. For larger impact
parameters (distances) the magnetic field is too
small in order to influence ionization processes.
'The calculated spin polarization is of the same
order of magnitude as estimated earlier in Ref.
3 within time-dependent perturbation theory. This

theoretical prediction still needs experimental
verification. The spin polarization g~ of 5 elec-
trons versus kinetic electron energy E stemming
directly from ionization of the 1sv state [Eq.
(5.47)] is presented in Fig. 7 for b =20 fm. Cor-
relation effects' are not considered in this case.
Larger polarizations are found for increasing 6-
electron energy. Ionization measurements of
1scr electrons, therefore, may yield direct in-
formation about the behavior of electrons in strong
magnetic fields. They may also be of some im-
portance for astrophysical phenomena. In partic-
ular astrophysical processes" "in pulsar mag-
netospheres and neutron stars as well as elec-
tron binding energies" ' of atoms in uniform
external magnetic fields have been the subject of
widespread theoretical investigations during the
last years.
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