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Doubly excited states of the akaline-earth atoms

Chris H. Greene~
Department ofPhysics, University ofChicago, Chicago, I11inois 60637
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Electron correlations in the alkaline-earth atoms and alkali negative ions, especially as manifested by
photoabsorption experiments, are studied using a hyperspherical-coordinate approach. A prototype quantitative
calculation of the Be photoabsorption spectrum near the 2s and 2p thresholds, allowing for nonadiabatic transitions.
between potential curves for the first time and hence for autoionization, shows the formation of the "+ "-type and"—"-type eigenmodes in the two-electron wave function. This has strong implications for the spectra of Be and
other atoms, and permits a unified interpretation of their'discrete and continuum oscillator strength.

I. INTRODUCTION

Madden and Codling' first observed the doubly
excited autoionizing states of helium using syn-
chrotron radiation. Their spectra showed that dif-
ferent 'P Rydberg series have reduced decay
widths which differ by one to three orders of mag-
nitude. Close-coupling' and configuration-mixing'
calculations of the spectrum reproduced the ob-
servations level by level, but did not provide a
grouping of levels having similar properties. This
grouping emerged later from the studies of Macek4
and Fano, ' showing that levels with similar decay
widths belong to the same "adiabatic potential
curve" U, (R) for the motion of an electron pair
along a hyperspherical radius ft =(r,'+ r', )' is.
This method was developed further by Lin, ' who
predicted a similar grouping of excitation channels
in H

In this article, I extend the hyperspherical meth-
od to treat two electrons outside a closed-shell
ionic core, rather than a bare nucleus only. This
extension follows an outline by Fano' in simplified
form, It aims at interpreting extensive experi-
mental observations of two-electron spectra in the
alkaline-earth atoms and in the alkali negative
ions, which can be summarized as follows:

(i) Autoionizing 'P' Rydberg levels (e.g. , 2pns
in Be) are nearly two orders of magnitude broader
than the corresponding levels in He.' '

(ii) Quantum defects" " and oscillator
strengthse's in the discrete spectra (e.g. , 2snp
'P' in Be) depend on n irregularly in contrast with
the predictions of independent electron (Hartree-
Fock) calculations.

(iii) Multichannel quantum defect theory (MQDT)
fits to the energy levels in Ca, Sr, and Ba (Ref.
12) have required the introduction of strongly en-
ergy-dependent parameters, in contrast to most
previous MQDT applications. " Also the angles
characterizing channel mixing and the differences
between quantum defects are nearly equal for all

of these atoms. "
(iv) Photodetachment of the alkali negative ions

K, Rb, and Cs shows resonances just below the
first excited 'P' state of the alkali atom, ""whose
autodetaching strength (i.e., the ratio of width to
binding energy) is nearly an order of magnitude
larger than for Feshbach resonances in H .

(v) Excitation cross sections of the alkali reso-
nance lines by electron collisions are larger than
geometric. "" While integrated cross sections
are similar to those for hydrogen, the polarization
of the alkali fluorescence shows qualitatively dif-
ferent features. " A large number of electron-al-
kali resonances have been observed though most
are not yet identified. "

Close-coupling and configuration-mixing calcu-
lations " ' have successfully reproduced many
of these results individually. Construction of a
unified picture of their dynamical origin requires
a different approach however, as in the case of he-
lium.

Over the energy range considered here (Kto& 15
eV) the electrons in the closed-shell ionic core
cannot be excited, but only screen the outermost
two electrons from the nucleus. Since the re-
sponse of a single electron to this screened radial
potential depends strongly on its orbital angular
momentum /, the energy levels E„,with different l
are nondegenerate for the singly charged alkaline-
earth ions in contrast to He'. This removal of de-
generacies opens the possibility of an autoionizing
transition occurring within a shell, as in the strong
2pns- 2scp process in Be. Such a process re-
quires little excitation of the Be core and so the
transition matrix element, (2sep ~r,, ~2pns) in per-
turbation theory, is likely to be large. The point
of view of this article differs from this independent
electron picture. I evaluate instead the eigen-
modes of the full short-range Be Hamiltonian (in-
cluding r, ', ) and show them to be approximately of
the form 2s&p+2Pns suggested by Cooper, Fano,
and brats" for He and later documented by Macek4
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and Lin.'"""' The channel. mixing is expected to
be similarly strong for other two-electron sys-
tems as well.

From the hyperspherical viewpoint, autoioniza-
tion results from a nonadiabatic transition between
two adiabatic potential curves. By explicitly in-
cluding nonadiabatic couplings between the poten-
tial curves U (R) and obtaining autoionization de-
cay widths, my work goes substantially beyond the
previous hyperspherical calculations which were
confined to the adiabatic (i.e., Born-Oppenheirner)
approximation. The eventual inclusion of the in-
terchannel couplings

p,„(R)= (y„(s y„lsR)
was envisioned by Macek, though its technology
had never yet been explored. The calculations re-
ported here are intended to survey for the first time
time a broad class of nonadiabatic effects. State-
of-the-art accuracy has not been attempted here,
but it should be possible, nevertheless, to sys-
tematize the hyperspherical method and enhance
its predictive power.

This article will consider only low-energy double
excitations, well below the threshold for escape
of both outer electrons. It remains for future
studies to connect quasiadiabatic studies like this
one, involving just a few hyperspherical potential
curves, to the Wannier-Hau-Peterkop ' ' treat-
ments of two-electron escape, which involve an
infinite number of potential curves. Preliminary
elements of this connection have recently been
formulated, "though their full implementation has
not yet been explored.

This paper will be organized in the following
manner. Section II reviews the hyperspherical
formulation of Macek, Pano, and Lin, including
the screening effects of a closed-shell, many-
electron core. Section II then discusses adiabatic
potential curves for Be and K- and describes the
pattern of radial correlations in the channel wave
functions. Section III presents the calculation
of Be photoionization and gives a unified picture
of the oscillator strength distribution in the dis-
crete and continuous spectra. Section IV discus-
ses the relevance of the Be results to the remain-
ing observations (i)-(v) above, and a summary is
given in Sec. V.

II. THE HYPERSPHERICAL FORMULATION

The stationary-state Schr'odinger equation for
two electrons in the screened potential of a nucleus
takes the form (in a.u. )

)( . . . , z(r, ) z(r, )

In Eq. (1), r, and r, are the election 'distances
from the nucleus, r» is the electron separation,
and Z(r) represents the nuclear charge as
screened by Nc closed-shell core electrons. At
small distances r-0, Z(r) approaches the nu-
clear charge Z„while Z(r) —Z, —Nc at large ra-
dii. Between these two extremes Z(r) will be ta-
ken as a standard Hartree-Slater function. " In the
hyperspherical coordinates,

R = (r,'+ r,')'~', n =arctan(r, /r, ).
Equation (1) becomes"

],+,+(Z-U) q=o,

(2)

1 1 Bm 12 1)0(R n)= ——— + ' +2/02 2cos 0 2sin Q

Z(R cosa) Z(R sinn) 1
R cosa R sine. r»' (4)

Chere 1', and 1', are the orbital angular momenta of
the electrons and 0 denote's all angular variables.
Note that all first derivatives in R and in e have
been eliminated in Eqs. (3) and (4).

To solve Eq. (3), Ref. 4 assumed a slow depen-
dence on R and constructed adiabatic potential
curves U„(R)and eigenfunctions Q, (R;0) which
satisfy

U(R;Q)g„(R;0)= U, (R)$,(R;0).
Expansion of g into the Q„

(5)

))) = Q Qq(R; 0)Eq(R),

transforms the six-variable Schrodinger equation
to an infinite set of coupled differential equations
in R for F (R)":

1d1—+ P(R) +,+ 2[8 —U(R)] F(R) =0)
/

(7)

~..).)=f-p„(Ra)—g (a w
8

U„„(R)= U, (R)~„„.
By ignoring off-diagonal terms of P in Eq. (7),
Macek' calculated adiabatic energy levels of doubly
excited helium obtaining good agreement with ex-
periment and with other calculations. Moreover,
autoionizing levels belonging to the same potential
curve were associated with previously calculated
states having comparable reduced decay widths,
while the widths of levels belonging to different
curves varied by one to three orders of magnitude.
Note that this quasiseparability of the motion in R
has no simple physical interpretation analogous to
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the Born-Oppenheimer approximation for the vi-
brations of molecules. Rather the quasiseparabil-
ity is interpreted as evidence for a new approxi-
mate constant of the motion for the two-electron
system.

At small R the kinetic-energy terms in U(R;0)
dominate and are separable. U„(R)represents
then a repulsive barrier arising from the centri-
fugal kinetic energy in both the true angular varia-
bles (B„y,), (B„cp,) and the mock angle n,

g»t2(R. &/4) ( 1)tz+&2 t, +-gi2»(R. v/4)
(14)

Further details of the n integration closely follow
the discussion in Ref. 4. The expansion (13) in
(l, l2) converges in only a few terms, since the
coupling of different (l,l, ) components [by 1/r» in
Eq. (4)) is strong only in limited ranges of R.'"'

U„(R)„-(l +l2 +2m„+2)/2R +O(R ') (10) A. P potential curves

Each potential curve U„is thus labeled here by
orbital angular momenta E,„,l,„ofthe two elec-
trons, and by a third integer quantum number m„
~ 0, the number of nodes of the wave function in o .
The good quantum numbers near R = 0 are then

l,„,l2, m, L, M~, S, and Ms.
The opposite limit R —~ corresponds to either

or x, —~ in the energy range considered
here, below the double-escape threshold. Accor-
dingly at R —~ one electron remains in the poten-
tial well near n -0 or n v/2, forming a bound

state of the alkali-like ion at energy F„,. The
other electron retains then the energy F. —E, for
its motion in R. Hence the potential curve as-
sumes the large-R form

U (R) —E„,—(Z, Nc —1)—/R + O(R ). (11)

(For neutral alkaline-earth atoms Z, Nc —1-=1.)
In this limit Eq. (5) reduces to the usual single-
electron radial equation

( 1 d Ilk(ill +1) Z('r)
i ( ) E p ( )

( 2dr' 2r' r i
(12)

where r is the smaller of (r„r,). Also in this li-
mit, Eq. (7) for the motion in R reduces to the us-
ual close-coupling equations" for one electron far
from an atom or ion.

At intermediate R, Eq. (5) must be solved nu-
merically. References 4 and 6 performed this nu-
merical solution by expanding Q„into ordinary
spherical harmonics coupled to form a given total
orbital angular momentum I =l, +l, :

(13)

This reduces Eq. (5) to coupled ordinary differen-
tial equations in a for gy' (R2;n) and U„(R).Be-
cause the range of n is finite and g,'&'2 vanishes at
o. =0 and a = v/2, the eigenvalues U, (R) at each R
form a discrete set with no continuum. The re-
quirement of antisymmetry 'of P is formulated sim-
ply as a boundary condition:

With this approach the 'P' adiabatic potential
curves for Be and K have been calculated. Figure
1 compares them to earlier results for He and H .
Each of these four figures shows a common fea-
ture: at small R, U, (R) forms a repulsive barrier
as in Eq. (10), while at large R, U, (R) flattens out
and converges to a one-electron energy level E„,
as in Eq. (11). For He and Be each potential curve
contains an infinite number of bound (or autoioniz-
ing) levels because of the attractive Coulomb po-
tential at large R. The absence of the Coulomb
tail for H and K changes things. For K each
potential curve contains either no levels or one
quasibound level, since the long-range polarizabil-
ity potential supports only a finite number of bound
states. This is also true for the "sp+" and "pd"
curves of H, but the "sP-" curve does contain an
infinite number of very closely spaced autodetach-
ing levels, since it represents a sufficiently at-
tractive R ' potential at large R."' ' Beyond these
similarities of all the potential curves, there is a
qualitative difference in Be and K, which is the
absence of the diabatic crossings at R -7.5 a.u. in
He and R -13.5 a.u. in H . This is because the 2s
and 2p levels of Be' (or 4s and 4P of K) are non-
degenerate which forces the potential curves apart
near the crossing. The avoided crossing near R
-4-5 a.u. in Be will be seen in Sec. III to have im-
portant effects intermediate between those ex-
pected from adiabatic and diabatic approximations,
and to be responsible for the very large widths of
the 2pns autoionizing states.

The potential energy in Eq. (4) consists of two
attractive terms near a -0 and n - w/2 represent-
ing the screened nuclear attraction, and a repul-
sive term 1/r» which is maximum at o. = v/4. The
lowest value of this repulsion at n = v/4 (as a func-
tion of cos8») occurs when the electrons are in
opposite directions 0, =0„i.e., at 0» = m. This
saddle point of the potential energy has the value"
U, (R) =M2(4Z, —1-4Nc)/R, in Rydbergs, relative
to the threshold for two-electron escape; here,
Z, -N~ =2 for He and Be and Z, -N~ =1 for H and
K . Thus, when U, (R)) U, (R) the local kinetic en-
ergy at o, = w/4 will be positive and ( is oscillatory,
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C)

a potential barrier at large R. In contrast the Be
potential curves converge as R -~ to different
levels of Be', 2s and 2P. No resonance of the
g"(R;a) between the two valleys is then possible,
and each wave function remains confined mainly
to one valley or the other, as shown in Fig. 2.
Nevertheless, Sec. III will demonstrate how the
"+"and "-"character estaMished at short range
is preserved at larger R (for sufficiently high en-
ergy) by the full wave function breaking up into a
superposition of the adiabatic wave functions with
nearly equal amplitudes.

C. Electron correlations for other values of I, and S
~ I I v I I I I

0.00 0.25 0.50

0.00
I I I l I I 1

0.25 0.50

FIG. 2. Adiabatic "gp" channel wave functions asso-
ciated with the lowest two Be potential curves: (a)
2sep, p=l; (b), 2pes, @=2.

This behavior of the g,"' (2R;n) for Be and K
bears important similarities to He and H, as well
as a crucial difference. The helium wave func-
tions, [(Fig. 5 of Ref. 6(a)] also oscillate freely
for R &R, , forming "+"-type waves with an anti-
node near a = v/4, and more repulsive "-"-type
wave with a node. near a =v/4. Furthermore, as
R increases through R, , the helium wave func-
tions are also deflected away from the ridge n
= v/4 into the potential valleys. But this deflection
occurs much more smoothly for helium than beryl-
lium. The degeneracy of the 2s and 2p levels of
He' leads to a quasidegeneracy of potential curves
U, (R) in the two valleys. This degeneracy is split
according to symmetry or antisymmetry about n
= w/4 even when the two valleys are separated by

The preceding argument does not apply to states
having I =0, and hence l, =/„Eg.(14) implies that
'S' states are automatically symmetric under n
—7t/2 —n. , while 'S' states are antisymmetric.
Thus the wave function g,'&'&(R; o) can resonate be-
tween n -0 and a —v/2 at all R irrespective of the
screening potential, and S states of Be and He
autoionize at a comparable rate. However, the
antisymmetry of the 'S g'&'&( Rn) about n = m/4 im-
plies that triplet "-"-type states should decay
much more slowly than the symmetric "+"-type
'S states, as is verified by experiment.

In fact, singlet states are expected to autoionize
faster than triplets even from the conventional in-
dependent electron picture, since triplet wave
functions have a node at the location r, =r, while
singlets have an antinode. Consequently the tran-
sition-matrix element (P, ~1/r» ~(,) is much larger
for singlet states. This statement can be. ampli-
fied by adopting the hyperspherical viewpoint.
For helium the 'P' potential curves analogous to
Fig. 1(a) for 'P' show no diabatic crossing between
the "+"and "-"channels, but rather behave adia-
batically. When the degeneracy of 2s and 2P is
broken, as in Be, the 'P' potential curves are re-
pelled even further, implying a less drastic break-
down of the adiabatic approximation than for 'P'
symmetry. The largest breakdowns of adiabatic
behavior, and accordingly the strongest channel
mixings, are thus expected for singlet states with
l, ~l, . A good example is the interaction between
4sed and 3dns 'D' channels of calcium, which is
known experimentally" to be comparable in
strength to the 'P' channel interaction.

The study of the 'S' ground states of all these
two-electron atoms can thus be conducted here
within the adiabatic approximation, i.e., ignoring
channel coupling. The 'S' potential curves of Be
are K are shown in Fig. 3. The energy levels ob-
tained by solving Eq. (V), ignoring P,„(R),are giv-
en in Table I. The agreement with experiment is
reasonably good, showing that this model contains
the correct qualitative physical elements.
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—B (2q)—Be'(2s)

sufficient to describe autoionizing 'I' 2pns reso-
nances of Be, which was by no means a foregone
conclusion. Note also that the additional crossing
of the Be potential curves 2P&d and 2P&s near R =3
in Fig. 1(c) is tluite diabatic, implying that 2pzd
interacts only weakly with the other channels.
Accordingly, the remainder of Sec. III will con-
sider only the 2s&p (curve label g = 1) and 2pe s (p,
=2) potential curves of 'P' Be.

I I I I
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)
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FIG. 3. Ground-state $ hyperspherical potential
curves: (a) Be; (b) K. [The energy scale for Be has
been shifted as in Fig. 1{c).]

III. FULL TREATMENT OF THE Be SPECTRUM

Excitation and charge transfer in low-energy
atom-atom or ion-atom collisions generally result
from nonadiabatic transitions localized at avoided
crossings between two potential curves of the com-
posite molecular system. The present section
demonstrates quantitatively that autoionization and
atomic excitation by low-energy electrons can be
similarly described as a localized nonadiabatic
tr ansition between two hyperspherical potential
curves. Here it will be shown for the first time
that a specific low-energy process involves only
two terms in the hyperspherical expansion Etl. (6).
Inclusion of only 2s&P and 2Pes of Fig. 1(c) is

A. Adiabatic calculation of ~P energy levels

The present prototype study of 'P' Be has been
chosen specifically because nonadiabatic effects
are strong and thus nonperturbative. The most
obvious manifestation of this nonadiabatic channel
mixing is the large autoionizing decay width of the
2pns levels which belong to the 2p&s potential
curve of Fig. 1(c) and decay into the 2seP continu-
um. Before treating the autoionization spectrum
(Sec. III E), however, I will first examine the
weaker nonadiabatic effects. already present in the
energy levels of the discrete 2snp states.

Nonadiabatic effects depend on the magnitude of
the velocity coupling matrix P»(R) of Eci. (8),
shown in Fig. 4. This coupling peaks in the middle
of the avoided crossing at R-5, where the wave
function g'„'(R;n)breaks away from the ridge (n
= a'/4) into the potential valleys (a-0 or v/2) over
a small interval in R. The strong interaction re-
gion is reasonably well localized with a width of
about 2 a.u. , although it is broader than the usual
avoided crossings between molecular potential
curves. While P»(R) rises again from R -2 to-
ward R -0, this small-R region contributes little
to the nonadiabatic transition probability. This is
because the effectiveness of the coupling is mea-
sured by the size of the dimensionless ratio

System Adiabatic (Ry) Experiment (Ry)

TABLE I. ~S' binding energies. I I I I
f

I I 1 I

5 10

R (n.u. .)
Be 2s2

K 4s2
0.740
0.032

0.685
0.037

FIG. 4. Nonadiabatic coupling-matrix element Qf2
= (Pt ~ Bgt /BR) between lowest two P potential curves
of Be.
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P,', (R)/[U, (R) -' U, (R)],
rather than by P~2 itself. At small R, U (R) rises
as B, which thus renders the coupling ineffective.

The adiabatic approximation, strictly speaking,
entirely disregards P,„(R)in the radial Eq. (V).
This method was used to calculate 'S' levels in
Sec. II. A variant of this approach introduced by
Macek has in fact been used more often, and adds
to U, (R) the "diagonal coupling term"

82-w„(R)=--(P')„=——4, ;) .

adiabatic coupling effect, to be interpreted further
in Sec. IIID below.

B. Solution of the coupled equations in R

To understand the Be autoionization dynamics
and the erratic level structure of the discrete
spectrum, I will now incorporate the nonadiabatic
off-diagonal terms of Eq. (7). The channel inter-
action will be treated directly by truncating Eq. (7)
to two channels only, and then utilizing Klar's re-
duction of the two coupled equations to a set of four
first-order ordinary differential equations""'.

The antisymmetry of P,
„

implies that -W' gives
a repulsive contribution to the potential energy.
Inclusion of S', ensures that the potential energy
at large R reduces to the independent-electron
form' expected for the e-Be' potential, through
order A 2:

U (R) —W„(R) =E„,—1/R

dFq +Pj.2F2+ G~ =0,

dF3' -Pi2Fi+G2=o

dG,
— -' + P,2G2 —2(E —U, )F, =0,

(1V)

TABLE D. 2snp & discrete 1evels of Be.

J(L (adiabatic} p (adiabatic with lV»)

2 0.166
3 0.295
4 0.289

0.290
0.259
0.256

-0.021
0.007
0.005

+ l,.(f,.+1)/2R'+ 0(R-') . (16)

Furthermore, the lowest adiabatic energy level
calculated in the lowest potential curve of each
(I., S, w} is a lower bound to the exact level if W„
is omitted, while it is an upper bound if 8"„is
included. 4'

Thus the difference between energy levels cal-
culated by these two methods reflects the impor-
tance of nonadiabatic effects. Table II shows the
quantum defects of the lowest Be 2snP 'P' bound
levels obtained with these two approximations.
The experimental 2s2P quantum defect lies rough-
ly midway between the two calculations, which
differ by a large amount: 0.30 out of a maximum
discrepancy of 0.50 (modulo 1). A similar calcu-
lation by Miller and Starace of 'P He quantum
defects shows a difference of only 0.09 between
the alternative methods, thus verifying that non-
adiabatic (or nondiabatic) effects are far less im-
portant for He than for Be.

Another relevant feature of Table II is the unex-
pected jump of the experimental quantum defect
from p, (2s2p) =0.166 to p(2s3P) =0.29, which is an
illustration of item (ii) of Sec. I. This jump is not
reproduced even qualitatively by either adiabatic
approximation and is a clear illustration of a non-

3 —P,2G, —2(E —U, )F, = 0 .

(18)

with

Equations (18) and (7}are identical if no truncation
of channels is made, in which case.

W, .(R) =—g P.g„„+ (20)

This relation is no longer satisfied if the summa-
tion over y is truncated to y & 2, as implied by Eq.
(1V). The equality (20) is satisfied near the
avoided crossing at R -5, but at larger R, P»(R)
decays as R ', while W»(R) and W»(R) remain of
order R '. To ensure that the diagonal terms in
the large-R form of Eq. (17) reduce to the inde-
pendent-electron form Eq. (16), the potential
U, (R) has been modified to the form

Here, F,(R) and F,(R) are the radial eigenfunc-
tions of Eq. (6) and the equation defines G,.(R) as

(dF, /dR+ Z— ~P;~F~) .
The potential curves 2U,.(R) include the term

1/4R' of Eq. (7), in addition to the U, (R) shown in
Fig. 1(c).

One point which requires some discussion is the
validity of truncating Eq. (7) to two channels only.
In fact, this truncation is not unique, as seen from
a different form of Eq. (7) given in Ref. 4:

(fp 1 d
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U„(R)= U, (R) —8R' —W, (R) —~P,',(R), (21)

with W„(R)calculated directly from ((t), ~&'Q, /
BR ). The subtraction of ~P»(R) ensures that the
nonadiabatic effects are not counted twice.

This modified potential attains the Coulombic
and centrifugal form of Eq. (16) to good accuracy
beyond R, =14 a.u. , so the off-diagonal coupling
P»(R) was neglected beyond that radius. Conse-
quently the solutions of Eq. (17) can be expressed
as linear combinations of well known Coulomb
functions for all R ~ Ro, in the approximation that
effects of longer-range potentials (e.g. , polariza-
tion) are negligible at large R. This simplifies
the calculation considerably, limiting the need for
an explicit numerical integration of the coupled
Eq. (17) to a "reaction zone" R ~ R, . This ap-
proach is thus similar to R-matrix calcula-
tions, ""which also solve the Schrodinger equa-
tion only within a limited volume of space; in the
present application the value of Ro is just large
enough to contain the entire valence shell.

Once the potential curves U (R) and the cou-
plings W„(R)and P,„(R)were calculated and
stored, the radial integration of Eq. (17) at differ-
ent energies was straightforward and required
little computer time and storage. On an IBM 3033,
less than thirty seconds of CPU time were needed
to solve the radial equations at twenty energies.
(This time includes also the matching to Coulomb
functions at R =R„determination of the reaction
matrix, and calculation of dipole matrix ele-
ments. ) In contrast, the energy independent part
of the calculation described in Sec. II, which con-
sists of determining the potential curves and cou-
plings, required longer time, in the neighborhood
of five minutes. This method of calculation differs
in a fundamental way from a more common close-
coupling method. Most importantly, an examina-

tion of intermediate pieces of the hypetspherical
calculation, such as the potential curves, provides
a qualitative interpretation of many dynamical fea-
tures. In addition, the close-coupling method has
exchange terms which make the coupled equations
integxodifferentiaL (though they can be transformed
to purely differential form by adding subsidiary
equations '). Accordingly, the close-coupling cal-
culations are numerically more efficient if only a
few energies are studied, whereas the hyper-
spherical approach should be more appropriate if
the equations are to be solved at many energies.

C. Energy dependence of the short-range MQDT
scattering parameters

The four coupled Eqs. (17) have in principle four
independent solutions, but I will consider only two
of these which are regular at R =0. Particular
superpositions of these two solutions are singled
out by physical boundary conditions at large R.

Since the potential is Coulombic at large R these
solutions can be represented as a linear combina-
tion of regular and irregular Coulomb wave func-
tions (f, ,g, )in each c.hannel i, normalized per
unit energy and at energy p,.= E —E„,. These co-
efficients, which then represent the mixing of
channels discussed in Sec. IIB, are automatically
free of the main nonanalyticities at threshold due
to the long-range Coulomb field; residual nonan-
alyticities, could be removed by further renormali-
zation of the pair (f, , g, }(Ref. 46, S.ec. IIC). One
standard representation of multichannel wave func-
tions in scattering theory utilizes a base set of
independent solutions, each of which includes the
regular Coulomb function f, in a single . channel
only. The admixture K,, of irregular functions g,.
then represents the effects of channel mixing gen-
erated at smaller distances,

')

y, = y, (R; n) [y,(R) g, (R)SC„]—y, (R—; n)g, (R)IC„

x = —( (R'O)g(R)lf +4*(A D)(J" (R) g (R)IC 1)'
Here I utilize instead an alternative base set of

solutions for which the reaction matrix K, , is
diagonal, and which is represented by phase shifts

equal for all channels. These eigensolutions
have the form

(t)„=(t), (f, cos))y, —g, sin7) p, )U,

+ &f&,(f, cos7)p -g,. sinful))U, , R ~ R, , ,

where

The 2 x2 real orthogonal matrix U,. is represented
in terms of a single channel-mixing angle 8-:

cos8 sin8

—sin8 cos8

This same transformation expresses the 'P' e-ge'
scattering matrix in terms of the eigenphase shifts
7TP,

K,.z = U,. tan@p, U, (24) $ —e)o( ~ U e2(TP()(U l[ e(()~
4Jf ~ tot i 0(~l

(26}
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where o,. is the continuum Coulomb phase shift in
channel i. Wraith this notation the probability of a
transition from the lower potential curve (2sqp) to
the upper curve (2pgs) in a single e-Be' collision
takes the simple form

~S„~'=sin'28 sin'w(p, , —p, ) . (27)

p, -n —&-, g «-R'
i i~ s 0 (28)

Be'(Zs) Be'(2p)

I
I
I I
I I

CO I
/

1
/

I
j

-0.4 -0.2 0.0 0.2 0.4 0.6

e,(Ry)
FIG. 5. Calculated short-range Be scattering para-

meters ~, ~, and 8, as functions of the energy c~

relative to the 2s threshold.

This expression shows how a large excitation prob-
ability implies that the channel mixing is strong
(8- v/4) and that the two eigenchannel solutions g
oscillate nearly 90' out of phase at R & R, (

~
p,, —p, , ~

1)
2
The results of the numerical so'lution of coupled

equations described in Sec. IIB are thus repre-
sented in Fig. 5 as plots of the eigen-quantum de-
fects p, , and p., and the mixing angle 8 against the
energy. The energy range extends from the 2snp
discrete spectrum below the 2s level of Be',
through the autoionizing spectrum between the 2s
and 2p levels, to the open continuum above Be'(2p)
(but still far below the 3snp autoionizing states of
Be). Note that the plot extends smoothly into the
discrete spectrum of Be, in accordance with Refs.
46 and 47. Figure 5 contains all the information
necessary to determine the 2snp 'Po bound-state
energies of Be and also the elastic and inelastic
e-Be' scattering cross sections. Three features
of Fig. 5 are especially significant:

(a) Far below the 2s and 2p thresholds, the two
channels are independent and closed. The rapid
decrease of p, , and p, , with q, reflects the behavior
of single-channel quantum defects in energy ranges
where the channel is strongly closed and the func-
tions (f,g) diverge exponentially as discussed in
Ref. 48. This energy dependence has the form

where v,. = (- 2g,.) '&, and Ro= 14 a.u. here. Figure
5 shows this behavior with p., -1—v, and p., -2
—v, . (That g, gets associated with channel 2 and
p, , with channel 1 is a result of a convention setting
8 by 8- —,

' v at low energies instead of 0.)
(b} The decrease of g, ends around q, --0.28,

where p., begins to rise. This increase reflects
the influence of channel coupling which makes the
lower channel more attractive, in accordance
with the postadiabatic analysis of Klar and Fano."
This rise is responsible for raising the 2s3p ex-
perimental quantum defect in Table II. Note that
this effect of the channel coupling matrix P,„be-
comes strong even below the energy at which the
channel mixing parameter 8 begins to deviate from
its low energy limit in accordance with Ref. 38.

(c) As the energy reaches the minimum of the
upper (2pqs) potential curve [Fig. 1(c)] at g, -
—0.15, the mixing angle makes a rapid transition
from its no-mixing value 8- —,

' z to almost equal
mixing 8- —,

' p at q, -0. In the terminology of Sec.
II this transition describes the breaking of the
wave functions g„away from the potential ridge as
R increases through the range R.~ R,„.These
wave functions defined by Eq. (23) for R & R, ex-
trapolate into the range of lower R &R,„where they
coincide with Q, and P„respectively. At an en-
ergy lower than the minimum of the 2p&s channel

g, is necessarily deflected adiabatically into the
more attractive 2s valley (n-0 in Fig. 2) as R
increases through R„.It is not energetically
allowed into the shallower 2p valley (n- -'w jn Fig.
2), and thus P, remains identical with g, (R; 0) at
large R. But as the total energy rises above the
2pgs minimum, g2 is able to spread also into the

2p valley at the radius of the avoided crossing. It
can thus retain its approximate even (+) symmetry
by evolving into an equal superposition of P, and

Q„asindicated by the variation of the mixing
angle 8 shown in Fig. 5. The wave function tt„
which originally coincided with P, (R; 0}, similarly
evolves into an odd (-) superposition of p, and @,.
The essential result of the hyperspherical approach
is thus to identify the limited range of the radial
variable R-R,„andof the energy -0.1 ~&, &0.0
Ry at which mixing of the 2s and 2p levels occurs
in the eigenchannels.

Further illustration of the preceding results
emerges by comparing them with the recent a5
initio calculation of quantum defect parameters
for Ca, Sr, and Ba in Ref. 24. This reference
tabulates p,„p.2, 8, and their derivatives with re-
spect to energy at only one energy, the ionization
threshold. Extrapolation of these data to lower en-
ergy would fail to reproduce the dramatic change
of the parameters through the range of avoided
crossing, which is shown in Fig. 5. For Be this
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variation should emerge by extending the calcula-
tion of Ref. 24 to lower energies point by point.
A comparison would then be possible between the
hyperspherical method and the approach utilized

. in Ref. 24 to represent effects of electron cor-
relation in the valence shell.

Be'(Bs) Be.(2y)

D. "Elimination" of the closed 2pes channel

The short-range parameters of Fig. 5 specify
the asymptotic form of the g when combined with
the known behavior of the Coulomb functions in Eq.
(22}. Each of the functions (f„g,) diverges as
R - ~ for any energy below the 2P threshold. The
first step required to satisfy any physically
allowed boundary condition is to superpose the g,
so as to ensure the vanishing of these diverging
components. Imposition of this requirement, and
of the further stipulation that the channel 1 com-
ponents remain energy normalized, effectively
eliminates the closed channel 2. The wave func-
tion has then the form

5/m+ v, = integer . (32)

The lowest three bound levels are given in Table
III. Comparison with Table II shows the agreement
with the experimental levels to be greatly im-
proved over the adiabatic values, although the er-
ror in p, (rangirig from 0.06 to 0.11) remains large
compared to the state-of-the-art calculations. The
comparison also verifies the interpretation in
item (b) of Sec. IIIC of the large jump of the 2s3p
quantum defect from the 2s2p value as the sig-

&
= ad&i+ am'

with the asymptotic expansion

= Q, f, (R}cos5 —&f&,g, (R}sin5+O(exp( R/v, )-),

(29)

where the "eigenphase shift" of the lower channel
ls

sinwp, , sing(v, + p,)+tan'8sinwp, sinw(v, + p, )
cosmic. , sinw(v, + p, ,)+tan~8 coswp, , sing(v, + g,) '

(30)

and the coefficients of superposition are

a, = sin(wp, —5)/sin8 sinv(p, —p,),
a, = —sin(wp, —5)/cos8 sinn(p. , —y, ,) .

By this elimination of the closed channel, the
problem is reduced to the simpler single-channel
form, with effects of the closed channel embodied
in the energy dependences of 5, a„and a, . The
Be 'P' eigenphase shift 5 is shown in Fig. 6. -

Bound states below the Be' 2s level occur at en-
ergies where

-0.4 -0.2 0.0 0.2 0.4

FIG. 6. Be eigenphase shift of the lower (2sep) chan-
nel obtained by "eliminating" the upper (2pes) channel
through Eqs. (29)-(31). Intersections with the dashed
cixrves ~-pg locate the 2snp bound levels.

nature of strong channel mixing. -

The rapid rises of 5 by w above the Be' (2s) level
are associated with the autoionizing 2pns levels,
which dominate the scattering and photoabsorption
cross sections in this energy range. When com-
bined with the pure Coulomb scattering amplitude,

determines the 'P contribution to the e-Be'
elastic scattering cross section in the energy
range between the ks ground state and the 2p
level of Be'. The Coulomb divergence dominates
the small angle scattering at all energies, but at
larger angles the rapid energy dependence of 5

causes the cross section to be dominated by strong
autoioniz ing resonances. "

TABLE HI. 2snp iI discrete levels of Be, including
channel coupling (this work).

Level Quantum defect

2s2p
2s3p
2S4p

0.110
0.181
0.202

E. Photoionization of Be: The autoionization spectrum

Absorption of photons linearly polarized along
the z axis depends on two dipole-matrix elements,

D, = (p iR cosn cos8, +R sinn cos8, if,), (33)

where P, is the Be 2s' ground-state wave function
and g (o.=1 or 2) is the energy-normalized 'Po

final-state wave function with the asymptotic form
given by Eq. (23). The ground-state wave function

(0 decays exponentially at large R, and hence the
matrix elements D„depend on the small-R portion
of P only. The D, as shown in I ig. 7, are thus
smooth functions of energy across ionization
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N'„=v,'„+v 'd6/dq, . (36)

( ) B~ (2p)
I

I
/

I
/

I
/

I
f

I

—0.4 -0.2 0.0 0.2 0.4 0.6

e,(Ry)
FIG. 7. Calculated dipole-matrix elements Do for

photoionization of Se, as functions of energy &g.

Then the photoabsorption cross section of each
level is given in a.u. by

o „=(4w'(o/137) (a,D, + a&,}'/N'„,
where

(s5)

thresholds, just as p„p,„and8 are in Fig. 5.
Below the 2s threshold D, attains large negative

values, peaking near the 2s2p level of Be at q,- -0.25 Ry. This peak is followed by a drop in
magnitude at higher energies and a sign change at
q, - —0.08. This energy dependence occurs also
for a single electron and in an independent elec-
tron model, and gives rise to "Cooper minima" in
the photoabsorption spectrum of almost every
atom, here occurring at p, - —0.08. This quali-
tative behavior is interpreted in Ref. 50 in terms
of the energy-dependent nodal structure of the
escaping photoelectron's wave function, and is by
now well understood and documented. In the ener-
gy range below this minimum, it is D, that is
large and not D, because n =2 corresponds to the
2s&p channel (just as p, corresponded to channel
1 in Fig. 5}. The higher mock-centrifugal barrier
of the 2pgs potential curve allows little overlap
of r/i, with g„which keeps D, small until the chan-
nel mixing becomes significant at f, —0.10.

The two dipole amplitudes D, and D, combine
with the parameters of Fig. 5 to determine the
photoabsorption spectrum over the energy range
shown in Fig. V. In terms of the a„a„and6 in
Eqs. (30}and (31) the cross section is given by
different expressions depending on how many
channels (0, 1, or 2) are open in the final state:

(a) Both channels are closed (g, ~0). The photo-
absorption in this range occurs only at the bound-
state energies, where the effective quantum
number v, satisfies

v, + 6/w=n. (34)

o'= (4w'&o/137)(D +D ) ~ (s&)

The partial cross sections for leaving the Be'
ion in the alternative 2s or 2P levels are given
by

o„=rol(1+ r}, a„=a/(1 +y),

where the branching ratio is

Df, cos'8+ D,' sin'8+ D,D, sin28 cosv(p, —p, )
D2& sin28+D22 cos 8 —D&D2 sin28 cosm(p, , —p,)

(40)

The photoionization cross section in Regions (b)
and (c), ca]culated from Eqs. (37) and (3&), is
plotted in Fig. 8(a) and shows generally good
agreement with the previous close-coupling result
of Dubau and Wells" [Fig. 8(b)]. This spectrum
has been measured experimentally by ]gehlman-
Balloffet and Esteva, ' but it is not absolute nor
is it very clean, so it is not shown here. Still, the
experimental spectrum agrees with the general
shape of both results in Fig. 8. The most striking
feature of Fig. 8 is the series of very strong 2pns
autoionizing resonances, whose widths are com-
parable to their separations. The 2p3s reson-
ance has a full width at half maximum of 1"-1.3
eV, which i.s enormous compared to typical
resonances in small atoms.

The plotted spectr'um includes only the lowest
three 2pns resonances, though they belong to an
infinite series converging to the Be' (2p) level.
Just below this threshold their average absorption
is given by a smooth backward extrapolation of the
cross section above threshold, as shown by Gail-
itis." It is clear from the overall appearance of
the total cross section in Fig. 8 that the doubly
excited 2pns levels absorb photons with, an inten-
sity comparable to the 2sep continuum. Evalua-
tion of Eq. (40) for the branching ratio at the
2P threshold demonstrates this quantitatively,
giving for the partial photoionization cross sec-
tions into singly excited and doubly excited
channels: 0„=1.02 Mb and &» =0.5'7 Mb, re-
spectively.

One feature of Fig. 8(b) absent from Fig. 8(a) is

co is the proton energy in a.u. , a, and a, are given
by Eq. (31).

(b} One channel (2s&p) is open (0 c q, ~ 0.306'Ry).
Here, the total cross section is a continuous func-
tion of + and is given by (35) with N2= 1:

o'= (4w'(o/137)(a, D, + a,D,)'. (37)

(c) Both channels are open (&, o 0.306 Ry). The
total cross section is now
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FIG. 8. Total cross section for Be photoionization
versus energy of the photoelectrons eg. (a) Present
hyperspherical calculation, (b) Dubau-%'elis close-
coupling calculation (Ref. 23).

F. Connection with the discrete spectnm): A new
interpretation of the osci11ator strength distribution

The similarity of Eqs„(35)and (3V) shows that
photoabsorption just below the 2s threshold is
closely related to photoionization just above this

the series of narrow 2pnd resonances, which be-
long to the 2pzd potential curve of Fig. I(c). They
were not included in my calculation for simplicity
as they are so narrow and perturb the spectrum
so weakly. It should be straightforward to obtain
these narrow lines by extending the present treat-
ment to include all three channels. Note also that
a "spurious" resonance 2p2d occurs in the dashed
curve of Fig. 8(b), which was obtained in Ref.
23 by extrapolating the short-range MQDT para-
meters backward from the 2p threshold. Such
unphysical resonances can be avoided by incor-
porating in the extrapolation the energy depen-
dence of the eigenquantum defects far below
threshold, described in item (a) of Sec. IIIC.

threshold, differing only in 1V„which converts
from an energy-normalized wave function to a
wave function normalized to unity. This analytical
relationship between the discrete and continuum
is exploited in graphical. presentations of the dis-
crete spectrum (Fig. I of Ref. 50). The cross
section (or the equivalent oscillator strength) is
shown below threshold as a histogram, each block
of which represents a discrete level. Since the
height of each block is set equal to o„N'„,the histo-
gram joins smoothly at threshold to the photoioai-
zation cross section above threshold. One may
instead simply plot the continuous function c'(c,)
given by Eq. (37) below the 2s threshold as well
as above. This gives a continuous "energy-
normalized cross section" below threshold which
joins to the continuum smoothly, as shown for
Be in Fig. 9. It must be remembered, of course,
that Be photoabsorption selects only a discrete
set of energies from this graph (the lowest three
levels were given in Table III.) At those energies
the actual cross section is obtained by dividing
a(&,) by N2.

In Fig. 9, o peaks strongly near the 2s2P energy
(q, = -0.29 Ry), which makes 2s2p look like a
natural continuation of the 2pns autoionizing series
above Be' (2s). Thus for Be the Cooper minimum"
at q, = -0.08 Ry coincides with the Beutler-Fano
minimum" due to sp-ps coupling which lies be-
tween the 2s2p and 2p3s maxima. (It must be
remembered, however, that the Cooper minimum
is present even in the absence of channel coupling,
so the channel interaction primarily shifts this
minimum. ) This casts the 2s2p state as a "mem-
ber" of the 2pns Rydberg series, a concept totally
foreign to traditional spectroscopy. Further evi-
dence for this conclusion is shown in Table EV,
which compares the experimental quantum defects
of the 2pns levels with the 2s2p quantum defect,
but referred to the 2p threshold instead of the 2s
threshold as in Table EE. Note that the 2s2p quan-
tum defect (referred to 2p) agrees much better
with those of 2pns states than the 2s2p quantum
defect (referred to 2s) agrees with the 2snp quan-
tum defects in Table II.

Though this assignment differs from that of
traditional spectroscopy it arises naturally in the
hyperspherical picture, as an analog of the cross-
ing of "+"and "-"potential curves for He and H .
Thus in He the lowest-lying 'Po state (2s2p) be-
longs to the "+"Rydbexg series, while for Ryd-
berg levels nearer threshold the "-"channel is
more attractive and its levels are lower. For Be
the two relevant curves do not cross, though a
remnant of the crossing remains apparent in Fig.
2, through inspection of the number of nodes in
g~~'2 (R; n) as R increases. The crossing is also
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Be'(2s) Be'(2p)

TABLE V. Discrete 2s -2snp P oscillator strengths
of Be.

Level Hyperspherical, f„ (Ref. 12)f„

b
CO—

2s2p
2s3p
2s4p

0.68
0.017
0.0002

1.71
0.0030
0.0007

I
[

I [ I

—0.4 —0.2 0.0 0.2 0.4

of this experience gained in Sec. III, I will now
attempt to interpret related properties of the
alkaline-earth atoms and alkali negative ions.

A. MQDT parameters of the large alkaline earths

FIG. 9. Be photoabsorption cross section including
the discrete absorption calculated using energy-nor-
malized wave functions. See text for details.

reflected in the diabatic crossover of intensity in
Be, where 2s2P and the 2pns states absorb photons
strongly like He "+"states while the 2snp discrete
states (n &2) and 2s&p continuum absorb weakly
like He "-"states. Table V compares several
calculated discrete oscillator strengths with pre-
vious results, showing a verification of the qual-
itative features, though the quantitative agree-
ment is worse here than for the autoionizing spec-
trum of Fig. 8.

Finally, it should be pointed out that the con-
tinuous cross section c(q,), shown below the 2s
threshold in Fig. 9, may be experimentally ob-
servable even gzeay from the discrete levels. A

new experimental technique developed by Cole et
g/. " lowers the ionization threshold by applying
a static electric field to the atom, which allows
the discrete oscillator strength to be smeared out
and observed as a continuum. Section IV B will
point out similar intensity "crossovers" observed
in photoabsorption spectra of other atoms.

IV. RELATED SYSTEMATICS OF OTHER
TWO-ELECTRON SYSTEMS

The quantitative mapping of electron correlations
in the Be sp valence shell has clarified the con-
nection between the broad autoionizing states and
the irregularly spaced discrete states. In view

Though each of the alkaline-earth atoms has the
same ns' ground-state designation, their core
structures differ considerably. This is clear from
Table VI, which gives the lowest s, p, and d en-
ergy levels of their singly charged positive ions.
The first excited state of the lightest two ions
Be' and Mg' is the np state, while it is (n —l)d for
the remaining "heavy" alkaline-earth ions Ca',
Sr', Ba', and Ra'. Accordingly, the spectra of
Be and Mg are similar, but they differ quali-
tatively from spectra of Ca, Sr, Ba, and Ra which
are similar among themselves.

The lowest four 'P potential curves for Ca are
shown in Fig. 10." The lowest doubly excited
channel is now 3dqp whose potential minimum lies
far below the Ca'(4s) threshold, in fact, midway
between the 4s4P and 4s5p bound levels. Accord-
ingly, the 4snp levels (n & 5} all mix strongly with
the 3dpp channel, as is verified by the I u-Fano
plot of 'P' Ca levels"'"' in the inset of Fig. 10.
This plot shows a rise by nearly unity of the quan-
tum defect [which coincides with 5/v defined by
Eq. (30}]between the 4s5p level and the ionization
threshold; this rise is centered on the fourth
bound level, which is thus labeled 3d4P in accord-
ance with Ref. 13(b) but in contrast to the standard
Ref. 10. However, this lowest doubly excited
level is in fact distributed over the entire 4snp
Rydberg series, and represents only a small por-
tion of any particular bound state. The occurrence
of doubly excited levels in the discrete spectrum
'is common to Ca and to the heavier alkaline
earths while all doubly excited levels in Be and

TABLE IV. Experimental 2pns ~P Be quantum defects
(Ref. 8).

TABLE VI. Experimental ion energy levels (in Ry).

Level

2s2p
2p3s
2p4s
2p5s

Quantum defect

0.71
0.7
0.78
0.74

Ion

Be'
Mg'
Ca'
Sr'
Ba'

3
4
5
6

-1.338
-1.105
-0.873
-0.811
-0.735

-1.047
-0,.779
-0.642
-0.590
-0.540

(n-1)d

-0.444
-0.454
-0.748
-0.677
-0.686
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FIG. 10. Calcium P adiabatic potential curves cal-
culated using the new semiempirical method of Natanabe
(Ref. 54). The lowest four experimental bound levels
are shown as dashed lines contained within the appro-
priate potential curve. The inset is a Lu-Pano plot of
-vg=-v, versus v2= pz for these bound levels from Ref.
13(b).

TABLE VII. Short-range scattering parameters of the
~I' alkaline earths (Ref. 13).

Atom &/7t ~=-Q+ vm)
1
2

Be
Ca
Sr
Ba
Ra

0.29
0.33
Q.30
Q.30
0,30

0.40
-0.42
-0.44
-0.40
-0.35

0.33
Q.78
0.71
0.63
0.57

0.85
0.72
Q.87
0.82
0.72

Mg are above threshold.
Figure 10 indicates that the 4pqs potential curve

is repelled strongly by 3d&p through a channel
mixing, while 4ppd varies more smoothly with R
reflecting a weaker channel mixing. The 4pt. s
potential minimum lies close to the 4s threshold;
its mixing with 4sqp and 3dqp is then expected to
become important at this energy as in Be and Mg.
A sensible ab initio calculation of the Ca spectrum
must include the 4pqs channel in order to obtain
realistic results above the 4s threshold.

The energy dependence of p„p„and8 should
accordingly be similar for the lowest two channels
in all of the alkaline-earth atoms, though the on-
set of channel mixing occurs at lower energies
in the heavier atoms. A calculation analogous to
that of Be would be required to predict the values
of these parameters, and their dependence on the
specific electron correlations in each atom, but
Ref. 13 has found that the mixing angles 8 and the
differences of eigenquantum defects &= p, —p,,
are nearly identical for Ca, Sr, Ba, and Ra. This
regularity emerges from Table &II, which also
includes the Be parameters taken from Fig. 5-at

the 2p threshold. Moreover, the regularity ex-
tends to the Be parameters with unexpected
quantitative accuracy, except for the sign differ-
ence of 6 for Be.

In the absence of calculations for Ca, Sr, Ba,,
and Ra as complete as for Be, the following in-
terpretation of the near equality of 8 and D for
these atoms reported in Ref. 13 is necessarily
tentative. The Localized, strongly avoided cross-
ing of the calcium potential curves 4sqp and 3dqp
in Fig. 10 suggests that the mixing of these chan-
nels at R &R,„hasthe effect of preserving diabati-
cally the character of the wave functions P, and

g, which was established in the adiabatic short-
range region (R &R,„)in Be. Note that in Be the
"+"or "-"symmetry character is also preserved
diabatically through the avoided crossing but with-
out any need for channel mixing. The coincidence
of the He' levels 2s and 2p allows each adiabatic
state P, to retain the + symmetry at all R except
in the immediate proximity of the narrowly avoided
crossing; a diabatic transition through this cross-
ing implies merely a sudden switch from one Q„
to the other, in contrast to the mixing that occurs
in the alkaline earths.

B. Photoabsorption spectrum of Mg and Ne

The structure of'Mg is sufficiently similar to
Be to permit a discussion of outstanding features
of its spectrum in the absence of a coupled-chan-
nels calculation. Yet such a discussion is non-
trivial, as Mg differs from Be in important ways.
The main difference is the presence in Mg of a
larger closed shell 2p' core, which makes the
Mg' ion "softer" than Be' as evidenced by its lower
bindi. ng energies in Table VI. Thus the 3s l.evel
of Mg' is less strongly bound than the 2s of Be'.
On the other hand the Mg' 3p-3s separation, is
0.035 Ry larger (12%) than the Be' 2p-2s separa-
tion, reflecting that the field within the Mg" core
is far less hydrogenic than for Be".

The 3sqp and 3pgs potential curves of 'P' Mg
are shown in Fig. 11. The most obvious change
from Be results of Fig. 1(c) is an expansion of the
radial range, as the 3pqs minimum occurs at R-6
for Mg while the corresponding 2pqs Be minimum
occurs at R-5. More important is that the 3pqs
minimum lies very close to the Mg' 3s level,
whereas the 2pps minimum in Be is about 0.14 Ry
lozoe~ than the 2s level of Be'. Accordingly the
strong coupling transition of the mixing angle from
-', m to -

—,'m should occur at a much higher energy
in Mg, near Mg' (3s).

The photoabsorption spectrum of h~g has been
calculated by Altick and Bates, and is shown in
Figs. 3 and 4 of Ref. 25. Some experimental mea-
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surements are known' but as for Be they are only
relative and are not very clean. The shape of the
Mg spectrum of Ref. 25 is quite similar to the Be
spectrum shown in Fig. 9. For example, Mg also
has a maximum absorption near the lowest (SsSP)
discrete level„and shows a series of very broad
3pns autoionizing resonances converging to the 3p
threshold. There are, however, two related
major differences from the Be spectrum:

(a) The Cooper minimum occurs at a higher en-
ergy in Mg than in Be. While the Be minimum
occurred among the 2snp discrete levels at g,
—-0.07 Ry, it occurs in the continuum at q, -0.12
Ry above the 3s threshold for Mg.

(b) The discrete states of Mg have a larger frac-
tion of the total oscillator strength than the dis-
crete states of Be. Thus the oscillator strength
above threshold is depressed in Mg, as evidenced
by the lower peak absorption of the Mg autoion-
izing resonances, which is only 1 Mb compared
to 3.5 Mb in Be.

Here, (a) is primarily a one-electron effect, re-
lated to the presence (or absence) of the 2p' core
for Mg (or Be). Thus the Cooper minimum for
Na also occurs above threshold in contrast to Li
where it lies below. Item (b) follows in part from
(a). That is, since the oscillator strength goes
throgh zero helot threshold for Be but not for
Mg, it is natural to expect the discrete spectrum
of Mg to have a generally stronger photoabsorption
than Be while its continuum should be weaker.
What is new here is that the accumulation of oscil-
lator strength in the discrete spectrum of Mg is
also reflected in a depression of photoabsorption
by the doubly excited 3pps channel. That is, the
ratio cr»/o„above the Sp threshold is expected to
be smaller for Mg than the ratio found earlier of
0„/(r~=0.56 for Be, though this ratio in Mg has
apparently never been measured or calculated.
The larger separation of the two Mg potential

curves has thus nearly eliminated the diabatic
crossover of the oscillator strength which was seen
so strongly in Be. This conclusion is also sup-
ported by noting that the 3s3p quantum defect
agrees with those of the 3snp levels much better
than for the 3pns autoionizing levels, also in con-
trast to Be.

The mixing of 3pqs and 3sqp channels has also
been observed in neon photoabsorption, where,
however, the intensity crossover resembles that
of Be more than that of Mg. This spectrum was
observed long ago by Codling ef; a1."using syn-
chrotron light to measure neon photoabsorption
in the photon wavelength range 200 to 280 A,
which reaches the doubly excited Ssnp and Spns
configurations. The experimental findings" can
be summarized as follows. The SsSp state ab-
sorbs light strongly, but the 3s4p level is so
weak that it is missing from the spectrum entirely.
A weak series of levels then reappears, beginning
with 3s5p, but with a completely different auto-
ionization line shape. Finally, the 3pns autoion-
izing states with n~ 4 absorb strongly above the
3s threshold, and interestingly. enough their line
profile is similar to that of 3s3p. This suggests
that, as in Be, the SsSp and SPns have "+"-type
characteristics, whereas the Ssnp, n& 4, are "-"-
type states. A remark to this effect was included
in Ref. 55.

Neon is much more complicated than the alkaline
earths in this energy range, since the outermost
two electrons move in the field of a softer, open-
shell core, (2p )'P'. A further complication is
that the outermost two sp electrons are classified
as 'P, which is necessary if the combined state
of all electrons is 'I'0. Since "+"and "-"do not
cross for 'P' helium, it is not clear why they
should do so for neon. It remains for future cal-
culations to investigate the nature of this cross-
over of intensity and profile characteristics for
neon.

C. Photodetachment of alkali negative ions

Photodetachment experiments" performed near
the threshold for core excitation to its first ex-
cited state (np) show narrow Feshbach resonances
with autodetaching strengths that are much larger
than for H even though small because of proximity
to threshold. These resonances have been identi-
fied" as having primarily an npps 'P' classifica-
tion. The 'P potential curves of K in the relevant
energy range are shown in Fig. 1(d). The+/-
crossing is absent here as in Be since the 4s and

.4p levels of potassium are not degenerate. The
resemblance of Figs. 1(c) and 1(d) suggests that
for energies near the 4p level of K and above the
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TABLE VIII. I scattering parameters of the alkali
negative ions (Refs. 17 and 27).

Ion P=~Q+ v2)'
K
Cs

0.26
0.22

0.03
-0.02

0.49
0.49

4pqs potential curve minimum, the two channels
4sqp and 4pqs will be strongly coupled nonadi-
abatically with nearly equal mixingp eeq 7T At
large radial distances the Coulomb attraction is
absent, so the wave functions (f, , g, )of .Eq. (23)
are to be interpreted here as spherical Bessel
functions [renormalized to be energy independent
at r=0 (Ref. 1'l, 46)] rather than Coulomb functions.
With this obvious modification, the solution of the
coupled Eqs. (I'I) could proceed just as described
for Be, giving the five 'P' short-range MQDT
parameters p.„p,„8,D„andD, which then de-
termine the cross section.

To interpret the Cs spectrum for the first time,
Lee" fitted these parameters (assumed constant)
to experimental results and obtained good agree-
ment. (In addition 'Po parameters also had to be
fitted since the spin-orbit interaction couples 'P'
to 'P strongly closely to threshold. Here, I will
focus on the 'P parameters only for comparison
with the parameters in Table VII.) Lee's Cs
values are compared with the ab initio K values
at the 4P threshold in Table VIII, which shows
that nearly equal mixing is also obtained for the
alkali negative ions just as for the alkaline-earth
atoms of Table VII. This agreement verifies that
the potential ridge (n = -,

' v, 8»= v) splits the wave
function almost equally into the two potential
valleys here as in Be.

The ab initio values of Norcross and Taylor"
show a strong energy dependence which is not
relevant here, as discussed in Ref. 27. This ref-
erence calculated the effect of the alkali polariz-
ability on negative ion photodetachment by using
the exact regular and irregular Mathieu function
solutions (f, ,g,.) of the polarization Schrodinger
equation, instead of the spherical Bessel functions
used by Refs. 1V and 26. In this "polarization
representation" the parameters of K are con-
stant over the 50-meV ringe of interest near K(4P)
with values p,, =0.48, p.,= —0.25, and 8=0.08m.
The large change of this mixing angle from the
"zero-field representation" of Table VIII implies
that the channel couplings depend sensitively on
the long-range field effects built into the base pair
(f;,r,).

V. DISCUSSION

The preceding sections I-IV have developed a
generalization of the hyperspherical method appro-

priate for the analysis of correlations between
two electrons outside a many-electron closed-shell
ionic core. This treatment has focussed on low-
energy double excitations, without attempting to
encompass the Wannier phenomena" ~' associated
with the higher energy range in which both elec-
trons have sufficient (or nearly sufficient) energy
to escape the atom. A main conclusion of Sec. III
is that strong intrashell excitations (such as the
2s-2P excitation of Be') can be regarded as a, local-
ized departure from an otherwise adiabatic evolu-
tion in R along the hyperspherical potential curves
U, (R). A ripe problem is the extension of this
approach to treat the strong mixing of channels in
other groups of atoms, such as the aluminum"
Ss~qd and Ss3pqp D' channels. This aluminum ex-
ample involves all three outer electrons equally,
and thus requires a substantial new developement.
A preliminary hyperspherical study of such three-
electron systems has recently. been applied to Li,"
but it is not yet suited for quantitative calculations.

The line of research described here is designed
primarily to interpret the gross systematics of
electron correlations over a broad range of en-
ergies. Over narrow ranges of energy instead,
weaker forces (mainly spin orbit) can drastically
perturb the spectrum. " These weaker forces
usually become noticeable when the spectrum is
examined with fine resolution close to ionization
thresholds. This class of effects is to be handled
separately from those considered here, using as
input calculations like the present one for Be.
These weak interactions should cause avoided
crossings (for example, between 'P' and 'P' po-
tential curves in K ) at much larger R than the
crossings having an electrostatic origin. However,
it should not be necessary to develop a full rela-
tivistic generalization of the present method
which treats all such effects simultaneously. In-
deed, it appears advantageous to handle separately
effects of such different dynamical origin and in-
fluence.

The different alkaline-earth atoms, while sim-
ilar in their. overall spectra illustrate three dis-
tinct regimes in their manifestations of electron
correlations in the discrete spectrum. At one
extreme is Mg, which has widely separated ns&p
and npqs 'P potential curves; thus the usual dis-
crete spectrum of nsmp levels is little affected
by mixings with the doubly excited np&s channel
containing the higher-lying npms autoionizing
levels. At the opposite extreme are the heavy
alkaline earths Ca, Sr, Ba, and Ra, which have
a much lower-lying doubly excited potential curve
[although of a different configuration than Mg and
Be, namely (n —1)dip]. Thus throughout the dis-
crete spectrum of these atoms, the mixing with
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this doubly excited channel is apparent, in parti-
cular because the discrete spectrum even con-
tains doubly excited "perturber" levels. Finally,
Be is intermediate between these two groups,
though closer to Mg. That is the channel mixing
sets in at a lower energy in Be than in Mg, near
the second discrete level 2s3p causing a "jump"
in its quantum defect, but the 2pns doubly excited
levels remain well above the 2s threshold as in
Mg.

As the energy increases significantly above the
asymptotic threshold of each hyperspherical po-
tential curve, the nonseparability in R, n, and 8»
becomes more apparent, especially at small R
where the mock-centrifugal barrier is far too
repulsive. %'ith increasing energy, therefore,
this nonseparability is included in the hyperspher-
ical formulation as a weak nonadiabatic coupling
to a large number of higher-lying potential curves
which may nevertheless have a large cumulative
effect. To avoid this inefficient coupling of a large
number of potential curves at higher energies,
Ref. 7 outlined an alternative approach. This
method solves the small-R Schrodinger equation
variationally within R &R, by an R-matrix tech-
nique. 4~ This portion of the calculation. then pro-
vides an input boundary condition for a few-cou-
pled-channels integration as in Sec. III but starting
from R =R,. instead of R =0. An exploration of
this approach for He has been carried out, but
will be reported elsewhere. Thenonadiabatic
couplings do have an important effect at small R
as the energy increases above threshold, and a
small-scale R-matrix solution handles them ef-
ficiently. However, up to-3 eV above threshold
the couplings do not have a strong qualitative ef-
fect on the dynamics, and so this R-matrix so-
lution in the "core" region R &R,. (R, - 3 a.u.}was
not utilized for the Be calculation of Sec. III.

Finally, extensive measurements have been
made, largely by Gallagher, "of the optical ex-
citation functions of the alkali-metal resonance
lines by electron impact. The wealth of these ex-
perimental data is concentrated mainly at higher

energies than treated in this article. Thus an in-
terpretation of these experiments should be feasi-
ble once the R-matrix treatment of the core region
is more fully implemented and combined with the
coupled-channels approach used here.¹teadded in proof. Two extremely relevant
articles were inadvertently omitted in the above
discussion. Fi.rstly, the work of J. Geiger" dem-
onstrated semiempirically how an energy-dePen-
dent mixing angle is needed to reproduce the ob-
served oscillator strength distribution of calcium.
Secondly, the beryllium oscillator strengths of
Table V should be compared with the accurate
values obtained by Lin and Johnson' using the
relativistic random phase approximation. Their
results, which should have state-of-the-art pre-
cision, are f„=1.38, 0.025, 0.0013 for the 2s2p,
2s3p, and 2s4p levels of Be, respectively. It is
suspected that numerical inaccuracies in the R
integration far below threshold caused the large
(5+0) error in the 2s2p hyperspherical oscillator
strength given in Table V, since the results for
the higher levels and the continuum agree rea-
sonably well with previous calculations. However,
since this discrepancy does not affect the main
conclusions drawn here, the issue has not been
pursued.
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