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%e describe the techniques and the approximations used in extensive calculations for cross sections and reaction-
rate parameters for electron-impact excitation of a number of heliumlike ions. All transitions involving the ground
state and the n = 2 states are considered. Calculations are made in the distorted-wave approximation using

configuration-interaction wave functions to represent the target states. Autoionizing resonances in the scattering
cross sections are included through bound-channel correlation-type functions and through quantum-defect-theory

analysis of the reactance matrices. The resonances are shown to make considerable contributions to the cross
sections and thereby, in many cases, to enhance the excitation-rate coefficients by a significant factor. This should

have important consequences for practical applications in the analysis of laboratory and astrophysical plasmas. The
accuracy of our approximations is also discussed.

I. INTRODUCTION

The helium isoelectronic sequence is of con-
siderable importance in several areas of astron-
omy and in the diagnostics and estimation of
power loss from fusion plasmas in magnetic-con-
finement reactors. For example, accurate data
are required for the interpretation of observations
from the Solar Maximum Mission (SMM) satellite
for studying solar flares and related phenomena.
Gabriel and Jordan' and Blumenthal et aL' have
pointed out that the ratio of the line intensities
for transitions 2'$-1'$ and 2'p'-1'S can be
used to estimate the electron density ~, of a hot
plasma as found, for example, in the solar cor-
ona. In fusion reactors the problem of diagnostics
is similar to that in astrophysical applications.
However, more important is the estimation of
radiative power loss from the reactor plasma due
to impurity ions, some of the most important ones
being He-like. For practical applications one
requires accurate reaction rates for transitions
produced by electron impact, over a large elec-
tron-temperature range. A typical range for
astrophysical applications is 10'-10' K and for
fusion applications, 10'-10' K. The excitation-
rate coefficient for a transition between initial
level i and final level j is given by

- enltktT y (T)

in units of cm sec, where E,.&
is the excitation

energy, '&, is the statistical. weight of the initial
level, and T is the electron temperature in K. The
sate Parameter y, assuming a Maxwellian electron
distribution, is

y = a. e-'~~" d ~
tt it

Q, &
is the collision strength for transitions be-

tween states i and j, related to the cross section
Qtt by

where e, is the incident-electron kinetic energy
relative to level i in rydbergs and a, is the Bohr
radius.

In the low-energy region where low partial waves
dominate the cross section, either the close-cou-
pling (CC) or the distorted-wave (DW) approxi-
mation is often employed in scattering calcula-
tions. For multiply charged ions, the coupling
between different channels is usually weak and the
DW approximation is often very good in compari-
son with the more elaborate CC approximation.
As we shall show, this is particularly true for
He-like ions; consequently we employ the DW
approximation in the present work. In the high-
energy region and for high partial waves, we use
the Coulomb-Bethe (CB) approximation' to com-
pute the partial contributions to the cross sec-
tions. Also, for multiply charged ions it is im-
portant to consider the autoionizing resonances
in the scattering cross sections in the near-
threshold regions. ' The resonant contribution is
often larger (in some cases considerably so) than
the background or nonresonant contribution to the
cross section. In one previous calculation, ' an
enhancement due to resonances was seen that is
very large indeed, up to a factor of 30. We anal-
yze the resonance structures using accurate nu-
merical interpolation methods and quantum-de-
fect theory (QDT) as described by Seaton. '

Detailed collision strengths and rate coefficients
have been calculated for a number of ions. In this
paper we present and discuss illustrative results
for BeIII, C V, OVID, and Fe XXV. Rate coef-
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ficients for practical applications in the temper-
ature range 10'-10' K will be published elsewhere
for the following ions: BeIII, CV, OVII, NeIX,
SiXIII, CaXIX, FeXXV, SeXXXIII, and MoXII.

y st g
=1 g=1

(4)

II. THEORY AND METHOD

The general formulation for the computation of
electron-ion collision cross sections in the DW
and CC approximations has been discussed by
Eissner and Seaton, ' and incorporated in the com-
puter code discussed by Eissner. ' We present be-
low an outline of the DW method along with certain
special features included in the present work.

The total wave function for the e + ion system
for a particular scattering symmetry SL x may be
written

NCHF NCHB

R,',", =-(E,. ~(a, -e, )n„,+[W U-'(&-Z)-'I(]„'~E, .},
(8)

where h,. is the one-electron Hamiltonian operator
and g and U are potential operators. The DW rad-
ial functions E, ~(r. , e, ) are also calculated in the
statisticalmodel potential V(&„r) mentioned earl-
ier, i.e. ,

+ 2V(X(, r) + e ) E,.( (r, g ) ) = 0 .(d l(l+ I)

The parameter A., corresponding to the free-elec-
tron waves I'„may either be chosen to be the
same as those for the target orbitals [P„(nl )} or
may be varied to minimize selected R matrix ele-
ments.

In Eq. (8) the matrix X has elements given by

X„.=(4,tIf(4, ) . (IO)

R'"= -(e[ Z-Z[e), (7)

where R is the reactance matrix and ff is the (N
+ I)-electron Hamiltonian. Equation (7) may be
rewritten, for the individual R matrix elements,

The first summation includes all the "free" chan-
nels, NCHF, where

8) =AfQ(S) L,. )E, (r, e) )}

are the "free" channel functions with P(S,.L,)as.
the target ionic wave function for the state 8,.J,
I',. is the free-electron radial wave function, and
A, is the antisymmetrization operator (angular var-
iables have been omitted for convenience). The
second summation in (4) includes all "bound"
channels, NCHB, where the bound-channel function
may be expressed as

4, =A[ y(S, I,, )P„(nl )}. (8)

The functions $(S,L, )and 4& are c. onstructed from
the same set of one-electron orbitals JP„(nl)},
and thus 4& has the form of a bound state of the
e + ion system. The 4, are included in order that,
the orthogonality conditions (E,. ~ P„)= 0 may be
imposed on the computed free-electron wave func-
tions, ' but also represent short-range correlation
effects. The c, coefficients are determined by the
variational principle. The basis set of one-elec-
tron radial orbital wave functions [P„(nl)}is cal-
culated in a scaled Thomas-Fermi-Dirac (TFD)
potential V(A,„r) in which the parameters A, , are
sealed to produce good eigenenergies and oscilla-
tor strengths for the target states. "

Applying the Kohn variational principle to the
total antisymmetrized vector-coupled wave func-
tion denoted by (4), one obtains in the DW approx-

. imation

Thus the last term in (8) has the form of an ef-
fective optical potential for states not included in
the first term of the expansion (4), and it follows
that R may have poles at eigenvalues of X that
correspond to autoionizing states of the e'-ion
system. " A similar approach in the CC approxi-
mation has been adopted to obtain resonance struc-
tures in excitation of H-like ions."" These
studies, in particular that of Hayes and Seaton, "
showed that quite good results could be obtained
zvithout the necessity of including the parent
states of the resonances in the first term of ex-
pansion (4). In the present work, as in that of
Hayes and Seaton, the functions 4

~
are composed

of "spectroscopic" orbitals, and are thus easily
tailored to include functions corresponding to
pa, rticular autoionizing states of interest.

In order to obtain the detailed resonance struc-
tures one requires the cross section at a large
number of points. Since direct computations are
very expensive, we use numerical techniques and

QDT to analyze R matrices which then yield the
detailed collision strengths and cross sections.
A computer program RANAL has been written for
this purpose" and has the following basic fea-
tures. In energy regions where resonance struc-
tures appear explicitly in the calculated R matrix
elements, they are fitted to polynomials in ener-
gy, along with poles representing resonances,
l.e.)

IP IQ

(~) Q a ek-1+ Q IP+n
ii' ~ (g e )

%=1 n=l n

where a„are the expansion coefficients, IP is the
degree of the polynomial, IQ is the number of
poles, and e„are the pole positions. The numeri-
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cal fit (11) may be made arbitrar'ily accurate by
including a sufficient number of energies. The
parameters IP, IQ, and e„are required to be the
same for all R matrix elements for a given SI r.

RANAL may also be used to analyze resonance
structures in energy regions below given thresh-
olds using QDT, thereby obviating scattering cal-
culations in such regions. R matrices computed
above the threshold, in the region where all chan-
nels included in the calculations are open and the
R matrices are slowly varying, are extrapolated
below threshold where some channels are open and
some closed, using

R =R„-R (R„t+a mnv, ) ' R„, (12)

where o refers to open channels and ~ to closed
channels, and v, is the effective quantum number
for the closed channels. R is the reactance ma-
trix below threshold for the channels that remain
open. R„, R, R„, and R„are obtained on
analytic continuation of the R matrix from above
threshold that is partitioned according to the
scheme

R'= R„R„f (13)

After computing the reactance matrices as
continuous functions of energy, we obtain the scat-
tering matrices S and collision strengths 0 from
the following expressions:

and

S =(f -R)(z+R)-' (14)

Q(S, L, , S, i L, i ) = Q Q Qsr ~ (S(L) I, S,. i L, i I' ),
SL& ll

(15)

Q(Sg Li l S~i L&i, l') = 2(2S+ 1)(2L+ 1)

x
( S ~~, (S, I.; I, S)i L qi I')

~

',
(16)

where S, L,, and S,.I I,, denote initial and final
target states, and 1 and E' denote incoming and
outgoing partial waves, respectively. Excitation-
rate coefficients are computed from Eqs. (1) and

(2).

III. WAVE-FUNCTION REPRESENTATION

It is important first of all to obtain good repre-
sentations for wave functions of ..the target states
of the ion. In the application of the variational
principle for R, exact eigenfunctions for the tar-
get are assumed, and therefore any error would
influence to first order the error in the calculated
R matrices. In our calculations we employ target
wave functions obtained from a configuration-in-
teraction (CI) expansion.

We are interested in transitions among the
ground state and the states of the n = 2 complex,
i.e., 1'S, 2'S, 2'S, 2'~' and 2'p". The con-
figuration expansion used for all these states is

1s', 1s2s, 1s3s, 2s', 2p', even parity

1s2p, 1s3p, 2s2p, 2p3d, odd parity.

The one-electron orbitals JLls, 2s, 2p, 3s, 3p,
3d] are computed in the scaled TFD potential
V(X„r) where the A, , are adjusted until (a) the
eigenenergies of the target states and (b) the
(dipole-length) oscillator strengths for allowed
transitions between target states are in good
agreement with accepted values. The oscillator
strengths indicate the accuracy of the ionic wave
functions. In Tables I and II we give the computed
energies and oscillator strengths, respectively,
and compare these with data from Weiss'" (for
g ~ 10) and Ermolaev and Jones." The values of
the scaling parameters A., are also given in Table
II.

We chose X~ = 1.0 for all ions under considera-
tion. The 3d orbital and the configuration 2p3d
were introduced in order to generate additional
correlation functions of the type 4 (nln' I '3d), and
not for CI with the target states, the latter effect
being negligible. The eigenvalues of K depend on
the amount of CI included within the set (C &). It
is therefore necessary to include a sufficient num-
ber of these functions to permit accurate computa-
tion of the positions of the bound states and the
quasibound states (corresponding to resonances)
of the (e + ion) system. As an example we give
below the total wave function of the system for
symmetry SI,m = 'S:

4'('S ) = [8(1 'Sk's) + 8(2'Sk's) + 8(2'Sk's) + 8(2 '&'k'p) + 8(2'p'k'p)]

+ [c,C (1s2p') + cp (Is2p 3p) + cC (1s3p') + c4C (2s2p') + cp (2s2p3p) + c,C (1s'2s)

+ c4 (ls2s') + cp (1s2s3s) + c94 (1s'3s) + c,oC (1s3s') + c,p (2s'3s) + c,p (2p'3s)

+ c~3C (1s3d') + c,4C (2s3d') + c»C (3s3d') + c„C (2p'3d) + c»C (2p3p3d)],
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where k' is the kinetic energy of the scattered
electron. For the 'S symmetry we have also in-
cluded the 3d' configuration in the target since it
was found that the state ls3p'('S) interacts strong-
ly withthebound-channel configurations of the type
(ns3d').

The eigenvalue spectrum of K was studied in de-
tail for each ion and scattering symmetry con-
sidered, using the program SUPERSTRUCTURE ."
All eigenvalues corresponding to singly excited
bound states of the e + ion system (e.g. , 4„ for
j = 6 and 9 in the above example for SLY = 'S) oc-
curred at approximately the correct positions. All
eigenvalues corresponding to members of the
rydberg series of autoionizing states converging on
states of the n=2 complex (e.g. , j= 1, 2, 7, and 8)
occurred below the 2'S state. All eigenvalues cor-
responding to autoionizing states in the series con-
verging on the n = 3 complex (j = 3, 10, and 13),
and no others, occurred between the 2'p' and the
3'S states. All other eigenvalues corresponding to
more highly excited states (j =4, 5, 11, 12, and
14-17) occurred at much higher energies. These
latter are considered unreliable, since the parent
states are not well represented in the specifica-
tion of the target states, and these energies were
avoided in the scattering calculations.

The accuracy of the computed energies for the
resonance states may be estimated by comparing
the computed eigenenergies for some doubly ex-
cited bound states with the results of more sophis-
ticated calculations by other workers. In Table
III we compare the total energies and oscillator
strengths for some states of e + Be IG, i.e. , BeII.
It is seen from Table III that our values are
slightly higher than the values obtained by oth-
ers."" The reason for the discrepancy are that
(a) the set of functions f4&) included is not fully
complete, but one that is automatically generated
by our D%' computer code, given the target con-
figurations' and (b) the one-electron orbitals used
are for the target ion and not for the e + ion sys-
tem. Condition (b) becomes less and less signi-
ficant as the ion-charge increases. However, we
may conclude from Table III that the errors in the
positions of the resonances 1s3l 3l' in the com-
puted cross sections should not exceed 1 or 2%.

In all there are 12 states of the type 1s3l3l' that
would appear as autoionizing resonances (restrict-
ing l, l

' to the s, p, and 0 waves) in the present
approximation. The calculated energies of most
of these states for all ions considered in this work
are given in Table IV. These are obviously a very
few of the infinite number of resonances present
below the n= 3 states, i.e., 1s3lnl ' type. We rec-
ognize this limitation and, as explained later, we
provide an estimate of the effect of the remainder
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TABLE Q. Dipole-length oscillator strengths a@d scaling parameters for the TFD potential.

].'S 2'Po 2 i'g 23S 2sP0
Present Bef. 15 Present Bef. 15 Present Ref. 15

Be III

Cv
- Ovu

Ne IX

SiXIII

Ca xIx
Fe xxv
Se xxxIII
Mo xu

0.585
0.675
0.717
0.741
0.768
0.788
0.798
0.806
0.811

0.552
0.647
0.694
0.723
0.754
0.788
0.791
0.801
0.807

0.147
0.092
0.067
0.053
0.037
0.026
0.020
0.015
0.012

0.149
0.093
0.068
0.053
0.037
0.026
0.020
0.015
0.012

0.226
0.136
0.097
0.0076
0.053
0.036
0.027
0.021
0.017

0.213
0.131
0.095
0.0074
0.052
0.035
0.027
0.020
0.017

0.986
0.991
0.993
0.994
0.996
0.997
0.998
0.998
0.999

0.642 1.0
0.776 1.0
0.820 1.0
0.830 1.0
0.834 1.0
0.835 1.0
0.836 1.0
0.836 1.0
0.837 1.0

of the resonances on the cross sections and rate
coefficients.

IV. SCATTERING COMPUTATIONS

TABLE QI. Total energies (rydbergs} of some states
of Be II.

State Others Present

1~2p2 2P
1s2p2 2D

1s2s2p4P'
1s2s3P4J
1s2p3s4P'
1s2p24P
1s2p3p P
1s2s3s4S
1s2p3p4S

-19.586
-19.582

-19.117"
-18.911
-19.738

18.846 b

-19.235"
-18.918"

-19.486
-19.536
-20.048
-19.000
-18.840
-19.652
-18.691
-19.138
-18.7231

Fox and Dalgar'oo, Bef. 17.
Holoien and Geltman, Bef. 18.

The different total spin amd angular momenta
and parity (SLn) states of the e + ion system are
a result of coupling the incident free-electron
partial waves l with the target state S& L, of the
ion; i.e. , we may denote a given channel for a
particular SI ~ as S, L, l SL~. We need consider
only the low partial waves in the detailed reso-
nance structures since the resonances due to high
angular momenta (in practice l&3) are expected
to be very narrow and therefore negligible. For
partial waves with l, l'& 4, only five Sl.m states
('S, 'P', 'D, 'E', and 'G) contribute to transi-
tions involving the n = 2 states in He-like ions.
Two exceptions are the transitions 2'S-2'p'
and 2 3P —2 'P, which have additional contributions
fromthe SI n states'S, 'P', 'D, and'E', and'p', 'D',
and 'I', respectively. We carry out detailed reso-
nance analysis for the symmetries 'S, '&', 'g),

Resonances are not taken into account for
the remainder of the SLm states. Certainly for the
quartet symmetries contributing to 2'S-2'&' this
is a reasonable approximation, since the resonant
contribution is expected to be small. The distort-
ed-wave radial functions for the free electron

E~o'~(r, e) were calculated in the TFD potential with
scaling parameters X, chosen to be the same as
for the target orbitals P„(n, l ). A study" of the
effect of the dependence on A, for the free waves
for C V indicated that careful optimization of this
parameter could lead to changes of at most 15%
near thresholds. However, since in the present
work we find that away from poles of 3C, ~R«. j

« I
for most of the SL~ states, we forego the optimi-
zation procedure. The condition ~R«i ~

«1 is also
necessary for the validity of the DW approxima-
tion.

For 4& l, l'& 15 we computed the collision
strengths'in the DW approximation but without
resonance analysis and without including the 3d
configurations (this does not induce any significant
errors since the 3d configurations in the total
wave-function expansion do not influence the back-
ground collision strengths appreciably and are
introduced solely for term correlation. ) Partial
waves up to l, l ' = 15 were sufficient to complete
the summation for all forbidden and intercombi-
nation-type transitions. However, for the optical-
ly allowed transitions it was necessary to carry
out the sum over higher partial waves. The Coul-
omb-Bethe approximation described by Burgess'&"'
and Burgess and Sheorey" was used to compute
the contributions from 15 & l, l' ~ ~. According to
the nature of the computations, the energy range
from threshold to ~ was divided into three sep-
arate intervals as follows: (i) threshold-2'&',
(ii) 2'P' —3'S, and (iii) 3'S—~. The threshold
in (i) may be the threshold of excitation for any
one of the transitions.

In interval (i) we have several interacting ryd
berg series of resonances converging on different
levels of the n= 2 complex (see Fig. 1). All com-
putations in interval (i) were carried out using the
program BANAL ." The detailed collision
strengths in this region [E& E(2' 'P)] were ob
tained on QDT extrapolation of the R matrices
computed just above the 2'P' threshold where
they were found to be slowly varying. We also
computed collision strengths averaged over res-
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FIG. 1. Schemat'c energy-level diagram for He-like
ions. For Ov&& and ions of higher charge, the ls2s $
lies higher than the 1s2p 3P .

onances, employing relations from QDT devel-
oped by Gailitis (see Ref. 6), in regions just below
a given threshold where the resonance series con-
verge. Intervals of the type (i) are further sub-
divided into two roughly equal parts; in the first,
we computed collision strengths including detailed
resonance structures, and in the second we com-
puted the Gailitis-averaged collision strengths.

In interval (ii), we calculated R matrices at a
number of points sufficient to allow numerical
interpolation between resonance structures of the
Is313l' complex using (11). The 8 matrices were
fitted and the collision strengths were calculated
at a fairly large number of points by BANAL. The
energies at which the R matrices were calculated

directly using the DW program were chosen to be
in the vicinity of the resonance positions given in
Table IV. Generally, approximately five points
were required in order to fit each resonance.
Once the fit for the R matrices has been obtained,
detailed collision strengths may be computed at
any number of energies.

In interval (iii) collision strengths were compu-
ted at a small number of energies up to approxi-
mately five times the threshold energy for the ex-
citation of the ground state to n= 2 states. We de-
note this last energy by e,. With increasing ener-
gy, the collision strengths for forbidden and inter-
combination transitions usually decrease accord-
ing to power-law form. Therefore, for such
transitions we fit the collision strengths to an ex-
pression of the type 0 = ae ~ (b&0). For optically
allowed transitions the collision strength may also
be fitted to the same form (with b & 0), but at suf-
ficiently high energies they assume the asymptotic
Bethe form, i.e., Q-inc. Therefore for optically
allowed transitions we matched 0 = ae ' (b & 0) to
the form (c Inc + d) where the coefficients c and d
were obtained by matching both the function and
the derivative at the energy e,. In the present
case this procedure is particularly valid since in
the high-energy region the major contribution to
the collision strengths for allowed transitions
comes from partial waves l &15, which we com-
puted in the C B approximation. Recent experi-
mental results of Taylor et al."for Be+ indicate
that the measured values assume the Bethe form
for energies higher than about five times thresh-
old (this may not be true in general). The contri-
bution to the rate parameter y from the energy
range e, to ~ is then

y(co-~) = e 'o~~r(cine, +d)+cE,(eo/kT), (17)

where c Inc, + I= A(e, ) and Z, is the exponential-
integral function J,

" e 'I 'dt. Using these fitting

TABLE IV. Energies (rydbergs) for autoionizing states of the type 1s3l3l relative to 1 S.

Designation Be ui Ne rX Si XI1I Qnx Fe xxv Se xxxIII Mo XLI

ls3s 8
1s3s3p2P'
1s8p2 2D

1s3s3p
1s3s8d2D
1s3p8d2
ls3p2 2S

1s3p8d2P'
1s3s8d2D
1s8p3d2E0
1s3p3d2P
1s3cP 8

9.5139
9.6122
9.6232
9.6565
9.7220
9.7304
9.7559
9.8125
9.8625
9.8754
9.9888

10.1216

23.5622
23.7293
23.7442
23.7969
23.9079
23.9343
23.976
24.0724
24.1412
24.1780
24.3516
24.5747

43.8324
44.0676
44.9878
44.1599
44,3156
44.3595
44.419
44.5532
44.6402
44.7013
44.9339
45.2496

70.3246
70.6280
70.6587
70.7453
70.9455
71.0067
71.0840
71.2559
71.3610
71.4462
71.7376
72.1467

141.9753
142.4143
142.4519
142.5823
142.8715
142.0672
143.0803
143.3270
143.4681
143.6017
144.0102
144.6070

296.1179
296.7605
296.8160
297.0044
297.4271
297.5744
297.7414
298.1001
298.2947
298.5012
299.0848
299.9641

506.2604
507.1067
507.1802
507.4265
507.9827
508.1818
508.4024
508.8732
509.1210
509.4005
510.1590
511.3212

873.5617
874.6796
874.7771
875.1007
875.8347
876.1029
876.3951
877,0152
8 77.3340
877.7107
878.7023
880.2419

1840.4182
1341.8077
1341.9292
1342.3300
1342.2419
1343.5791
1343.9430
1344.7125
1345.1021
1345.5761
1346.8007
1348.7180
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FIG. 2. Collision strength for the forbidden transition i $-2 8 in BeIII. k (& S) is the free-electron energy relativei 3 ~ 2 i

to i'S.

formulas one can compute the contributions to y
from the nonresonant high-energy region.

V. RESULTS AND DISCUSSION

In this section we present selected results for
collision strengths and rate parameters in order
to illustrate some of the essential features.

A. Collision strenghts

The collision strengths are computed for each
different SI,m state and the collision strength for a
given transition (e.g. , Fig. 2) is obtained by sum-
ming over all contributing SI~ states. Figure 2
shows the collision strength for the forbidden
transition 1'$-2'S in Be III. Above the excitation
threshold 2'S we have several closed channels be-
longing to the levels 2'S, 2'&', and 2'&'. These
channels are of the type 2(S, L,, )nl (i&4) and the
R matrix elements corresponding to them were
obtained by extrapolating from the open-channel
region. The mutual interaction between various
rydberg'resonance series gives rise to the struc-
ture seen just above the 2'S threshold. The ap-
proximate heights of some of the resonances are
given in brackets and are seen to be quite large.
For example, a numerical average over the small
region just above the 2'S threshold is indicated
by-- and its value is over four times the back-
ground collision strength above the 2'P' thresh-
old. The dashed line below the 2'S threshold

represents the Gailitis-averaged collision strength
in that region and is roughly the same as the nu-
merical average. At the 2'&' threshold we have
a large drop in the collision strength due to re-
distribution of flux into the newly opened 2'&'
channels. The resonance enhancement below the
2'~' is large due to the strong coupling between
the initial and the final states 1'$ and 2'S, and the
2'P'. A much smaller Gailitis jump is seen at the
2'&' threshold and an almost negligible one at the
2'S. The magnitude of the jump when a threshold
is crossed reflects the strength of coupling to that
state. The decrease in the effective cross section
is due to the fact that the autoionizing resonances
converging onto a threshold enhance the cross sec-
tion below the threshold only and no longer contri-
bute to it once the corresponding channels become
open.

Between the n = 2 and 3 complexes we have the
1s3l 3l ' group of resonances whose structures
were obtained on numerical fitting of the R ma-
trices in this region. It may be seen that there is
considerable overlap between various members of
the group. As mentioned earlier the 1s3l 3l' group
corresponds only to lowest members of the series
1s3lnl'. The absence of the higher members im-
plies that we obtain only the background collision
strength in the region between the 1s3l 3l' and the
n =3 complex. We emphasize that since the n=3
states are not included in the total wave-function
expansion (4), these resonances are not due to
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FIG. 3. Collision strength for the forbidden transition 1 $-2 S in CV. Q [k (2 $) =0] is the averaged collision
strength at the 2 $ threshold.

"closed"-channel functions belonging to the set
(8,}but arise from the bound channels of the set

In Fig. 3 we give the collision strengths for
Cv, also for the forbidden transition 1'S-238.
Compared with Be III (Fig. 2), the resonance
structure has spread out somewhat since the en-
ergy-level difference AF. , within a given complex
of resonances such as 1s3l3/' increases as Z.
However, the energy differences ~E„between the
different complexes such as n = 2 and 3, increase as

g', thus with increasing Z the ratio aE, laZ„gets
smaller. In Fig. 3 we see that the effective aver-
aged cross section just above the 2'$ threshold,
represented by the dashed line, is more than six
tiInes larger than the background just above the
2'g' thresholds. The -energy difference between
the 2'9 and the 2'p' states is indistinguishable
in the figure, but a Gailitis-averaged value in this
region is calculated and is denoted by 0[k'(2'S)
= 0]. At the 2'p' threshold once again we have a
large Gailitis jump as described earlier.
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FIG. 4. Collision strength for the intercombination transition 1 S-2 & in BeDI .
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FIG. G. Collision strength for the optically allowed transition 1 S-2 P in Ovid.

In Fig. 4 we have plotted the collision strength
for the inlet'combination transition 1'8-2 &',
and also in Be III. The 1s3l3l' group of resonan-
ces is shown along with some of the structure
above the 2'&' threshold; the latter was obtained
as before through QDT extrapolation of R matri-
ces from above the 2~/' threshold. An important
point to notice here is that in the vicinity of the
first resonance above the 2'&' threshold (1s3s')
the cross section is depressed considerably in
comparison with the background cross section
near the m=3 complex. Finally, in Fig. 5 we plot
the collision strength for the oPtically allocoed
transition 1'$-2'&' in OVII. The g' increase

accounts for the large energy differences between
the different complexes. Also, one sees consider-
ably more structure within the 1s3l3l' group (due
to the increase with g) compared to Be llI or CV.

The agreement between the present D% calcu-
lations and similar close-coupling calculations
for cross sections and rates may be assessed by
comparing the background collision strengths in
the two approximations. In Table V we compare
our five-state D% calculations including correla-
tion functions (denoted by 5DW+ 3l 3l ', following
Hayes and Seaton") with the five-state close-
coupling calculations (5CC) by Wyngaarden
gt g/. ,

"for C~ and 0 VII. The work of %'yn-

TABLE V. Background collision strengths from present DW and CC (Bef. 22) calculations.
I

Energy (By)

1~S 23S
5DW 5CC

1~S-2~S

GDW GCC

1iS-23P
5DW GCC

1'S 2'S
5DW 5CC

36.0
50.0
67.0

110.0

0.004 14
0.002 90
0.001 90
0.000 86

0.004 51
0.00278
0.00184
0.000 83

0.0155
0.0185
0.0207
0.0230

Cv
0.0165
0.0188
0,0204
0.0227

0.0202
0.0119
0.0061
0.0021

0.0207
0.0111
0.0061
0.0021

0.0676
0.1024
0.1391
0.2001

0.0765
0.1110
0.1449
0.2049

23.0 0.005 5 0.009 4 0.0064 0.0133 0.0350 0.0397 0.0198 0.0344

45.0
.50.0
63.0
75.0

126.0
210.0

0.003 3
0.003 1
0.002 5
0.002 1
0.001 0
0.000 46

0.003 9
0.003 3
0.002 3
0.001 8
0.000 9
0.0004

0.0064
0.0070
0.0080
0.0097
0.0117
0.0129

0vn
0.0070
0.0074
0.0083
0.0089
0.0106
0.0118

0.0203
0.0180
0.012
0.0092
0.0033
0.0012

0.0198
0.0171
0.0118
0.0086
0.0031
0.0011

0.0208
0.0250
0.0385
0.0480
0.0817
0.1159

0.0229
0.0276
0.0389
0.0485
0.0797
0.1131
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gaarden et al. does not include any resonance
structure and therefore comparison is made at
energies above the n = 3 states where resonances
are not included in the present work. The agree-
ment between the two is exceptionally good, the
raorst disagreement being 11.6% for 1'S-2'p'
transition in C V at 36.0 Ry. In addition to the
background values we have also compared our
results for C V at an energy of 23.0 Ry (the row
between solid lines) which is just above the 2'p'
threshold, and where the differences are consid-
erable (except for the transition 1'S-2'p'). This
indicates that the difference between our wave
functions (including additional correlation func-
tions), and those of Wyngaarden et a/. , manifests
itself largely in the near-threshold region. The
presence of resonances would also contribute to
the depression of the cross section just above the
2'&' threshold. The effect of using different wave
functions is considered in detail by Foster et al."
In case of OVID, the agreement with the CC val-
ues is good at all energies considered. The first
energy, 45.0 Ry, lies just above the 1s333l'
group of resonances in QV&&. In general, the
good agreement between the DW and the CC
(Table V), points to the fact that coupling between
different states for electron scattering with He-
like ions is weak. We may also attribute it to
well optimized wave functions being used in both
sets of calculations.

Pindzola et al. 23 have carried out calculations
for electron scattering with 0 V&& including res-
onance effects in an "attached-excited-target ap-
proximation. " However, they took into account
only a few isolated resonances below the 3'5
threshold and therefore found the effects to be
small. At the 2'&' threshold, Pindzola et al.
compute the 1'8-2'&' cross section to be about
4.3x10 '(~a02) as compared to our value of 3.6
x10-' (~a20) —a difference of about 16%. Pindzola
et al. have also obtained the positions of some of
the doubly excited autoionizing states of

OVAL

and

these agree with our calculations (Table 1V) to
well within 1/q.

approximation but no resonance analysis, and 15 & l,
l' ~, where we use the CBapproximation. The cal-
culation and the results obtained will be described in
detail in a subsequent work (in preparation) for all
transitions involving then = 2 states and all ions men-
tioned before (Sec. I). However, we discuss below
certain interesting features of these cal.culations.

The rate parameter y defined by (2) consists of
an integral of the product of the Maxwellian e '+~
with the collision strength Q(e) over all energies
c of the scattering electrons. Therefore at a given
p the Maxwellian determines the energy range in
which Q(e) contributes to y(T). At 10'K, for in-
stance, most of the contribution to y comes from
c & 0.1 Ry,- at 10' K, from e& 1.0 Ry, and so on.
Thus the contribution to y from the autoionizing
resonances at a given 7 depends on whether or
not the resonances are accessible to the Maxwel-
lian. For example, it is clear from Fig. 2 that
at-104 K the near-threshold resonance structure
that greatly enhances the effective cross section
relative to the region above the 2'&' threshold,
would result in a similar enhancement in y. This
is illustrated in Fig. 6 where we have plotted the
rate parameter (2) for the transition 1'S-2'S in
He III, versus T [note that in accordance with Eq.

I I I I I IIII[ I I I I I IIII| I I I I I IIII) I

(

0.0 I

B. Excitation rates

The presence of large numbers of resonances
in the cross sections complicates the task of
computing excitation rates. Contributions to the
total rate parameter y have to be calculates sep-
arately for different energy regions. For ex-
ample, for each of the three energy intervals
described in the previous section we have treated
separately three different groups of partial waves;
i.e. , E, I'&4, where we perform detailed reso-
nanceanalysis, 4& l, l'» 15, where weusetheDW

0001 II I I IIIIII II I I IIIIII II III IIIII
(04 lo' lO' (07

T (K)

FIG. 6. Rate parameter y(2 .S-1 S) for BeIII . +-
with resonances, -o- without resonances, —— without
the contribution from the ls3lnl' group of resonances.
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(2) we write y&,
——y(j —i ), where j is the upper

level]. The lower solid curve is obtained on us-
ing only the background collision strength in (2)
while the upper solid curve includes all resonance
structures (as shown in Fig. 2). There is approx-
imately a factor of 5 difference between the two
curves at 10'K, and even at 10' K the effect of the
resonances is to increase y by about 50%.

The dashed curve in Fig. 6 represents the y ob-
tained on neglecting the 1s3l 3l' group of reso-
nances; its contribution is found to be small.
Also, since the energy difference between the
1s313l' group and the n = 3 complex is very small
in Be III, we expect that the contribution from all
resonances below the n=3, i.e. , 1s3ln/' for n&3,
would also be small. However, as the charge on
the target ion increases and the energy difference
between the different complexes increases as g',
we expect the contribution from the 1s3lez' res-
onances to increase with g. %e estimate the con-
tribution from the entire 183lni' series by compu-
ting numerically averaged collision strengths over
the 1s3l 3l' complex and extrapolating this aver-
age up to the n = 3 complex. For high g the nec-
essity of accounting for all resonances converging
on to the n = 3 states may be seen from the example
of Fe XXV. As the energy difference between the
m=2 and complexes is about 86 Ry, the 1s3Lnl'
resonances would make a significant contribution
to y in the 10'-10'-K range (e.g. , see Fig. 7).

The ratio of-the resonant contribution to the non-
resonant background depends on the type of trans-
ition and the magnitude of the background cross
section. For the optically allowed transitions the
ratio is much smaller than for the forbidden or the in-
tercombination transitions because the ratio of the
cross section due to the background potential scat-
tering for the allowed transitions (dipole type) to
the cross section for resonant scattering is much
greater than that for the forbidden or intercom-

bination (electric-quadrupole-and magnetic-di-
pole-type) transitions. As in Fig. 6, in Figs. 7
and 8 we plot rate parameters for the intercom-
bination transition 2'S-2'&' and the allowed
transition 1'5-2'P'in Fe XXV. In the cross sec-
tions for both of these transitions the resonant
contribution is almost entirely from the 1s3En l'
group. The maximum resonance enhancement of
y(2'P'- 23S) is approximately a factor of 6 at
about 10' K, whereas in y(2' P'-1' S) it is only
about 15%. In Be &&&, for y(2'S-l'S) (Fig. 6),
most of the resonance contribution results from
the 1s2lnl' complex that lies just above the ex-
citation threshold and therefore does not affect the
rate parameter at high T (T & 10' K). In Fig. 8
we have a similar situation but this is because at
high T most of the contribution to y comes from
0 at high energies where resonances have been
neglected. For y(2'P'-2'S) (Fig. 7), however,
the resonance enhancement remains roughly con-
stant as we go to higher 7' since for this transi-
tion Q decreases rapidly with increasing energy,
and most of the contribution to y comes from the
lower-energy range e & E(3'S), where we have a
large contribution from resonances. The colli-
sion strengths decrease with energy for the for-
bideen and the intercombination transitions and

I I I I I I III I I I I I III[ I I I I I I III

(e+ Fe xxv ), y(2" P -1"S)

04—
Y
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( IO ):
I I I I IIIII I I I I IIIII I I I I IIIII I I I I I II+

(e+ Fe xxv);. y (2 P 2 S)

I.O =
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OpI I I I
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FIG. 7. Rate parameter y(2 $-2 P ) for FeXXV . FIG. 8. Rate parameter p(2 Q'-1 $) for FeXXV.
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increase with energy for the allowed transition
(since the partial-wave sum for the latter con-
verges very slowly). Therefore, the rate par-
ameters y(2'S —1'S) and y(2'p'-2'S) decrease
with T, whereas y(2'P' —1'S) increases with T.

Wyngaarden e g al."have computed the rate
coefficients q, &

[Eq. (1)] for transitions from the
ground state 1'$ to the n = 2 states for several
He-like ions. Their values for Q VII at 10' K for
q(1'S-2'S), q(1'S—2'S), q(l'S-2'P'), and
q(1'S-2'P') are 4.73x 10 '4, 8.52x10 '4, 2.]8
x10"", and 2.89&&10» cm' sec ', respectively.
Qur q values for these transitions are 10.29
y10-~4 9.42 ' 10-~4 2.g5 x10-» and 2.63x10-»
cm' sec ', respectively. The resonances enhance
the rates for the 1'$-2'S transition by a factor of
more than 2. Resonance contributions to
q(1'S-2'S) and q(1'S-2'P') are also significant.
For the allowed transition 1'$-2'g' we do not
expect the resonances to make a significant con-
tribution; our q value is actually somewhat lower
than that of Wyngaarden e5 al. , but this can prob-
ably be attributed to the difference in wave func-
tions and computational algorithm.

Deexcitation rate coefficients for the 2'$-2'&'
transition in several He-like ions have been de-
termined experimentally by Englehardt et a/. '4 by
observing the 2'&', »-2'$ line-intensity ratios.
Their measured values are in good agreement with
the Coulomb-Born calculations of Blaha" and in even
better agreement with the present calculations. For
Cvat1. 7x10'K, thevaluesforq(2'P'-2'S) incm'
sec 'arel. 34&10 "Engelhardt ef a/. , 1.15&10 ",
Blaha, and 1.53X10 ", present work; and for QVII
at 2.3X10'K, these values are 8.58x10 ", 6.50
x10 ", and7. 20x10 ", respectively. ThusforCV
and Q VD our values differ from the experimental val-
ues by only about 15/o. However, we must point
out that this agreement may be largely fortuitous
since the experimental values have error margins
of more than a factor of 2.

In general we estimate about 5-10%%uo error in the
computed rate parameter due to inaccuracies iri
the fitting approximations that we have used for
the collision strengths. Two other sources of er-
ror are in the collision strengths themselves and
in our assumption that the averaged resonant con-
tribution below the n = 3 states remain constant.
We have already shown that our background colli-
sion strengths agree well with the close-coupling
values, and so we expect no more than 10-15%%uo

error in y due to this difference. It is known from
a number of previous calculations" that the cross
section averaged over rydberg series of resonan-
ces is smoothly varying and can usually be ap-
proximated by a linear function, provided that the
R matrices just above the threshold are also

smoothly varying with energy. In the present case,
there are no resonances just above the n = 3 states
and hence, we do not expect any rapid variations
with energy in the averaged cross section below.
It should be noted that we have not assumed that
the averaged cross section is constant, but that
the difference between the averaged and the back-
ground cross sections is constant, i.e., that both
behave with energy in a similar manner. Estima-
ting an error up to 10%%uo due to this approximation
above, we place the maximum uncertainty in the
total computed rate parameters to be 30%%uo.

A source of error not included in the above es-
timate is the correlation of the l s3l 3l' group of auto-
ionizing states with the higher members of the ryd-
berg series 1s3ln l' and the resulting. effect on the pos-
itions and widths of the former. We expect this effect
to diminish with increasing'. Another unevaluated
source of error is the departure from L Scoupling
with increasing Z. Intercombination transitions in-
volving the state '&' are the most affected. Jones"
has shown that this effect is significant for ions
with g & 20. In particular, for Fe ~V the
collision strength Q(l 'S-2'P') is increased by
6/0 at the energy k'(1'S) = 493.3 Ry and by 18%%uo at
676 Ry, when the intermediate coupling effects
are .included.

VI. CONCLUDING REMARKS

In this work we have described calculations
for electron scattering with He-like ions employ-
ing the distorted-wave approximation, and have
studied resonances in the cross sections and their
effect on the excitation-rate coefficients. The
analysis of resonances between the n = 2 states
was carried out using quantum. -defect theory, as
incorporated in the program RAN&I. . As such
it was not peculiar to the distorted-wave ap-
proximation used in the present work, but could
have been carried out using R matrices computed
in any approximation. Resonances above the n = 2
states were obtained by including carefully chosen
correlation functions in the expansion for the total
trial wave function, and our results suggest that
this technique is a very powerful extension of the
conventional distorted-wave approximation.

It has been shown in the present work that the
resonance contribution to the excitation rates is
expected to very important, particularly for the
forbidden and the intercombination transitions. "
As an example, consider the transition 1'$-2'$
in BeM, CV, QVQ, and Fe 3QCV. We find
that the ratio of the computed rate parameter to
the rate parameter neglecting resonances is
roughly 4.4 for Be III, 5.8 for C V, 3.8 for 0VII,
and 1.8 for Fe xxv at T/g'= 10'. We conclude
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that previous analyses of laboratory and astro-
physical plasmas' employing line ratios for He-
like ions may have to be reexamined.

It has been pointed out by Presnyakov and
Urnov' that the enhancement in the electron-im-
pact excitation cross sections due to the auto-
ionizing resonances is reduced when dielectronic
recombination effects are taken into account. For
highly charged ions this is particularly true since
the ratio of the radiative transition probability to
the autoionization probability increases as Z4.
A theoretical treatment has been worked out by

'

Seaton and Bell (M. J. Se'aton, private communica-
tion). At present, work is in progress to include
dielectronic recombination effects on the scatter-.
ing cross section for the He-like ions.

The present calculations should be the most
accurate nonrel. ativistic calculations to date.
However, for highly ionized ions it may prove
necessary to take irito account the departure from

I

pure I.S coupling. Also, the fine-structure trans-
itions within the n = 2 complex are of astrophysical
interest and computations in intermediate cou-
pling for such transitions are planned.
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