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The origin and importance of electron-translation effects within a molecular description of electronic excitations in

heavy-ion collisions is investigated. First, a fully consistent quantum-mechanical description of the scattering

process is developed; the electrons are described by relativistic molecular orbitals, while the nuclear motion is

approximated nonrelativistically. Leaving the quantum-mechanical level by using the semiclassical approximation
for the nuclear motion, a set of coupled differential equations for the occupation amplitudes of the molecular orbitals

is derived. In these coupled-channel equations the spurious asymptotic dynamical couplings are corrected for by
additional matrix elements stemming from the electron translation. Hence, a molecular description of electronic
excitations in heavy-ion scattering has been achieved, which is free from the spurious asymptotic couplings of the

conventional perturbated stationary-state approach. The importance of electron-translation effects for continuum

electrons and positrons is investigated. To this end an algorithm for the description of continuum electrons is

proposed, which for the first time should allow for the calculation of angular distributions for 6 electrons. Finally,

the practical consequences of electron-translation effects are studied by calculating the corrected coupling matrix

elements for the Pb-Cm system and comparing the corresponding E-vacancy probabilities with conventional

calculations. We critically discuss conventional methods for cutting off the coupling matrix elements in coupled-

channel calculations.

I. INTRODUCTION

During the last years a widespread interest has
developed concerning the excitations of the elec-
tronic shells in collisions of very heavy ions and
atoms. The reason for that is that those excita-
tion cross sections allow us to study the behavior
of electrons in the very strong electromagnetic
field of two highly charged nuclei approaching
each other up to a few femtometers ~ At the point
of closest approach of, for example, two uran-
ium nuclei, the electrons of the inner shells for
a short time feel a strong quasimolecular field
created by two sources with total charge Z„,
=184. This has a large influence on the electron-
ic charge distribution and binding energies. The
inner-shell-electron wave functions are strongly
contracted, their binding energies strongly
increase, so that the orbital velocity of those
states becomes nearly equal to the velocity of
light, and the binding energy can reach values of
the order of or even larger than twice the elec-
tron rest mass. Because of the large orbital
velocity compared to the relative velocity of the
nuclei in the scattering process, the inner-shell
electrons behave to a good degree of approxima-
tion adiabatically and form quasimolecular or-
bitals. ' ' Signatures for the development of
molecular orbitals have been experimentally found

by studying the x-ray spectra. " A unique sig-
nature for the existence of E-shell binding ener-
gies larger than 2nzoe in collisions with total

charge Z„, & 173 (Refs. 4 and 12) would be the detec-
tion of the decay of the neutral vacuum, ' i.e. ,
the spontaneous filling of a R hole followed by
emission of a positron ("spontaneous positron pro-
duction"). However, due to the dynamics of the
problem and the large kinetic energy of the nu-
clear relative motion, many other processes oc-
cur which eventually lead to positron produc-
tion. " Therefore, separation of the contribution
by the spontaneously produced positrons would re-
quire an exact knowledge of all other excitation
processes within the electron shell during the col-
lision.

To this end in the last years extensive calcula-
tions have been done"'"'" where the excitations
(including molecular radiative transitions) have
been calculated by solving a set of coupled differ-
ential equations for the occupation amplitudes of
the electron states. These coupled-channel equa-
tions are obtained by first decoupling the nuclear
motion by treating it semiclassically. Then a
time-dependent Dirac equation for the electrons
remains to be solved, the time dependence stem-
ming from the time dependence of the internuclear
distance given by the classical trajectory R(t):

i&4-
s (r f) +TCD(r~ t)p(r, f),

where

+Ten (r f) =+Ton(r, R(f))
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&Ten(r, R)p„(r, R) = t„(R)p„(r, R) (1.2)

is the two-center-Dirac (TCD) Hamiltonian for the
two nuclei being at a distance R(t). Expanding the
wave function g(r, t) into the adiabatic molecular
basis p„(r, R) solving

by the ansatz

I)(r, t) = I a„(t)et„(r,R(t)) exp ——f e (R(t„))dt'
ft 0

(1.3)
yields the well-known set of coupled-channel equa-
tions for the a„(t):

a (t) —P(e=„—et )exp(
' f [e—(t') a(t ))d-t 'tla (t)

t=- P(p„~t)e ——ta„d„(et ) expl
' (e„e)dt')a-(t) . (1.4)

Here the 8/Bt coupling has been rewritten via the
classical trajectory R(t) into a radial coupling
8 8/BR and a rotational coupling i/h(d„J„(wh'ere J'

is the electronic angular-momentum operator) .
Cross sections may be calculated in terms of

~
a„(~)~, the asymptotic probability to find the

electronic shell in state ~y„).
Unfortunately, this generally used method has

a major disadvantage: the 8/Bt coupling between
the molecular states p, .does not vanish as R-~.
Hence the asymptotic occupation probabilities

~

a„(~)
~

are ill defined. However, these asympto-
tic 8/Bt couplings are clearly unphysical, as the
interaction between the two ions vanishes asymp-
totically. The reason for the spurious couplings
was recognized already more than 20 years ago
by Bates and McCarroll, ' who realized that they
are due to the fact that the adiabatic molecular
basis states are calculated keeping the relative
internuclear distance R fixed, whence the asymp-
totic translation of the electrons with the escap-
ing nuclei is not contained in this basis. There
have been numerous attempts to solve this prob-
lem ' using so-called classical electron-trans-
lation factors (ETF) by which the molecular states
were multiplied. However, all these attempts
had serious defects (see Ref. 20 for a discussion),
and only a new approach by Thorson and Delos,
who gave up the ETF idea in favor of a nonlinear
coordinate transformation leading to an electron-
translation operator instead, finally led to a sat-
isfactory treatment of the problem.

In Sec. II we mill review, slightly correct, and
extend the mork by Thorson and Delos to sys-
tems where the electrons must be described rel-
ativistically. No specification to one electron
system will be made when setting up the theory.
By semiclassical approximation of the nuclear
motion (Sec. III) we will derive a new set of
coupled-channel equations for the occupation amp-
litudes, which no longer contain any spurious
asymptotic couplings and thus overcome the de-

fects of E(I. (1.4). In Sec. IV we attack the prob-
lem of describing relativistic continuum elec-
trons in the field of two nuclei. Since the con-
tinuum solutions of the two-center Dirac equa-
tions are not known, and even if we knew them
our electron-translation-operator formalism
could not succeed in asymptotically suppressing
the continuum-continuum coupling, we circum-
vent this problem by constructing another con-
tinuum basis. This basis consists of wave pack-
ets having the necessary localization properties
to ensure the asymptotic vanishing of all coupling
matrix elements. It allows for a description of
all electrons (and positrons) with kinetic energy
large enough to be able to leave the two nuclei
within a time interval comparable to the collision
time (-10 "sec). Thus we suggest a theory which
for the first time should allow us to calculate
angular distributions of 5 electrons and positrons
in collisions of very heavy systems.

In Sec. V we specify the switching function
f(r, R) used for the actual calculation of the cor-
rected matrix elements in the coupled-channel
equations. In Sec. VI finally we present results
which show the influence of electron-translation
effects on the A-hole amplitude in Pb-Cm col-
lisions. Our main result will be that the natural
cutoff of the 8/Bt matrix elements by the electron-
translation matrix elements takes place much
farther outside (i.e. , at much larger internu-
clear distances) than previously'" assumed.

II. QUANTUM-MECHANICAL FORMULATION
OF THE PROBLEM

We want to describe a system of two nuclei
(mass M» Ms - M» charge Z» Z&) and Z' elec-
trons. In Table I me define the reduced masses
and coordinates of importance for the following.
Some of the them are depicted in Fig. 1. The
mass asymmetry X satisfies the following iden-
tities: define f„=-1, fs = 1, then we have
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e
TABLE II.II. Order of magnitude of the

"~ ~ ~

P roton-proton Pb-Pb

P /2p,
Mgc2

mp

MN

~5 x10 4

-3 &&10-4

-10-'

ii
~I

I
0

R~ +g [m + (PO)2 2]1/2 (2.2)

a, =[MAc'+P')'c']' '+[M' '
A

+ (Po )2 2] «/2

FIG. 1. Some of the ce coordinates used th'in is paper.
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A. The total Hamiltonian

Nonrelativistically, the total kinetic
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e energy of the relative motion'.

=~,„+r...= +g@-+—' '
2p, .«2m, 2M I„, ')

p, are the momentum o er
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We now want to f' d
and r] .
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e e ectrons are to be des
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escribed as
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r e classical ex r
out interaction
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» etc. Expressing this in term f

p, and expanding with re
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2
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[Equation (2.5) results from a first-order 8-
matrix expansion —back reaction of the interac-
tion on the kinetic energy via effective masses for
the interacting particles, etc. , and the resulting
problems in defining the (CM) system are neg
lected. Only under this assumption is quantiza-
tion as in (2.4) justified. ] H"„(r,R) is the rela-
tivistic molecular Hamiltonian for the electrons
(r denotes the set {r,.)). It contains as a correc-
tion to the two-center-Dirac Hamiltonian

a" p, c+p"'mo&2+ V' (r&, R)+ V' (r, , R)],

besides the electron-electron interaction another
term which takes into account that the complete
electron cloud may move with respect to the CM.
This term is by a factor of mo/M„sma11er than
the electron kinetic energy. The nuclear rel-
ative motion is governed by the nucleus-nucleus
Coulomb potential V" (If),

For the purpose of later use we want to state
without proof the representation of Ho in atomic
coordinates. This can be easily evaluated by
using Table I and the chain rule for the momen-
tum operators (see Ref. 21 for the same discus-
sion for nonrelativistic electrons):

A Z

Bo™gc + (+ PiA&+P mpc )- - p~ +LA B—]. (2.6)

B. The wave function

As the total energy E is conserved, the total
system (two nuclei plus &' electrons) is des-
cribed by an eigenfunction of H:

H(r, R)4'(r, R) = E@(r,R) . (2.7)

4(r, R) contains the electronic motion as well as
the nuclear relative motion. lt may be expanded
with respect to a set of electron eigenstates,
for example, molecular eigenstates of H"„(r,R):

a.".,(r, R)q „(r,R) = ~„(R)q „(r,R) . (2.S)

For asymmetric systems (AoB) the bound states
of the molecular basis for R-~ go over into a
product of wave functions localized around the
two nuclei A, B (Ref. 20):

V'.(r, &) = V„„(~~)V'.,(r&) .
R

(2.9)

+(,R) =Q X„(&}V.(,R» (2.10)

For symmetrical systems the p„(r, R) additionally
have good parity, and a certain combination of
even and odd states has the property (2.9). This
property is due to the fact that for A - an elec-
tron in ion A no longer feels ion B. This is not
true for continuum electrons, ' continuum energy
eigenstates are always spread over all space
and always feel the potential of both nuclei.
Therefore, for continuum elections (2.9) will not
hold. We will discuss this problem in Sec. IV.

For the following let us assume asymmetric
systems and that (2.9) be fulfilled. Expanding

4(r, R) with respect to the molecular basis
p„(r, R) (perturbated-stationary-state method),
we find

where X„(R)contains the nuclear relative motion.
Projecting out the molecular states y„would yield a
set of differential equations for X„which, by
semiclassical approximation, would lead to the
coupled-channel equations (1.4). This method,
called perturbated-stationary-state (PSS) meth-
od, " thus leads to the various long-range coup-
lings discussed in the introduction. We can now
trace the reason for that to the fact that for
A-~(V" -0) the X„(R) become eigenfunctions of
P (2p, , i.e. , plane waves with a good momentum
Pe

~f /h&P R
Xn R~ (2.11)

Physically, however, we expect the asymptotic
relative motion to be that of two ions (not nuclei)
moving apart, described by eigenfunctions of the
momentum P» canonically conjugate to the in-
teratomic distance R».

k/a)PA& RA~
R~ co

(2.12)

e(r, R) =g q„(R*)q „(r,R~),
n

(2 .ia)

the X„behaved asymptotically correctly:

(Rg} tj/h)Pgg ~ R~s (2.i4)

Obviously R is not the asymptotically correct
scattering coordinate. Therefore, it is convenient to
use another scattering coordinate becoming R» as
A -~. This idea is due to Mittleman and Tai. '

They changed from the molecular basis p„(r, R)
to a new basis p„(r, R~) in such a way that in the
expansion
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Mittleman and Tai expressed all wave functions
through R*=R"(r, R) and thus had for every R
and for every electron configuration(r, j a new
"molecular" basis p„(r, R). We, however, will
explicitly write out the coordinate transformation
K-R* and then be able to continue to use the
old set of coordinates (R, r,.) and hence the two-
center basis p„(r, R). Using the new scattering
coordinate R* willthus result in additional easily
calculable coupling matrix elements between
the molecular states yP, R).

we get, using (2.10),

f x.'(R)(x.'(F, R)x (R)

xg„( r, R)d'Ad'r, . . . d'rz, —C,
whereas (2.16) yields

F fx."(R)(x'„(F,R)B&)i(Z)x (R)
Nfz tl

xp„(r, R)d'Rd r(. . .d rz =C.

(2.22)

(2.23)

We now set

R+ =R+X,
and thus may write

(2.16)

A A

In lowest order (m/p) T~T is a real number (see
Appendix A); hence, comparing (2.22) and (2.23),
it follows that

X.=(T'T) '"X.
4(r, R) =g Z'(X)(I(„(R)q„(r,R),

n

where T(g) is a translation operator

TCX)f(R) =f(R+~) .
For constant R we have the representation

(2.i6)

(2.1V}

T(g) +vs (i /)) l x( P (2.18)

In our case, however, X will depend upon R (see
below), and we have

A M g ( ~ 2

T(X)=1+—X P +—
I

— XX P P.+ ' ' ' (2.19)
2 gg

(summation over double indices is understood}.
The ad]oint operator T~(X) is obtained by partial
integration:

i 1(-i '
T'(X}=1- P X +

~ P PP'.X +
1f 2 lI g

(2.20)

4 (r, R)xlx(r, R)d'Ad'r, . . .d r;=C,~ ~ ~ (2.2i)

Since the momentum operator P affects X, T is
not unitary, i.e. , T~(X)T(X)WI.

The reason for this nonunitarity is that we
continue to express everything through (R, r) and
not through (R*,r). In particular, the volume
element in the scalar product d'R d'~&. . .d rz,
is kept unchanged. Tt(X}T(X) is nothing but the
Jacobian llsR/~R*ll, which we have to take into
account explicitly. We could avoid this by in-
troducing a new scalar product d B*
xd ~, . . .de~, but then we would have to re-
define all differential operators in the Hamilton-
ian in order to again obtain Hermiticity.
Another consequence of TtT e1 is that the new

coefficients X„differ slightly from X„as functions.
From the normalization condition for 4,

2'

r„R +) X„16 p I i
(2.24)

Equations (2.21)-(2.24) guarantee that the norm
is conserved under the transformation in spite of
T being nonunitary. Moreover, we recognize as
the proper transformation operator the unitary
combination (see Appendix A) (Ttf) 'I T. Hence
the completeness of the expansion of the total
wave function with respect to the y„(r, R*) is no
problem.

Xhg problem of T not being unitary in case X
=X(R) was not correctly recognized in Ref. 20.
Thorson and Delos used the representation (2.18)
and for T (X) they wrote e~ ')'"'"'P, P being the
momentum operator. Then they had T T =1, but
their transformed Hamiltonian was not Hermit-
ian. Hermiticity they established afterwards by
symmetrizing several terms, thereby obtaining
a slightly different result than we do. Our re-
sult will be fully consistent in order m/p.

We now are going to calculate the translation
vector X.

C. The translation vector X

The translation vector X is defined by two asymp-
totic conditions:

(i) For R-0 we want to work in the molecular
picture. Hence in this limit the internuclear dis-
tance R is the correct scattering coordinate.

(ii) For R-~, R*=R+X should become R„~,
i.e. , the interatomic distance, ' this scattering
coordinate takes into account the asymptotic trans-
lation of the electron with the two nuclei.

For the details of the calculation of X out of
these boundary conditions we refer to Ref. 20.
The result is



568 ULRICH HEINZ, %ALTER GREINER, AND BERNDT MULLER

g= —Q s(, (2.25) lim f(r, R) = —Z.r~, R /rM
(2.27)

with

f(, )+ (- f(;, )+
4

(2.28)

Here f(r, , 1t) is a so-called "switching function"
which is free up to the boundary conditions for
R 0 and R-~. Condition (i) is fulfilled by (X
is the mass asymmetry)

Condition (ii) leads to

lim f(r, R) =fs =+1,
~e rg /R~O

lim f(r, R) =f„=—1.
R~~, r &/ R~

(2.28a.)

(2.28b)

Two choices for f(r, R) fulfilling (2.27) and (2.28)
will be discussed in Sec. V.

D. The equations of nuclear relative motion

inserting (2.16) into the Schrodinger equation (2.7), we obtain

H r, B —E T X„By„r, R =0. (2.29)

Multiplying from the left by

Tt(X)T(X)]xz2 T '(X),

using (2.24), and forming the scalar product with y~ (r, R) yields

(2.30)

(2.31)

p( (P —mE /n()x„=-g f d'r, . . . d v('(r', R),((T~T)"'7"'HT(T'T)"' —E rp((r, ))y)(R)= .0

We recognize that the coordinate transformation R-8* can be rewritten as a unitary transformation on

H(r, R):

H'(r, R) = [T~(X)T(X)]')' T '(X)H(r, R)T(X)[Tt(X)T(X)] ' ' .

Hence (2.30) has the same structure as in the PSS
theory; however, H is substituted by H'. H' cannot
be given in closed form. However, as T is gen-
erated by the small vector X = (m/p)Q(x, s, ,, we
may expand H'(r, R) with respect to m/p. As we
saw in Sec. II.A, the operator H is only consistent
in lowest-order m/p. because we used the nonrela-
tivistic approximation for the nuclear relative mo-
tion. Hence, in order to stay consistent, we
should drop all terms -(m/tu)", n ~ 2 in the expan-
sioo. In addition, we shall assume that the switch-
ing function is so smooth that we may safely drop
terms -(m/p)grad„f and -(m/(u)grad+. This
considerably simplifies the expression for H'.
[For a sudden change of the basis (e.g. , f jumps
from 0 to +1 at a certain distance), there may oc-
cur errors on the order of m/i(, . We will see,
however, that as long as f is smooth as a function
of r, the essential corrections X „are not af-
fected. ]

For the details of the calculation we refer to
Appendix A. For the transformed Hamiltonian

I

one obtains in order m/ l(,:

H'(r, R) =—+ V"s(R) +H"„(r,R) + ~+—(A, p},

~= v"(~R-x~)- v' (~)
gl

yeA r B X t/'e~ r

+ V's(r, , R —X) —V's(r, , R)] . (2.33)

The operator A is defined by

X =—p[H", (r, R),X]
t~f(r, R) + X -(,)

/=1

From (2.30) we thus find

(2.34)

(2.32)

where 6 is the difference between transformed and
old potential:

m —+V" (&)+H g(r, R)+&(r, R)+—(A P+P'A) —E n g (R)=0 (2.35)
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which may easily be evaluated to

—[Pl + P + A] „+[V»(R) +e„(R)—Z]6„„+
I

& -
2

A A
lmo y,„(R)= 0 . (2.s6)

Here (1) „=6 „=(m le) is the unit matrix;

(2.37)

+(V + „-E)6„„lx„(R)=0, (2.40)

we will see that the really essential difference is

are the matrix elements of the momentum operator
P between the molecular basis states (which turns
out to be just the usual dynamical coupling);

(A)„„=&ml A In& (2.36}

will become the corrections of the dynamical coup-
ling due to the electron translation; and

(~)„„=-&m
I «r, R) ln) . (2.s9)

Comparing the result (2.36) with the correspond-
ing equation from the PSS theory,

(
1—(P 1+P)~

n

the substitution P- P+A. All other corrections
are smaller by an order m/p, . The important
point is that whereas P does not vanish for R —~,
P+A does:

lim(P„„+A„„)=0 . (2.41)

Hence the correction matrix elements due to elec-
tron translation asymptotically cancel the spurious
dynamical couplings .

. The proof of (2.41) is not difficult in the case of
nonrelativistic electronic motion, "using that one
of the two states involved obeys (2.9). We now
want to sketch the slightly more involved reasoning
for the case of relativistic electrons, which also
will be of use later in Sec. IV.

Let us first express the molecular Hamiltonian
H"„(r,R) in terms of atomic momenta P„~, P&*„,

(This is achieved by using Table I for the
coordinates and applying the chain rule for the
differential operators P,*„,etc.} We obtain

H"„(r,R}= ~[a"' Pq*„c+p"'m, c'+ V' (r~~)] + 2 g V"(Ir~ -r, l
}- - lp pi~I +[&-&]

+ I- ~~"'p,*.c+ V"(r~.)+-.'g V-(Ir; —r~ l}i+ - A*. + [A-H]
A fm j 2M„

r (
.g p, ,

)

=- Hatom+(Hcorr) ' (2.42)

is just the atomic Hamiltonian [see (2.6)] for the case where the molecule dissociates into two ions
with Z„' and g~ electrons. ff we neglect the small corrections due to the fact that V'" depends on r, „(dis-
tance to nucleus A) instead of rg„(distance to the center of mass of ion A), H'„ in the asymptotic channel
contains [up to order (m/p, ) ] only one correction which depends on the atomic distance R».'

Zl 2'
(2.43)

8 A

[This term is the relativistic analog to the recoil term, considered in Refs. 22(a) and 22(b) which occurs in a
treatment of ion scattering in an atomic basis and is given in a somewhat different form in Ref. 23.] Com-
paring this to (1/2 p) {A,P) we easily see that both terms asymptotically yield the same P» coupling:
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z'
m g f& +& -(s& .-,

2p ~ p. i j 2

z' z' z' z'
2

=P~a
~0 (i) ~0 (i) ~p (i), + ~0 (i),Q C- Q C — - Q 'PIC —- Q 'P jgC +0
MB g, ~A i Mg g, j ~B i, j P

Indeed, (I/2p)]A, P) yields all three underlined terms of (2.42). Thud we have shown that

H't, + fA, P]+ V"„—V,'I, = H"„+O(m/y. ) .
2p. g~OO

he e V" —V" is the interaction of the electrons in A, with nucleus B, and vice versa.
mo~ atom

Equivalently,

Q2
ii +v" (

—)+iitp = '., +v" (ii)+vi:,'. + (A, v}+v"., —V.". +0(—).
2p, p

(2.44)

(2.45)

(2.46)

Comparing this with the representation of B in
atomic coordinates [see (2.6)],

2

2p»
(2.47)

we thus have proved that

P 1 p2
+ — $A PJ = 1+0—

2p, 2p, & 2p.z& & p,
(2.48)

For bound states with the property (2.9), however,
P» does not act on the electron wave function for
R -~, and thus the spurious long-range dynamical
couplings vanish, as they should according to the
idea behind the coordinate transformation R- R~.

Once again we want to stress that this is not true
for continuum states. In that case the interaction
V y V t does not vanish for R -~, and due to
the interaction of the electrons with both centers
even for R -~, the separation property (2.9) is
destroyed. Hence P» also for R - acts on. the
electron wave function, and the long-range cou-

r

plings remain. In Sec. IV we shall show how to
avoid this problem.

E. Transformation to rotating coordinates

The equations of motion (2.36) contain couplings
by the relative momentum of the two nuclei
P =iSV~. V„means differentiation with respect
to R keeping the electron coordinates r; in
the center of mass system of the nuclei CMN sys-
tem) fixed. On the other hand, the electron wave
functions qr (r, R) are most easily calculated in a
coordinate system which rotates with the internu-
clear axis R. In this system, where the electron
coordinates are r,', y (r', R) only depends upon
the distance R of the nuclei, and no longer on the
orientation of the vector R. Therefore, we will
transform the equations of motion (2.36) into this
rotating coordinate system. In order to do so we
have to substitute all differential operators V~,
keeping r fixed, into differential operators, keep-
ing r' fixed. The calculation is analogous to Ref.
20 and may be found in detail in Ref. 24. We make
use of

(2.49)

where J„„J,, J, are the components of the elec-
tron angular-momentum operator in the rotating
coordinate system. Hence [ ~m)= ~y (r', R))]

P'.„=-P'„=(m
~

—dna„[n),
(2.51)

c3 . 1 2 1 . 1 8 1 cot0
( (vv )(- = —(v —-;—ili —— ——v„; —iv — +—v„. — v. .)Bg -, ~

' RBg -, ~ R " ' RsinOBy -, ~ R " R

I

Here A„8' is the eigenvalue of p„(r',R) with respect
to J, Making the ansatz

P „=P"„=——(m ~&,. ~n—), where '

h&„cot8
mn mn mn mfa

1 @&„cot8=—(m ]J„.]n) — " 5 „ (2.50)

(2.52)

are the eigenfunctions of the angular part of p, and
projecting out K*„~ (8, y), one obtains 0'"
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(-ih3„1+p+A )„„+[&„(R)+V" (R) —E]5„„+ 5 „+n
f 1 . - -~ 2 „e K(K+ l)jP

+ (w „„+Q*„"+ Q „„' '

})C
„"R„*(R)= 0 .

2p,

Here K(K+ 1)h /2pR is the angular momentum barrier due to the rotation of the internuclear axis;
2 2

w'„=(P')2 +(P')'„+(PBA +ABPB+P A +A P ) „—"~ 5 „—(A")2„,

(2.53)

(2.54)

Q =52( B ( [(K +A )(K+ii +1)] (P +A )

=5„, „,g —[(K w A„)(K + A„+1)] ~2[P „+A „Ti(P „+A'„)]. (2.55)

A, —=A', , A', =—A', and A. „—=A" „are the three components of the matrix vector A „ in the rotating co-
ordinate system; they will be given explicitly in Eq. (3.29).

We will estimate the relative order of magnitude of the different terms in (2.53) below. It will turn out
that the essential couplings between the molecular states are the modified radial coupling (P"„+A „) and
the modified rotational coupling Q"„"). In particular,

P „+A „=-i+(m ((]„[n)+~P(e -CB)(m)~ fn) (2.56)

is the well-known radial coupling, corrected by a matrix element of the R component of the translation
vector X[(2.25), (2.26)]. Q

"' for A„«K approaches

x(.) R2(, ) —
R ~

— (dB [(4„.) -RA „]5B,B„,g,lR ll p p )
. B B)B (2.57)

i.e. , the old rotational coupling &e 'J, corrected by a matrix element of X, too. Equation (2.53) may be
rewritten as

d2 dglc
, +2', (B) C~"Bf(R)= —2+C .C." "+Q]B „+ 2 [e„(B)—e,{B)]I! )C B (R), „„.. (2.58)

where

D.„=—(P"„„+A' ), (2.59)

a „=—,(p" +A")'„+ ~~ a „+~(w'„+Q„„"'),
(2.60)

I

kind, however, are small, 6 and we will not con-
sider them further.

The right-hand side of (2.58) describes the back
reaction of electronic excitations on the nuclear
(Rutherford) trajectory. The equations are dia-
gonal in the total angular momentum A. and its
projection I with respect to R, because both quan-
tities are conserved and not affected by excita-
tions of the electron shell.

AD (R) =
2 [E eo(R) V (R)]

2p, K(K+1)
k R

(2.61)
HI. THE SEMICLASSICAL APPROXIMATION OF THE

NUCLEAR RELATIVE MOTION

Here, qo(R) is a mean binding energy of the elec-
trons independent of their state. In general one
sets eo(R) —=0; then k{](R) corresponds to a Ruther-
ford trajectory. Deviations of the nuclear tra-
jectory -from the Rutherford case due to the vary-
ing part of the total energy going into electronic
binding energy 6 may be consi. dered here by intro-
ducing a convenient function {.0(R). Effects of this

Any numerical solution of the quantum mechani-
cal equations (2.58) would require taking into ac-
count many electronic states and, in general, even
much more total angular momenta E. For heavy
systems this will be completely impracticable.
On the other hand, we expect that for heavy sys-
tems the nuclei will move along classical Ruther-
ford trajectories without being much influenced by
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the electronic excitations. Thus the nuclear tra-
jectory will to good degree of approximation be
independent upon the state of the electron shell
and only be determined by the total energy and
total angular momentum. This approximation for
the nuclear trajectory is obtained by applying the
Jeffreys-Wentzel-Kramers-Brillouin (JWKB) ap-
proximation to Eqs. (2.58). This will be done in
the following section using the methods of Refs.
27 and 28.

A. The JWKB approximation

Setting the right-hand side of (2.58) equal to
zero, the J%KB solutions are

FK (R) A
K (kk )-1/2 R(i/t) & SOB(2/4

F„(R)=C„—F (R)

where

Kif/( e&
(R )

( i / )) ) ( S
()

e y„) e( 2/4

(kk, )'"
KN( -) (R q

-(i / h) ( SP+ 7n) i I'/4 q
j &

(3.2)

yn=sn Sp= A knR
' —kp R

'

Rp
(3.3)

k„(R)= ~ [E —eR(R) —V (R)] —
2 . (3.4)

J~(R + 1)

It is easy to show that

"e,(R') -e„(R '), e'

kk (R') E2
Rp P

(3.5)

One of the two parameters aK" ' (R} in (3.2) can be
eliminated by demanding

$p — Skp R ' dR'.
Rp

(3.1) dQ m e (i /Q) (Sp+7f )+ /4
dR

Here, Rp is the classical turning point of the
nuclei, where k(&(R) becomes imaginary. (+) de-
notes (out-, in-) going JWKB waves. The terms
ai2///4 in the exponent provide the correct adjust-
ment at the point of closest approach.

Now the full solutions of (2.58) may be expanded
into this complete set of free JWKB waves. Then
the dynamics of the expansion coefficients will be
determined by the right-hand side of (2.58), i.e. ,
the electronic excitations.

( (/))) (S 0+ y~& -i 2/4 (3 8}
dQ

dR

which eliminates all second derivatives of a "'"
in the equations of motion.

We now insert the ansatz (3.2) into (2.58), ex-
pand in terms of k (semiclassical approximation),
and neglect all terms containing strongly oscillat-
ing phase factors. ' ' Then the equations of mo-
tion separate into two sets of equations for
a„"''(R) and (2„' '(R) (Ref. 27):

R
2iBP„a* " = Q(2Pd) „+ff B )a*„"exp f/2 (f —e„)—dR ), '

n

I R
2iffd„a„"' ' = g(2P„B„„—fi'B )a ' exp —*„i"/If'(e„—f.)—dR),

(3.7)

(3.8)

where the prime denotes derivative with respect to R; p =hk and D „=—iSB „.

B. The time-dependent coupled-channel equations

a~ ~' is the coefficient of the outgoing JWKB wave. Define in the outgoing channel

(3.9)t=, dR', t) 0.

This specifies a classical trajectory R(t). Now (3.7) may be rewritten into a time-dependent set of equa-
tions:

iaK"('(t) = ———"' ~D +B aK""(t)exp —'— (e —e )dt' ~,m @ p mn mn n n m

where

B „=(8'/244)B „.
For the ingoing channel we define

t=—,dR', t &0
z, Po

(3.10)

(3.11)

(3.12)
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so that (3.8) becomes

t
a "' (t)= ——' p —n

)
a "' '(t)axp —'-. (a —a )np).m

@ p
mn mn~ n lit

In order to get a regular function i K(R) at R =R()(t =0) we demand" 2'

sKN(+) (t —0) —sKN( )(t —-0)

Hence we may define

gKN(a) (t) t ) 0

()KN( )(t) -t ( ()

in order to get

t
(fKN(t)= ——'g sgn(t)~D „+B„a„K(t)e px—— (e„—e )dt'~l.

Pm n p

(3.13)

(3.14)

(3.15)

(s.i6)

d2
P 3/2 P

i(r'2 « 1
dR 7 (s. i7)

Below we will show that these coupled-channel
equations are very similar to the ones obtained
from PSS theory. However, they contain correc-
tions which just cancel the unwanted spurious,
long-range couplings of the PSS theory. Thus we
have derived from a consistent quantum-mechani-
cal. treatment of the scattering problem the correct
coupled-channel equations for the electronic oc-
cupation amplitudes by applying the semiclassical
approximation.

Before proving this statement in detail, we want
to discuss, shortly, the structure of Eqs. (3.16).
a '(t, ) is interpreted as the amplitude for the situ-
ation that in a scattering process with total energy
E and total angular momentum K (i.e., with a given
impact parameter b) and a given projection M the
electrons are in state (() (r, R(t, )) at time t=t, .
These amplitudes are determined by all other am-
plitudes at all times (tp. In particular, excita-
tions during the ingoing channel will interfere with
excitations in the outgoing channel. This complete
coherence contained in (3.16) is due to the JWKB
approximation. We have expanded with respect
to JWKB waves with definite energy E, which
therefore are spread over all values of R (i.e.,
over the whole trajectory). In order to destroy
the coherence, we should have to expand with re-
spect to localized wave packets for the nuclear
motion. Our derivation, however, yields com-
plete coherence.

Finally, we want to say a few words about the
validity of the JW'KB approximation. Using the
well-known criterion ' '

I

one can show24 that this is true for

q-2/', I-X small
R —Rp K, RK large

where

Z~Z&e Z~Z&e
tt(2Z/t()'I' n()

(s. is)

(3.19)

We now will compare Eq. (3.16) with the corres-
ponding result (1.4) of PSS theory. Note that

~=1+o '" "l=l+Ol —, (3.20)

" '=~ 1+0 — =sgn(t)R(t) 1+0—
pp

(3.21)
The corrections -m/)(, are due to the assumption
of a unique classical trajectory (independent of the
electronic state); in reality, systems in different
electronic states move on slightly different tra-
jectories. This effect in (3.16) shows up as addi-
tional couplings. Neglecting these corrections and
dropping the indices K and M, we obtain from
(3.16) and (2.59)

is the Sommerfeld parameter, which for Pb-Pb
collisions at () =0.1c (E,~=4.7 MeV/amu) is )(
=490. In such a collision the JWKB approxima-
tion breaks down at R —R, ~ 0.015 R„which is of
the order of 0.2 fm. The errors due to this
breakdown of the classical. trajectory picture near
the classical turning point in the calculation of the
amplitudes aKN(t) may be safely neglected.

C. Comparison with PSS theory

a„(t)=-g R (ml()„l)()+ —A"„+ B„„a„(t)e'""""),—
n

(3.22)
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where

] t
y„„(t)-=— (e„—c )dt'.

0
(3.23)

Hence the radial coupling RB„of PSS theory is contained in our theory as well, corrected, however, by
the term R(i/h)A»„. Since, according to our considerations in Sec. IID, the sum ({)~) „+(i/h)A»„asymp-
totically vanishes, our theory does not contain any spurious long-range radial couplings. Now let us
study the four couplings generated by

(pR +AR)2 + {( + [~ 2 ~ q»{(&] (3.24)

and compare them in their order of magnitude with the radial coupling

-'R&~ I p'I~) -R(~R) =2——R' .
JL(, 2

(3.26)

(3.26)

and hence (1/2g)(p+ A")'„are by an order m/p, smaller than (3.25).
2

(ii) m" = (2 ii R ) '&m ( j2. + j'
~ n) + (2 iiR) '(yn

~
j„,A." +A)' j„, —j„,A* —A" j,

~
n) —(2 i(.) '(A»)

(3.26)

(3.29)

The last term is of the order of (3.26). The other terms are of the order j,'/2i)R'«I J,/2i{R, which is
much smaller than the coriolis coupling Q»„") given below in (3.27), since the electron angular momentum

j, is much smaller than the total angular momentum I. (j,~ 10h, whereas in Pb-Pb collisions at the
Coulomb barrier I- 1 00-1 0008'.)

(iii) From (2.57) we know that Q»„"& is the modified rotational coupling which is of the order
I

2= 'J (3.27)
2 p.A

Zr

(rr) S..=(mlt(r, R —X) —t(r, tt)(~n&=———
(m g s, tr t(r, tt) n).

)=1

Splitting V(r, 8) into V"~(R) + V"„(r,8) and using &zV"„='(7»H"„and
gt

tt =—n(ml( tt)(s&=tt—"m„(r. —r )(m F s, s),

„can be rewritten as

[&~(&,H.~., ~~)+ &~)v,V"')n)]. (3.30)

By the Hellman-Feynman theorem,

&0 ~ v RH"„ I n) = 5~1 e„»@+(e„—e~)P~, (3.31)

we find

(3.32)b. „=—m Q s, n ~ (ps'„+ tt&»V" ) ——Q " A ~
~ P„„.

p, a ~~

The second term is of order (3.26), which is small compared to the radial coupling. According to the

Hellman-Feynman theorem, the very first term is of the same order of magnitude. Since the electron
binding energies roughly vary like V", the term -g~V" is also of this order. Hence ~ „ is small. com-

pared to the radial coupling (3.25). —

Taking into account only those terms of B „which are comparable to the radial coupling, and neglecting

terms smaller by a factor m/p or j,/I, the coupled-channel equations read

t(t&ml sl en+&— S„"r„t—Ss „,((J„.)„„—)t *'„) n (t)e'"„ (3.34)
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To this order the only corrections to PSS theory are matrix elements of the translation vector X:

A „=—p(e —e„)(m [x (n) ~ (s.s5)

They are not hard to calculate if the molecular wave functions are known. On the other hand, we can con-
tinue using the tabulated molecular wave functions y, the radial and rotational coupling matrix elements
of PSS theory. ' " This is the essential advantage of this approach, as was first pointed out by Thorson
and Del.os."

D. The cross section in the semiclassical approximation

From (3.2) one can calculate the amplitude for the electrons being scattered from state mp to state )) in
a collision with total angular momentum (K,M). If for t- —~ the electrons were in state (/)„, we would

have

a""(t=-~)=a "'-'(R =~)= &mm ~
ttt nt 0

Hence

(s.38)

ri(( m) )
1 If'4/(+) (R»p )

(i /)))(P»-)iK))»/) pi»» t) e (i/)) ) (()mp )i- ))r &/2) e (»pm]

v' Sk()

(3.3 t)

where we have introduced the phase shift

(1 ', , A)(&
()„=lim~ — Kk„(R')dR' —k„R+

R~ Bp

Following Ref. 2V, we may read off the scattering
matrix element in the rotating basis:

(3.38)

[I/(2K, + 1)]g ar„'"( )

can be written in front of the E integral. The re-
maining integral does not contain any amplitudes
a„"(~), but only contributions from the nuclear
trajectory, and hence just yields the Rutherford
cross section due to the JWKB approximation
[respectively, if (lp(R}»i 0, a modified Rutherford
cross section"]. As a result we have

S"" =a™(t=~)(""
'~

e'"» mp'. (3.39)mp-+ n n
. (P~, )

'The total cross section in the laboratory system
(i.e. , nonrotating system) is obtained from (3.39)
by multiplying with the angular eigenfunctions
X&&,K&&, averaging over I, summing over all
E, and taking the square. We will not present the
explicit calculation which is done by rewriting the
sum over E into an integral and applying the sad-
dle-point method. "'" 'The saddle point Ep lies in
the neighborhood of the value E corresponding to
the scattering angle 8 via the classical Rutherford
trajectory. The deviations are the smaller, the
larger Kp is. Since, for large E„ the contribu-
tions from angular momenta neighboring Ep very
soon interfere destructively, the saddle point is
the sharper the larger E,. Thus for large Ep the
integrand is only different from zero in a region
where ar" (~) only slightly varies. Therefore,

do'

dQ „= a„( )
2 do 'lj

K=a cot&/2 )Ruth

where a= (P/2E}Z„Za e' and a"„ is the M-averaged
amplitude. We wish to stress that this derivation
not only makes use of the JWKB approximation,
but in addition assumes that the total angular mo-
mentum of the nuclear trajectory is very large.
This is not true for proton-hydrogen collisions at
energies -500 eV although the Sommerfeld para-
meter is large. In this case (3.40) leads to wrong
results. "

(3.40)

IV. HOW TO DESCRIBE CONTINUUM ELECTRONS

From the derivations of Secs. II and III it fol-
lows that the matrix elements A „asymptotically
cancel the spurious dynamical couplings only if
one or both of the two states y„,y for R -~ sep-
arate into a product of atomic states according to
E(i. (2.9). [Because of the Hermiticity of H'(r, R)
it suffices, if (2.9) is true for one of the two
states. ] All bound states (i.e. , all states not con-
taining an electron with e~& )))pc'} fulfill this con-
dition because they asymptotically become local-
ized around the nuclei, whereas the essential in-
teraction between the ions vanishes. Qn the other
hand, one easily realizes that continuum electrons
in an energy eigenstate do not possess this proper-
ty (2.9); the corresponding wavefunctions (for ex-
ample, two-center Coulomb wavefunctions with an
energy tip)) are spread over all space with an
amplitude decaying only as 1/r as r -~. There-
fore, these. wavefunctions, even for a single elec-
tron, always feel the potential of both nuclei, i.e. ,
the asymptotic Coulomb phase shift depends upon
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both nuclear fields and, in particular, upon the
distance R between the two nuclei. " 'The two-
center Coulomb waves therefore will never be ex-
pressible in terms of r*„or ra~ alone, but only as
a function of both, and hence of R ~ R~, respec-
tively. This is the reason for P „couplings be-
tween the Coulomb waves which cannot be sup-
pressed by our translation matrix elements A „.

Hence for continuum electrons our idea with the
electron translation operator does not work. On
the other hand, physical intuition tells us that the
continuum electrons (moving already with nearly
the velocity of light for kinetic energies &10 keV)
will quickly leave the region of influence by the
two-center potential. Therefore, no asymptotic
excitations should occur. Obviously, the two-
center basis is not appropriate to describe this
behavior. The elementary reason is that elec-
trons leaving the interaction region must be des-
cribed by spatially localized wave packets instead
of Coulomb waves which are spread over all
space. Using a basis of wave packets, we may
hope to escape the asymptotic couplings.

Unfortunately, the construction of such a basis
is not at all elementary. First of all, there exist
no continuum solutions of the two-center Dirac
equation in the literature from which we could
construct our wave packets. Furthermore, it
turns out to be rather difficult to construct a com-
plete orthogonal basis with the desired localiza-
tion properties. Therefore, we will not use the
two-center continuum, but consider a simpler pos-
sibility. We shall use a basis which by construc-
tion asymptotically approaches an atomic contin-
uum basis and thus avoids the problem of spuri-
ous long-range couplings. We only have to show

that in this basis all other coupling matrix ele-
ments are finite and vanish for R-~. Questions
of completeness will be considered too.

Before going into the details, let us express

some words of motivation. Why are we interested
in such a thorough description of the continuum?
As calculations by Soff, Reinhardt, and
others"'"'" showed, a much simpler treatment
is sufficient to describe ionization cross sec-
tions" and energy spectra of 5 electrons. ""
However, there is one measurable entity which
cannot be obtained with the monopole approxima-
tion for the two-center potential used by these
authors, i.e., the angular distribution of 5 elec-
trons. "'" In order to be able to compare this
entity in theory and experiment, an exact theoret-
ical treatment of the continuum in the field of two
nuclei becomes necessary. In Sec. IV E we will
show how within the framework to be presented
below angular distributions of 5 electrons may be
calculated.

A. The basis for the continuum electrons

In the following formulation, bound and continu-
um electrons will be described by different basis
sets, Whereas for the bound electrons we shall
use the molecular basis for which we developed
the translation-operator formalism, the continu-
um electrons will be treated in a new quasiatomic
basis which for R -~ approaches an atomic basis
around nucleus A (8) and for which, therefore,
the application of translation operators is not nec-
essary. Of course, the new basis will not be or-
thogonal on the molecular bound states and, in ad-
dition, there will occur further coupling matrix
elements from the two-center potential. All these
points will be studied.

In order to be able to split the electron config-
uration into 3, bound part and a continuum part,
we must neglect the recoil term (1l2M„) Kp;)2 as
well as the nondiagonal part of the electron inter-
action. 'Then the electron configuration may be
written as a Slater determinant:

V (r~~' ' ' ~rz iR)=&[% (r, ;R) ~ 0„„(rz., R)y„(rz„,R) ~ ~ ~ y„,(r,;R)].

Here, 8 is the antisymmetrization operator, K is
the number of bound electrons, y . (r,. ; R) are bound

molecular one-electron states with energies

~

&,.(8)
I
& m,c', and the y„,(r;;R) are the one-elec-

tron continuum states with energies
~

5&;
~

& m,c'
to be specified now.

For the construction of the continuum basis we
applied the following criteria. In order to guaran-
tee asymptotically the property (2.9) it would be
simplest to choose wave functions y„which in the
limit 8 ~ become atomic (one-center) Coulomb
waves around nucleus A or B. In the molecular

limit, however, the electrons should feel the total
nuclear charge Z„+8~. Furthermore, in order to
avoid undesired couplings in the molecular limit
by the potential of nucleus B, if y„ is a continuum
state around nucleus A, the quasiatomic potential
generating y„should be located in the nuclear
center of mass r=0 for R-0. In that case, for
R - 0 the y„are quasiatomic monopole waves for
Z„+Z~, and there only remain coupling matrix
elements due to the higher multipole contributions
of the two-center potential.

For the following we must specify whether the
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y„asymptotically belong to nucleus A or B. Since
all electrons (positrons) with energy not. too little
above ~I&~ = m,c' iluickly leave the region of inter-
action with the two nuclei, this choice should not
influence the results too strongly. Thus we arbi-
trarily choose nucleus A:

H"(p, R}=o p,c+Pm,c'+ V(p), (4.2)

g(R) — 0; g(R)
R-+ 0 Mq

(4.5)

g(R) = 1; g(R) = 0. (4.6)

P(p) is demonstrated pictorially.
The functions g(R), g(R) are to obey the boundary

conditions:

where

r, for R-0
p= r -g(R}R-

Mgr =r+— 8 for R-~
E

(4.3)

As a continuum basis we choose the eigenstates
of 8"(p R).

H" (p,R)P"„(p,R) =If&uP "„(p,R); (Kur
~

- m,c

(4.7)

(Z„+g(R)Zs)s

&(p) =

2(Z„+g(R)Zs)e'
g(R)R

p~ &g(R)R

p&ag (R)R '(4.4)

p, = -iNV, is the canonically conjugate momen-
tum for p. The potential V(p) for R -0 contains the
monopole part of the two-center potential (as
used by Soff and Reinhardt'"'") up to small
terms stemming from the mass asymmetry and
remaining finite. [Equation (4.4) for R -0 yields
the monopole part of the two-center potential for
point nuclei. In order to get for small R the mono-
pole part for extended nuclei, ' g(R) may be de-
fined appropriately. ] In Fig. 2 the definition of

These are usual relativistic one-center Coulomb
wavefunctions. " Their asymptotic behavior is
given by [6„(p,ur} is the logarithmically increasing
C oulomb phase]:

r
h~+m c' '/'1—cos[pp+ 5,(p, ~}]X,"

g(~ )
7l'pc p

I. SZOC ~ 1—sin[p p+ 5„(p, ~)]y."„
3'Pc p

(4.8)

Hence y„" oscillates with a wavelength ~ ~ 2~%,
= 2426 fm and with an amplitude decreasing like
1/p. This decrease of the amplitude, however, is
too weak to make the interaction of y„" with the
potential of nucleus B vanish for R -~. In order
to achieve the latter, we must construct wave
packets from the P„"which decay faster than 1/p.
In general such a wave packet reads as follows:

(1) R=o
~s(p, R, f) = J~ cs(&)P."(p,R)s (4.9)

4 &(CX)

'This is not an eigenstate of H"; its mean energy is
given by

E= (ks~H" (0's)= Jttf&u(cs(ur)['d&u. (4.10)

The P„" are normalized to 5(&u —~'); thus the nor-
malization relation for the 4'E reads as

&+ ~+ }=) *() ()d =~ (4.11)

FIG. 2. The quasiatomic potential V (p) generating the
quasiatomic continuum basis jr", schematically depicted
for different nuclear distances R.

'This condition is easily satisfied by the so-called
%eyl packets:

E+=E+hh co/2

V."(p,R)s '"'d~,
E =E-ha~/2

(4.12)

if for different states the energy intervals are
chosen disjoint, ~&' -&

~

& h&~. Then, however,
the %eyl packets are no longer complete, since
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C~E CO t." N' 0 5 R —(d' (4.13)

We will discuss below the practical importance of
this incompleteness.

The amplitude of the Weyl packets pE decay like
1/p' (see Sec. IV C). This turns out to be suffi-
cient to make the couplings with the other nucleus
vanish for R -.

In Fig. 3 we show a wave packet which we ob-
tained numerically by superimposing one-center
Coulomb waves according to (4.12). The mean en-
ergy of the packet is 2.15 mpc', its width Ah~

0 30 pl pc
2

~ The energy integral was done by
12-point Gauss integration. 'The relative numeri-
cal error is everywhere less than 10 4. One real-
izes the 1/p decrease of the amplitude of pcs in
the figure; i.e. , the wave packet falls off like 1/p'
as it should do.

0.3

0.2

-0.1

-0.2

-0.3

I

p(~o4&mj

FIG. 3. A wave packet with a mean energy E= 2.15moc
and a width QE= 0.30moc .

B. The modified coupled-channel equations

We now investigate the consequences arising from the use of two basis systems for bound and continuum
electrons on the structure of the coupled-channel equations.

We begin by expressing the Hamiltonian (as far as continuum electrons are concerned) in terms of the
new coordinates (p, R). Neglecting the interaction of the continuum electrons with the bound ones and the
recoil effect of the continuum electrons on the nuclei,

S'
2

[g'(R)/2p+ I/2M„] Qp,.
K+&

we obtain in a way analogous to Sec. II.A:
2 s'

H(r„~ ~ ~, rx, p„,„~ ~ ~, p g, , R) =
2

+ V (R)+ Hx;,'(r„~ ~ ~, rr; 8)+ p X(p,. ; R) .2 p. i=K41

Here E is the number of bound electrons, and

(4.14)

Kel
K K K2HI, I(r»' ' «rr«R) =g [n"p;c+ p'"m, c'+ V'"(r;, R)+ V' (r;, R)]+ gp; + a+ V"([r; —r&~)i=1 N i=l (4.15)

is the complete molecular Hamiltonian for the K bound electrons. The operators X(p;, R) are given by

X(p;, R)=H"(p;,R)+g(R)—&@~ Pc+ V'"/ p;+ g(R)+ —R /+V'
/

p;+ g(R)- —"R /-V(p) . (4.16)
M„

g(R)(m, /p, )& ~ Pc,
which are similar to the operator (I/2p, ) fA, P] from Section II D. In fact, considering (I/2p. ){A,P] for a
single electron, both terms become equal (in order mls) for R-~, according to Eq. (2.44). Therefore,
we already know how to calculate the couplings due to g(R)(m, /p, )o.'~ Pc, and no new problems arise from
this term.

Because of the asymptotic identity

r
P2 1 P2
2 +2 (A, P} 9."(p;,R) =P."( *)-=o,
2p, 2Q g~ 2p~ (4.17)

this term asymptotically cancels the spurious electronic excitations due to relative motion without a

They represent the molecular Hamiltonian for the continuum electrons (without recoil and electron-elec-
tron interaction), expressed in terms of the quasiatomic H and correction terms. Thus, besides the cor-
rection potential 5'= V'"+ V' —V, there occur additional couplings by the relative momentum P:
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translation operator being necessary. This reflects the fact that y„" was constructed as to become an
atomic state for R -~.

We now make the following ansatz for the wavefunction:

&mac

(r& ~ ~ ~ r» P», & ~ ~ P 'iR}= T(X )X( &(It)0( &(+z, ~ ~ ~ r» P», & ~ Ps iR)
Z (m)

where

(4.18)

(4.19a)

(4.19b)

(4.19c)

(4.19d)

(4.19e)

(4.20)

(m ) = (m», (A«» &, . . . , ((«»c),

(p(„&(r;p; R) =8[q „(r„.. . , r»;R)(p„"„(p».&1R) ~ ~ (p„",(p», R)],
H~BI(r, ) ~ ~ ~, r»', R)f„»(r, y ~ ~ ~, r», R) = ~„(R)(p (r, ) ~ ~, r», R),
H"(p„R)j„",(p, ,R)=E~,(p„".(p„R)(IK(d; I- mac', i=%+1.. . , Z')

K
X'=—gs, .

i=1

Hence for all bound electrons translation effects are included by the translation operator T(X»), whereas
the continuum electrons have no effect on the scattering coordinate.

We now insert (4.14) and (4.18) into the Schrodinger equation H4' =E'I( and project out the electronic
wave function and the translation operator. Our choice for X has the consequence that, when transform-
ing the Hamiltonian with T(X ), only H",", contributes to the operator g(t, :

A» ~[H»s& X»] m Qf(~() + o((i&c
i=&

Thus we obtain (making the same approximations as in Sec. II D:
Q2

Z'

&c(„) —+V (B)+B",",+ —(X*,B&+ Q CC(()„R)+A-B & („))g(„)(B)=0,
(K) i=K+i

where

&= V(R-X ) —V(R)

(4.21)

(4.22)

where V isthesumof allinteractionsandthevolumeelement in((m) I(n)) is d I,&. .d~xd»~ .p»q. . .d p3».
Owing to the use of two different basic sets, two different configurations I(n)), I(m}) will in general not
be orthogonal. Using

((m) H», (n))=c„((m)I(n)), (4.23)

((m)
I
V

I
(n)) = V (R }((m)

I
(n)),

Zr

&(„&(R}=a„(R)+Q I'(u, ,
i =K+&

(4.26)

Equation (4.21) becomes

i
i

Z' Z' Zt gs
(m) I ( (c) g( )= Z g&; ((m)~(c))g&„)+g(B)—'((m) g &("' Bc (c) g&„,+ (m) g B(, (c))),,i ~K+1 i=K41

(4.24)

(4.25)

(P ' 1+P+ A)( &( «+ [V (R)+» ( &(R) ]E(( )mI (n))
(n)

Zt
t

+ &-—A A + Wp;, R X,„, R =0.
(m) (fI) i =K+& (m) (y)„

Here we put together the A-like terms:
t » g

A& )&„(
=—. A&„(&„(+g(B)m ((m) 2 c'cc (c) =. (m) mP ' (('"ccg(B)m, g (("'c (c)):

i =K+1 i -"1 i aK+1

Thus we have the following additional couplings (compared to Sec. II.D):

(4.27)

(4.28)
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(v"s+e[„)—E)(((m) I(n)& —o( )(„,)

(due to nonorthogonality) and
2'

(g w(p„H)'(i

(4.29)

(4.30)

(due to the correction potential). The further steps (transformation to rotating coordinates and semiclas-
sical approximation) are completely analogous to Sec. III, and we may directly write down the modified
coupled-channel equations. To this end we define the modified radial and rotational couplings:

&(m)
I

H"
I

(n)& = A[&(m) I

-ih'8
I
(n)& +A(" &(„,],

&( ) IH' I( )&= — . . .„,+ [(J,), , „,—Bd4.
"'

„,].(nt) ' n pg

%e find

n«. (r)=- —P(((m&l»"'e)P" l(n)&+IP" (R)eer &(d) ~)[((m&(/(n)& er rr &)

z'

+ m 8'] n g(„) t exp —— e(„)—&( )
dt'

j=E+1 0

The structure of these equations complicates a little bit if we expand 4 in terms of the wave packets
(4.12) instead of using the (p„. Defining in that case

Zl 2'

~(n)=~n + E~=~n
)=E+1 i= E+ 1

we obtain instead of (4.29) the following additional coupling:

[Pen(W + e„,(a) —d](((m)
I

(n)& —dr. , r.r&+ 0 [((m)(d;1(n)& —d dr. r i.&1
.

j=E+1

Since for (m) =(n),

&(m)
I
(n)) = (&(,(„,, ((m) IH",

I (n)) =E,5( ) („), .

the coupled-channel equations can be written as

a(„)(t)=--' 2 1&(m) IH'"+H'" l(n)&+(I'"'+e.„-E)&(m) I(n)&+ Z &(m)
I

14', l(n)& I

(n) g (nt) j=E+1 i

in e « (i)exp( — (e &„.r
—e «)d- i')

0
2

--„'I&(m)IH'"I(m)&+ (m) g w,. (m) Ia...(t).
j,= E+1

Here we made use of the fact that for the Weyl wave packets (4.12),

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

g& g
&@z, IH~(p,.) I4'g = d~' d~(&(&u- ~') =0 for ExE'.

([&ed&(JO gP g

The last term in (4.36) may be eliminated by defining

I&( &(t) =a, &(t)expI
@

(m) H""+ P W,. {m)
j= E+1

(4.37)

(4.38a)

f &d&'= er rdi' —— (m) 8 +Q)p,. (in))
0 0

»nce &(m) IH" I(m)& „=0 and, as will be shown in the Sec. Iy C, also

m =0,

(4.38b)

we have
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&&&„&(t-")=f( &(t- ); («&(t) I'= Il&& )(t) ~'-

The new amplitudes l&&„&(t) fulfill the equations

(4.39)

)tt t&t)= ——
d) «m)]g" dg'"]~&s)&d&)tdsds —Z)&&m)]&s)&+ f (& m)] tp]& )&s]l,„t&l)e '"t tt t"', &ggO)

@ (n)W(~) f= K+1 i

where
1

X&„])&„&(t)=— (~ &„&
—4 &„&)dt' .

0

In the following section we will study the coupling matrix elements in (4.40) in detail.

C. Investigation of the additional coupling matrix
elements

r

(i) We first note that the matrix elements of g(A)m, g
&

«„&&[«&c can be given the same form as the matrix
elements of the translation vector for the bound electrons:

(
g&g)m «m)

]

c"'c]&s)& =-g{g)m &m) I
g"; p, I &s))

f.= K+1 k j=rsl l=Ks&
g'

(E, ,
—E, )((m)~y~(n)), (4.41)

where

(4.42)

g'
Y= —Qg R pf

~=a+a ~

is the analogue to the translation vector X .
(ii) Now the matrix elements of the correction potential W(p, , R) will be shown to be finite and to vanish

for R- ~. For smally, W only contains multipole contributions with / ~ 1 [according to our construction
of V(p)]. The matrix elements (y„"

~
W~ y~, ) are finite, and the multipole I part can be estimated by

where

i+a &~ p, R d p-I p, g» p, y, l g„Kg„eK+ co co'~ l+]. p dp &

p
(4.43)

l(us; p '«';l) =fg'„'g.",'g, gl fig Pglt=. '.", "„'.

Splitting the p integral in a finite part W„, from 0 to p (&[&t&» 1,p p» 1) and another part from p to ~,
where the f„„,g„„may be approximated by their asymptotics (4.8), we find

)p, )p &lie; p e';l. Idfd'; p)+f p [g&td, td')cos[pp+ il &p, p)]cos[p'p+ II &p', p)]
P

+ B(&d, &)&')sin[ pp+ 5„(p,p)]sin[]&)'][&+ 6„(][&,p)]]dp

where

(hco+m, c')(if&a'+m, c') "'
7Pc pp

&list —m„c )(gtd'+m, cs))'t'
7T2c2pp

(4.44)

(4.45)

Z~
Ii(p, R) = — - —=-Z@'

l p- Hl
(4.46)

„,P&(cos(p,R)), ft- p

The second integral exists for /~ 1, since it is bounded from above by j; p ' 'dp. However, for I =0 it is
undetermined (due to the logarithmic Coulomb phase). Therefore, it is important that V(p) in the limit
R -~ correctly contain the long-range monopole part of the two-center poteritial.

For R -~, on the other hand, W(p, R) approaches V's(xs):

Q~„,P&(cos(p, R)), p«Rl&
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R t)]
1 + cos[pp+ g(p, p)]

4(d p

For large p, the variation of the logarithmic phase O~ within the interval [E,E.] may be neglected with
respect to the variation of pp. Thus a similar estimate as in Ref. 3S shows that

(4.4V)

A(p, E, t)
, „p[p—ct(1-m'c /E )' '] '

where A(p, E, t) is a spinor amplitude with absolute length &1. Thus, for a given time t, the wave packet
decays like 1/p for p-~. As a function of time it spreads such that the amplitude decreases like 1/t.

Now the second part of the matrix element of W

(4.48)

Inserting this into the matrix element, one easily sees (in a. manner analogous to the above reasoning)
that the l =0 part does not exist, and the / =1 part does not vanish for R -~, if one uses the y„". However,
taking the wave packets 4~ as a basis, we may avoid this problem. The asymptotics of the wave packets
can be calculated; for the large component, for example, we get

W, = g @~ „;d .p'dpdA+ 'k~ „,'d .p'dpdA)
A(d Z 0

for R —~ becomes

d, (p, d, d"', t) 1
4 g+y p py

l R

with a function IA, (p, E, E', t)l ~1. Hence, the multipole l of the integral behaves like
C

(4.49)

(4.50)

«R' p r 3dp-R-2
8

The first integral in (4.49} may be estimated similarly. First consider the case l =0:

1 "
t P,(cosB), 1 " 4'

4~,p'dp dQ -— +~~%i~,p'dpdQ

(4.51)

=1 4l)'

=R(+sl+~.)-R 4ts4s, p'dpdO.
E 0

(4.52)

Because of E'oE the first term vanishes, and the second is -R ' according to Eqs. (4.51) and (4.52). Thus
the monopole part of Wzz, vanishes like 1/R' for R -~. The higher multipoles even decay more rapidly
because of

1 t p'P~(cosB) 2 1 R
(4.53)

[since p ~ R and
I P, (cosB}

I

- I.].
Consequently, we have proved that, using wave packets, the couplings by the additional potential 8' van-

ish like 1/R' for R -~.
(iii) Finally, we have to care about the overlap ((m)

I
(n)) ((m) I(n)), which in general is determined by the

overlap (y„l y„") or (y„l@z), respectively, between continuum states and bound molecular states.
(((m) I

(n)) NO even if
I
(m)) and l(n)) contain the same numbers of bound and continuum electrons. This is

due to antisymmetrization. Consider a two-electron system, let q, y' be two different bound one-electron
states ((y I

y') =0) and tt a one-electron continuum state ((p Ip) x0, (p'I g) o0). The two-electron system is
described by

I(~)& = (»~2a[l ~(1}&
I
~(2}& —

I
~(2}&

I
~(1}&]

and

1(m'» = (»~[I&'(1)&
I e (2» —

I
&'(2)&

I
e(1)&].

Consequently, ((nz')
I
(m)) = —(p'

I g)(g I y) x0 does not vanish. )
There are two possibilities for y„. For R-~ the bound electron (let us. assume for simplicity that there

is only one) can belong to nucleus A or nucleus B ln the fir. st case we remember that for R- ~ (one elec-
tron) )
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~BZ

m01 (4.54)

For electrons around nucl. eus 4 the influence pf V' vanishes for R -; hence, the bound states of
become identical to the bound states of H up to terms -m/p, , stemming from (m-o/p)n Pc, and have to
be traced to translation effects. Consequently, (y„I y~g and (y„I4$ are of order m/p, . A more detailed
analysis shows that

whence

(4.55)

The matrix el.ement on the right-hand side has the
form (1/2 p, )(A ~ P)„„and, according to Sec. III C is
an order m/p smaller than the radial coupling
matrix element. Setting h ~ —E„approximately
equal to the kinetic energy of the electron in the
continuum state y„", =(m/2)v', we see that (4.55)
is by a factor

my, , 1 ~VI'
p. 2 "(m/2)v' ( v ) (4.56)

smaller than the radial coupling. The higher the
energy of the continuum state and the smaller the
relative velocity of the two nuclei, the better jus-
tified is the neglect of the asymptotic overlap
((m) I(n)). Here essentially enters the nonrelativis-
tic behavior of the nuclei. In addition, it will not
be possible to treat continuum electrons with very
low kinetic energy by this formalism. To get an
idea of the order of magnitude for (4.56), assume
V'„=0.1c; for h&u =m,c'+ 50 keV we have (V„/v)'
=0.05, for K&u =moc'+100 keV we have (V„jv)'
= 0.02.

If y„asymptotically becomes bound to nucleus
B, there occurs additionally an overlap with the
potential V' (y"

I

V'
I y„) or (4'z

I

V's
I p„), re-

spectively. This matrix element goes like 1/R or
1/R', respectively, if R becomes larger than the
effective radius of the bound state y„. For very
large R thus again a term like (4.55) or (4.56) de-
termines the asymptotic smallness of the coupling

matrix elements.
Summarizing the results of this paragraph, all

couplings occurring in the modified coupled-chan-
nel equation (4.40) can be calculated. They are
finite for all times and vanish for t- up to smal. l
contributions of order (V„jv)' with respect to the
radial coupling, as long as the states involved do
not contain very low energetic continuum elec-
trons. Hence this formulation allows for a cal-
culation of the high-energy part of the ~ electron
and positron spectra, which is as exact as the
treatment of the bound states. (Of course, errors
in the description of low-energy continuum states
may influence the high-energy spectra via multi-
step processes. Existing calculations in the mono-
pole approximation' "suggest, however, that dis-
cretizing the continuum in 50-keV steps does not
influence the spectra. Thus it is relatively un-
important how one treats the continuum electrons
with kinetic energy &50 keV. Whether this re-
mains true for the angular distribution of the con-
tinuum spectra has to be checked in actual calcu-
lations. If so, it means that our continuum basis
constructed with the help of wave packets with an
energy spacing of order 50 keV is in fact "com-
plete enough" for the description of continuum ex-
citations. ) For the low-energy part (kinetic ener-

gy less than 50 keV) of the continuum, errors in
the order of the asymptotic (uncorrected) radial
coupling occur.

D. The calculation of electron spectra

Let s „(t) be the amplitude for a transition of the electronic shell from state m to state n in a collision
with total angular momentum K (impact parameter b =hK/P„). The cross section for the transition m -n
is given by

(do) „~, f do
Ismn( )

I r=a cote) 2I d~
llu c nuc Ruth

(4.5V)

where dQ,„,is the angular volume element for the scattered nuclei.
The probability for creating one continuum electron in a collision with impact parameter b is given by
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the sum of all transition probabilities into states n which contain one continuum electron:

~e~ IF=a ate/2 (4.58)

or, equivalently, expressed in terms of the impact parameter b:

nial 6 el
I +P)n( ) Ih» bP=( )Ruth (4.59)

The total cross section for creating one 6 electron is
OQ (a„„=2a P(b) „,„bdb( a „( )(„', da).

0 I),ng16 el
(4.60)

There are corresponding expressions for the creation of two or more continuum electrons (or positrons).
The total number of & electrons is given by

(4.61)N(d el) -/k'„b
k

In order to study the differential cross section, let us assume one-electron systems for simplicity of
presentation. The energy spectrum of the O electrons is obtained from (4.60) by differentiating with re-
spect to the electron energy:

=27t P 5 p„t„Ada g(~ ). „g ~~ ~ E, —E,.
e

(4.62)

Here we assumed that for the continuum states wave packets with mean energies E,. have been used, for
which

dn= Q &(Es —E,)dE, . .

(E;)

This line spectrum may be smeared out by writing

(4.63)=2a
(
Z (a i,. ( )('„, f(d. , d,.))P(b) „, 2db,

e 0 t(Ei)

where f(E„E,)is a smea. red-out version of the (I function O(E, —E,). In order to. derive the angular dis-
tribution of the spectrum, note that the angular distribution of a continuum state with quantum numbers

(E,.), (+s )~ is given by the spinors X,"„(3~,y~); here B„„y„arethe electron angles in the coordinate sys-
tem specified by Il", i.e. , for t-~ in the coordinate system of nucleus A. Because of the orthogonality
of the X"„we obtain""

=»&&(&) „,„gf(E.. .) g x'„'(&„)x'. (&„)I
[a"s, ( )]„"I'„»»„.

Ei
(4.64)

We stated the differential cross section with
respect to the impact parameter, since the ori-
entation of the system, i.e. , the asymptotic inter-
nuclear, axis depends on b, and the electron
angles 3~, p„are defined with respect to this
axis. Hence (4.64) gives a prediction for the angu-
lar distribution of 5 electrons with energy E, mea-
sured in coincidence with the scattered projectile.
If we want to calculate the angular distribution
of the 5-integrated spectrum, we first have to
transform the angular characteristics (Xt"X„")(Qz)
to b-independent coordinates 0, and then integrate
over b.

This transformation is split up into two steps:

(1) transformation from the system fixed at

nucleus A (i.e. , moving with respect to CMN) to
a parallel system resting with respect to CMN:

(2) rotation to the nonrotating (i.e. , space-fixed)
CMN system:

The definition of the angles is shown in Fig. 4.
~ is the & axis of the nonrotating CMN system
(i.e. , the beam axis); (8,y ) are defined with

respect to this axis. Z' is the ~ axis of the
rotating CMN system for t-~ and also of the
system fixed at nucleus A. (8&,y„) and (8&, ((()„')

are defined with respect to that axis. All y angles
are zero in the scattering plane.
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Hence

d cosa„' =d cos8„~ &
— &, ~. (4.66)

( p p +p COSSET(

2

As a result we obtain in the, nonmoving system

dg dg

dE'dQ~db dE dQ„db

Qf 2~ ~1
&~ 1+ — cosh

p
A.

P P +P cosB~1
&~p+&p~ ~p+&p~'&

(4.69)

FIG. 4. Definition of the angles of the different coor-
dinate systems used.

(1) The transformation (1) depends upon the
energy of the electron. An electron with energy
E, in the system moving with A [i.e. , which is
emitted with momentum pc =(E', -mmoc~)'~2] has
in the nonmoving system the momentum p+&p
=p -m, (Ms/M„)R and, correspondingly, the en-
ergy

E' = [E'+2papc' cos3„+(&p)'c' ]'I' .
whence

dE,' = '- 1+ cosb„dE, .E, 2np

(4.65)

(4.66)

P cosGg ++P
[p'+(&p)'+ 2p&p «s6gl'" (4.6V)

The order of magnitude for the change in mo-
mentum is bPc-25 keV (8 =O.lc; M„=2Ms), and
the change in energy &E& 0.05 m, c'pc/E (i.e. ,
also up to A5 keV).

In addition the angular volume element 0„ is
changed —an electron emitted in' with angles
8„,q„has in the nonmoving system the angles
8'„,y„'=y&. 0„' may be derived from Fig. 5 by

(tC +4p) 6p p cos8„+Ap

sin8„
sing&= . , Sing .

Sing
(4.V1)

This is a pure rotation so that dQ, =dA&. . Thus
we get do/dE, 'dQ, db by inserting (4.70) and (4.71)
into dc/dE, 'dQ'„db. Substituting 8,„,by the impact
parameter b allows one to integrate over 5 (nu-
merically) in order to obtain the double differen-
tial cross section do/dE, 'dQ„ i.e. , the angular .

distribution of electrons with energy E; in the
nonrotating CMN system.

It is obvious that diy/dE, 'dQ contains much less
information than the coincidence spectrum
dc/dE,'dQ, db, where the scattered projectile is
mea. sured, too, and thus the 2' axis is specified.
An anisotropy with respect to the Z' axis thus
may easily be smeared out by integrating over
the impact parameter. Consequently, isotr opy
of de/dE, 'dQ, (see, e.g. , Refs. 36, 27) does not
te11 us much about the isotropy of the coincidence
spectrum do/dE, 'dQ db.

(2) In the second step we translate from the
angles (3„',y„') defined with respect to the Z' axis
to angles (8„y,) defined with respect to the Z
axis. According to Fig. 6 and the cosine theorem
of spherical trigonometry we have

cos8„' = —cos8,„,cos3, +sin8, sin3, sing, ,

(4.VO)

whereas the sine theorem yields

b, p =Z'

FIG. 5., Transformation of the angular volume element
dO~ dQg-

~Qg
FIG. 6. Rotation from (3&,p&) to (8~, y).
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The formalism developed in this section in
order to treat continuum electrons (and positrons)
for the first time provides a concept for the
determination of angular distributions of 6 elec-
trons and positrons produced in heavy-ion col-
lisions. Thus theory must be able to reproduce
recently published data (Refs. 36, SV) for
do/dE, 'dQ, (which show an anisotropy less than
15/p); additionally, it should yield predictions
for angular distributions of coincidence spectra.
The necessary numerical calculations still have
to be performed. Here we confine ourselves to
the presentation of the formalism.

V. THE SWITCHING FUNCTION

Finding a suitable switching function f(r, R) has
been the topic of many papers. '""""'"As
already mentioned in Sec. II C, the switching
function is not fixed except for the boundary condi-
tions at R =0 and R -~. All choices of f(r, R)
fulfilling these conditions are formally equivalent
(as long as a complete set of electron wave func-
tions is used), and therefore many different forms
for the switching function have appeared in the
literature. Usually f(r, R) is specified by applying
the criterion that a proper choice of the switching
function should simplify the numerical solution
of the coupled-channel equations. Some authors
use switching functions with free parameters,
which then are optimized as to minimize the
coupling matrix elements within a limited number
of electron states. ~"" It was shown that a proper
choice of the switching function may considerably
reduce the number of necessary basis states for
the solution of the coupled-channel equations for
the electron amplitudes. '"" However, often
the switching functions finally obtained depend
upon the states taken into account '"'"'"and
hence are not universal (thus violating the first
of the criteria established by Schneiderman and
Hussek, ' or they are given only implicitly and
can only be used with considerable numerical
difficulties. "'" Parameter -free forms usually
are constructed only as to satisfy the asymptotic
conditions and to interpolate in between in some
meaningful manner, but lack a physical picture
behind them. ' One exception, however, is the

f function given in Ref. 44, which will be discussed
below and which we will finally employ.

In this section we will discuss two models for
the switching function. The first one contains
one parameter which will be determined by an
optimization procedure to be discussed below,
and thus falls into the class of trial switching
functions used in Refs. 41 and 43. However, it
turns out not to be universal, and therefore it

will finally be rejected. The second one'4 is
derived from first principles using the physical
picture standing behind the translation-factor idea.
We will show that in the region where we can test
the switching function, both forms, i.e. , the
optimized one-parameter form and the parame-
ter-free form, yield very similar results. The
reduction of the coupling matrix elements by ap-
plication of the switching function in the investi-
gated 8 range is in the same range as achieved
by other authors. ~' ' This to our mind strongly
favor s the switching function we used. However,
we do not consider this as a proof that our switch-
ing function is the only correct one, or the best
one. More work on this field is still to be done.

In order to arrive at a sensible form for the
switching function, let us remember the original
idea of electron translation factors, i.e. , to
cancel the spurious asymptotic couplings resulting
from the neglection of translation effects. We
demand that f(r, R) be chosen in such a way that
the translation matrix elements A „always just
cancel the spurious part of the dynamical coupling
P„„. This spurious part will vanish in the molec-
ular limit where P „contains no spurious con-
tributions. For 8 -~ it will become maximal
(e.g. , the P"„couplings are completely spurious
in this limit). In the intermediate region the
translational effect will be determined by the
extent to which the electrons feel attached to
nucleus A or B.

We tested the following two models for the
switching function.

(1) Assuming that the degree of attachment
essentially is given by the ratio of electron radius
to nuclear distance (i.e. , the smaller, for example
r„/R becomes, the more the electron belongs to
nucleus A), one can make the following one-pa-
rameter ansatz fulfilling the boundary conditions
of Sec. IIC:

1+1,
A, +f(r, R) t' 1 1 2=tanh gR~ ——— x (5.1)

where g physically means the critical ratio R/r„
or R/rs, respectively, where the "molecular"
electron becomes an "atomic" electron. 'g can
be determined by an optimization procedure; as
an example, we may postulate that the sum of the
corrected matrix elements for all (radial and
rotational) couplings to a given state m should
become minimal:

(5.2)
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If the ansatz (5.1) is good, then the resulting g, ,
will be universal. In general, however, g, will
depend upon the nuclear distance R and the state
m considered:

g.„-g„,(R, m) . (5.3)

%e investigated this behavior numerically; the
results of this ud hoc minimization procedure
will be presented below and compared to another,
parameter-free choice for the switching function
which can be obtained from first principles via
the following physical consideration44 (see Fig.
7).

(2) Consider an electron in the field of two
nuclei; F»FB will be the forces acting from
nucleus A. and B on the electron. F will be the
resulting total force. If F points directly at
nucleusA, we say the electron belongs toA and
set f = —1. The analogue is true for 8 If .F,
however, points to CMN, we say the electron
neither belongs toA nor to B, and we set X+f
=0. Generalizing this we set

~+f(r, R)
2

(5.4)

where a is obtained from Fig. 7, as

M„1 —(Z~/Z») (Ms/M~)(rs/r„)'M„1+ (Z„/Z )s(r /sr„)'

One easily verifies that & obeys the correct bound-
ary conditions:

M» X —1 X+f„
(i) r„-0, R fixed~o. --

M~ 2 2

Z+I X+,(ii) r -0 R fixed~n-B M» 2 2

B A +A~B(iii}R-0, r„,rs fixed~n-
M„(Z„+Z»)

[In Ref. 44 a slightly modified version of this

f (r, R) is presented which also in limit (iii) shows
exactly the correct behavior. ] Here, e only van-
ishes for systems withZ„/Zs =M„/Ms. This is
due to the fact that CMN is not identical with the
center of charge. In our earlier consideration of
the kinetic energy of the relative motion we nat-
urally were led to the CMN as the origin of our
coordinate system. Now arguing with the electric
forces, the center of charge would be the natural
origin. Since these differences, however, are
small [in the limit (iii) o. = 4.5& 10 ' for Pb-Cm,
a = 3.5& 10 ' for U-Cm collisions], we will not
pursue this problem.

Now we have two forms for f (r, R) that can be
compared. To this end we optimized the parame-
ter g in (5.1) by numerically minimizing (5.2) for
several states im&. This was done in the U-Cm
system for two nuclear distances (R = 35 and 3000
fm}; the N = 21 lowest two-center states 'Z to ' Z,

II to II were taken into account. The resulting
optimal parameter turned out to be by no means
universal; it strongly depends onR as well as on
[m &, thus violating the first criterion in Ref. 18.
Sometimes the minimum of (5.2) is so shallow that
g'"even cannot be properly determined. In Table
III we summarize the results for g, , On the other
hand, calculating with g,~, the minimum of (5.2)
always gave values very near (within 5%) the re-
sult obtained by using the parameter-free ansatz
(5.5). The deviations were in both directions such
that neither of both Ansa'tze in its effect could be
considered better.

This result lead us to the use of (5.4} and (5.5)
in all practical calculations to be shown in the
next section. This saved us from spending a lot
of computer time for the optimization of the
switching function. The good results obtained with
the parameter-free ansatz (5.5) [compared to (5.1)]
seem to indicate that the physical picture behind
it (see Fig. 7) is essentially correct.

TABLE III. Results for g,pt.

CVV&

rh

+ IMNR

1Z 1sii 2o'

3Z 2sg(2O

Z 2pg]2O

Z Mg 2O'

35

goPt

4.58 x10 2

4.41 x10

1.74 x10 2

&14

FIG. 7. Vector diagram of the forces acting on an elec-
tron by two nuclei with charges ZA, ZB.

i Z 1Sg12O

4Z 2S(12g

Z 3cf3]20

3000

3000

3000

1.56

&.89

&.80



ULRICH HEINg, %ALTER GREINER, AND BERNDT MULLER

VI. THE INFLUENCE OF THE TRANSLATION
CORRECTIONS ON THE E-HOLE

PRODUCTION IN Pb-Cm COLLISIONS

Using the parameter-free switching function dis-
cussed in the last section the translation matrix
elements were calculated for the Pb-Cm system.
The two-center bound states for this system were
calculated by W. Betz'; they will be published

elsewhere. All matrix elements between the 11
lowest Z states and the 4 lowest II states were de-
termined for nuclear distances between 8 = 16 and
3100 fm. Thus in the united-atom limit the three
lowest shells (K, I.,M) have been included comple-
tely, except for two 6 states. ln Fig. 8 we show
the correlation diagram for the Pb-Cm system.

Motivated by an earlier investigation of matrix
elements between molecular wavefunctions, ' in all

16 30 50 100
t t

300 500 1000
I

3000 R(fm)

(a)

-200-

-500-

-2000-

E (kBV)

E(keV)

-28-
E (keV)

-50—

-56-

-58-

-33—

400 600 800 1000 RBm) 400 600 800 1000 R(fm)

FIG. 8. (a) The correlation diagram for the Pb-Cm system. 7 ( ) and IT(-—-) states are numbered in continuous
order from the bottom to the top of the diagram. (b) The crossing regions I and II of (a) are shown in detail. The fig-
ures are taken from Ref. 50,
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Pb-Cm system.

FIG. 15. The angular II —g matrix element for the
Pb-Cm system.
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(see, e.g., Fig. 14 and 15). However, there are
also only a few matrix elements where the correc-
tions are really' strong. The corrected matrix
elements are typically a factor of 3 smaller than
the uncorrected ones at R = 3100 fm. Also for
states which intuitively could be considered as
atomic atR = 3100 fm, there still occur large
couplings, e.g., the radial 'Z —IZ coupling [asmyp-
totically 1s(Pb) —1s(Cm)], which between 2000 and
3000 fm shows the typical sharing behavior ~'

(see Fig. 9) and is hardly influenced by the cor-
rection matrix elements; or the radial 'Z —'Z

coupling [asymptotically 2s(Pb)-1s(Cm)], which
also is only reduced by a factor of 2 (see Fig. 11).
Although the corrections in general have the cor-
rect sign their magnitude is smaller than expec-
ted. Obviously at R = 3100 fm the Pb-Cm system
even for the inner shells does not behave asyrnp-
totically enough as to be referred to as separate
atoms. The overlay of the wave functions is still
too large for the translation matrix elements to
be fully effective.

1 g(P„+A „)'
&.=& (P

is generally smaller than 1 for 8 &400 fm. [Only
at points, where level crossings occur and cor-
respondingly some matrix elements show peaks
which are not due to translational effects, (6.1) is
larger than 1.] However, it decreases slowly
(roughly like P. ") and is still of the order of 0.2
at R = 3100 fm.

(6.1)

B. The K-hole amplitude in Pb-Cm. collisions

Recent measurements of the K-hole probability
in Pb-Cm collisions" show discrepancies to the
calculations in monopole approximation by Soff

A NR(1y)
10—

5-

This conclusion is supported by the behavior of
the sum of excitations in the IZ state (see Fig. 16).
This sum,

/=----' 00
0

LJJx-0,1
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FIG. 14. The angular (-g) —g matrix element for the
Pb-Cm system.

FIG. 16. The sum of excitations in the g state of the
Pb-Cm system. The strong maxima are due to level
crossings, where some matrix elements show strong
structure and then dominate the excitation.
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10=

Pb ~ Cm
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et al."at small impact parameters. It was sus-
pected that these discrepancies can be traced to
neglect of the rotational coupling in the monopole
approximation and that calculations using the full
two-center wave functions are necessary. " Pre-
liminiary calculations using only the three inner
shells fail to reproduce the experimental data. '
Full calculations, on the other hand, including
coupling to the continuum, are still missing. How-

ever, to see the effect of translation corrections,
the existing preliminary calculations may be com-
pared to corresponding computations where the
corrected matrix elements (A+ P}„„areused.
To this end we made a test calculation taking into
account only three states: 'Z, 'Z, and 'Z. Only
radial coupling was considered. We did the cal-
culation for two energies (Zhb = 8.6 and 5.9 MeVj
amu and for three impact parameters (b = 20, 50,
100 fm} and compared the result with correspond-
ing calculations using (a) the monopole approxima-
tion, and (b) two-center matrix elements which
were exponentially cut off at 1500 fm." The dif-
ferent K-hole probabilities are shown in Fig. 1V.

As the figure shows the three different models
lead to vastly different results, in particular for
large impact parameters. On the other hand, the
results of model (b) vary in the same range if the
point where the matrix elements are cut off is
changed. 'o The reason is easily realized by look-
ing at the occupation probability of the 'Z state

{a~(R}[2as a function of R (see Fig. 18). At
R —= 3000 fm this probability still oscillates with
an amplitude which is in agreement with the ob-
served variations of P(b) as the cutoff point is
varied. Thus the reason for P(b} being ill de-
fined in calculations which extend only to R = 3100
fm is that the coupling matrix elements are still
too large at this internuclear distance, although
translation corrections have been taken into ac-
count.

There are several consequences to be drawn
from this result.

(1} The often used way of cutting oi'f the matrix
elements at R- 1500-3000 fm is unphysical. In
special eases (i. e., if only very few transitions
contribute to the cross section), the resulting
calculated cross sections may be unreliable.
Hence the exact knowledge of the matrix elements
for large R is necessary (in particular for col-
lisions with large impact parameter), and the
translation corrections play an important role.

(2) Cutting off the dynamical coupling matrix
elements P „ in a natural way bg taking into ac-
count the translation effect via A„„requires the
knowledge of the two-center electron states up to
much larger nuclear distances R (presumably
& 10000 fm}. The asymptotic excitation amplitudes
seem to be only well defined if the two ions are
several (810}times the K-shell radius apart.

(2) Even the knowledge of the way in which
(P+ A} for R -~ approaches zero does not help
us, since we do not know how to match this asym-
ptotic behavior to the calculated matrix elements
at R &3000 fm. As demonstrated in Appendix 8,
(P + A} „ falls asymptotically like PR '. This be-
havior of the matrix elements, however, cannot
be observed at distances R& 3000 fm so that the
proportionality constant P cannot be determined
by just looking at the matrix elements. They are
not yet asymptotic enough in the considered range
of R. It is not difficult to show" that just fitting

1000 2000 3000
0

R(fm)

0.998- u 42

0.1 I I { I { I

20 10 60 80 100 120 b(f~}

FIG. 17. The X-hole probability for a test calculation
with a three-state system. The &, 2Z, and 4Z states
were considered; in the ingoing channel only p was
occupied. The curves show results of the monopole ap-
proximation (-—-), the two center. calculation with ex-
ponentially cut-off matrix elements (-~ -~ -) and with ma-
trix elements corrected for translation effects ( ).

0.994—

FIG. 18. The occupation amplitude of the g state as a
function of the nuclear distance in the outgoing channel
for the same test calculation as in Fig. 17.
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the asymptotic behavior PR ' to the matrix ele-
ments at some point ROC 3100 fm yields similarly
unreliable results as the conventional cutoff
methods: asRO is varied, P(b) varies in the same
order of magnitude as before.

(4) Inclusion of couplings to higher states and
to the continuum may make the cross sections
less sensitive to the cutoff procedure (as was the
case in the monopole calculations"'4'). This may,
however, mean that they are also less sensitive
to translation effects. This question has still to
be checked by more extensive calculations.

At this point a remark is in order concerning
the many calculations of electronic excitations
which were done using the monopole approxima-
tion for the two-center potential. "'""" There,
also, the coupling matrix elements usually have
been cut off at internuclear distances of R -1500-
2000 fm. This cutoff is motivated by the fact that
the large-R behavior of the matrix elements in
monopole approximation is wrong, anyway, due to
neglect of two-center effects, and that the main
contribution to electronic excitations come from
small nuclear distances. Hence the error made
by not correctly taking into account translation
effects in that, case is much less serious than the
error intrinsic to the monopole approximation it-
self. %'hy the monopole approximation is working
so well, and in many cases yields results in ex-
tremely good agreement with experiment, "is not
yet understood. In this paper, however, we did
not show that the monopole approximation is
wrong, but that doing two-center calculations with-
out translation corrections is wrong. The validity
of the monopole approximation is another problem.

VII. CONCLUSIONS

In this paper we reviewed the theory of elec-
tronic excitations in heavy-ion collisions, starting
from a basic quantum-mechanical treatment. Em-
ploying a number of approximations, each of which
has been thoroughly investigated as to its validity,
we finally derived a set of coupled differential
equations for the occupation amplitudes of the mo-
lecular electronic states. These coupled-channel
equations consistently contain the lowest-order
corrections from electron-translation effects, and
thus yield well-defined asymptotic occupation
probabilities. No spurious long-range dynamical
couplings occur.

The difficulties with the treatment of continuum
electrons by two-center continuum wave functions
were avoided by constructing another continuum
basis. We use, as continuum wave functions,
wave packets constructed from quasiatomic Cou-
lomb wave functions, which in the limit R -0 be-

come the well-known two-center continuum wave
functions in monopole approximation, and for R -~
approach atomic Coulomb waves belonging to one
of the two nuclei. The wave packets used were
shown to fall off fast enough at infinity in order to
show no asymptotic couplings with the two-center
potential. For high energetic continuum states,
also the matrix elements from the nonorthogon-
ality with the bound states vanish for R -~. The
very-low-energy part of the continuum spectra,
however, cannot be well described in our basis.
Nevertheless, we. consider this formulation to be
an essential progress toward a useful theory of
electronic excitations into the continuum, since it
was shown to be powerful enough to yield (to our
knowledge for the first time) also the angular dis-
tribution of the continuum spectra.

As a first application of our theory we investi-
gated the K-hole production in Pb-Cm collisions.
In our preliminary calculations we neglected ex-
eitations to the continuum and only took into ac-
count the inner shells, since in this first step we
were primarily interested in how far the dynami-
cal couplings between these states were modified
by electron-translation corrections. For the com-
putation of the translational matrix elements we
used a parameter-free switching function derived
from a consideration of the electric forces by the
two nuclei acting on the electron. It was shown
that for large nuclear distances the dynamical
couplings were reduced by the translation correc-
tions, but not as strongly as we expected. A full
cancellation of the asymptotic dynamical couplings
only occurs for very large nuclear distances (we
estimate R & 10000 fm for the Pb-Cm system).

Thus our test calculations showed that the con-
ventional method of artificially cutting off the dyn-
amical coupling matrix elements at R- 1500-3000
fm has to be used with great care. We showed by
numeric al solution of the coupled-channel equations
that the exact behavior of the corrected matrix
elements at large nuclear distances may strongly
influence the K-hole production probabilities, in
particular for collisions with large impact par-
ameter. This shows the importance of electron-
translation effects. Whether a full calculation,
also taking into account higher bound and contin-
uum states, will be similarly sensitive to the
large R behavior of the matrix elements remains
to be checked numerically.
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APPENDIX A: THE TRANSFORMED HAMILTONIAN H'(f, k}

We first note that H' = (T'T)'~'T 'HT(T'T) ' ' must be Hermitian, as (T+T)'@T ' is a unitary operator.
Using (2.19) and (2.20) and (2.25) and (2.26) we calculate T'(X)T(X):

T+(X)T(X)™(1 —(i/K}P X)(1+ (i/h)X ' P) = 1 —(i/K}[P,X]
Zl

sag ~ ~
g 3 ts= 1+— [f(r„R)+X]'-=1+ g—(r—, R),

Sp, &,
" Sp.

(Al)

H'=T 'HT =H-+T-'[H, T].
Remembering that

A ~ A

T '(X)= T(-X)= 1 —(i/a)X 'P+ ~ ~ ~,

(A2)

(AS)

where we have defined g(r, R) = Z, [f(r„R)+ y]~.
Thus in Olps/p), (T+T) '+ commutes with the rest
up to terms - (m/p} grad f, which we neglect, and
we have

(.".,}„.=(.' }„.—, (&,&}.1
2p

(iii) Finally, we consider the potential. For any
function F(R) we have:

T '(X)v(R)T(X)F(R) = T(-X)v(R)P(R+X)
= V(R -X)E(R), (A9)

hence

we now may calculate H' in Og/p):

(i) The operator P'/2p is transformed into

—[1 (i/I -)X' P]P'[1+ (i/K)X 'P]
2p.

T (X)V(R)T(X)= V(R-X) .
The transformed Hamiltonian thus reads:

H' (r, R) = H (r, R) +
2 (X, p + a

(A10)

=—+ — (t'/tI )[P X2] P . (A4)2p 2p,

Neglecting terms - g/p)Vf the commutator in (A4)
vanishes, arid we have

= —+ V~(a)+H".,(r, R)+—(X,P+ ~,
(All)

where b, is given by (2.33). H' is Hermitian.

~p2 +2

2p, 2p.
(A5)

APPENDIX B: THE CORRECTED MATRIX
ELEMNTS FOR R ~~

(ii) The kinetic part of H +(r, R) is treated 'as

follows:

[1 —(i/II)X P](Hs„)„,„[1+(i/II)X ' P]

ol)kj + (i/g }[@~ol)lt x]
-=(Hs„)q,„+-X P, (A6)

where

A= p(i/tI)[(H".,)„,„,X]= &(i/a)[Hs„, X]. (Av)

The term (I/p)A P is a small, but asymptotically
important, correction to the kinetic energy P2/2p,
of the nuclear relative motion. It is Hermitian up
to terms which are a factor grad„ f smaller, and
therefore may be neglected. (The result would
have been explicitly Hermitian had we not neglec-
ted similar terms when commuting (T+T} ' with
T 'HT). Hermiticity may therefore be made mani-
fest by writing in O(re/p}

For simplicity we assume a one-electron sys-
tem. The molecular basis is constructed from
solutions of

(a p+ p~, + V'"+ V's)y„(r, R) = e (R)y„(r,R).

An atomic basis around nucleus A is defined by

la. p„+P 0+ V'"(r„)~r„)= e„"y+r„). (82)

There is an analogous construction of a basis
around nucleus B (81) can b.e rewritten as

((a p„+pm, + V'")+ [V'~+ a ~ (p-p„}]}q„(r,R}
= e (R)y„(r,R). (83)

This allows for large 8, where V'~ is small at
the location of nucleus A. , a perturbation expan-
sion [according to Sec. II, a ~ (p -p„) is smaller
than a p by a factor m/p anyway]:
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num

Inserting this expansion into the corrected matrix element and using

(V +X)q „=0+0(—g t(f),

we obtain

(B4)

(B5)

(p„(FR))P+Xtq (rB)) ,p=rp„(r, l() (V+I) ' „( & (p„))
$ y'm

/&9.(r,R)~p"(r ))(P+A) +
&m -&)

In (BV) the differential operator P+A only acts on the matrix element following it. Using (B4) again
finally yields

(B6)

(B7)

(B8)&n~P+A~m&=-+&nial, » „„«,A~(P+A)V" +(P+A)[Z (P-p„)]~m,A&.
r~

In this formula we neglect the matrix element of (P+A) Ia ~ (p —p)], which is by a. factor (m/p)' smaller
than the expectation value of at ~ p. Now we have two possibilities for the wave function y„:

(1) y„(r,R) = y„(r„). In this case first-order perturbation theory gives

&n,A I(P+A)V sIm, A)nP+Am=-
&m-&n

(B9)

(2) y„(r,R) = ((()s(rs). Then we get

( ( ~

) g& )

)(I AI(P+A)Im A)
lA+ &m-~g

(B10)

In both cases matrix elements of the form (B9) play a role. We will investigate them in a moment. In
case (2) also the overlap of the two atomic states (n, B Il,A) is important. It will vanish quite suddenly
at some definite 8 value, since there the exponentially decreasing tails of the two wave functions will
cease to overlap. The magnitude of this separation distance R depends on the quantum number l of the
inter'mediate state. If in the sum of (B10) also excitations into states with high l will take place, then
the separation distance 8 may be quite large.

We now study formula (B9). We substitute P+ A by P», which is correct up to terms -(m/p, ) grad f.
Because of

Zp8 . Zgg Z9g m (Bll)

we get, as soon as the two atoms have separated (R„s&r„),
l

V's(rs) = -Zse' g, "P,(cos6)
Xa

Applying Pz~, the dominant term for large B~~ is the dipole term, and we find

(B9)— „„-R, (n,A ~r„costume, A),
&m-&n +~a

In the same way we find for (B10):

(B12)

(B13)

B10)- "-g&n, B
~
l,A)(l,A I r„c oh' mA) (B14)

B~~ ~m-&g

This shows that for large nuclear distances the corrected matrix elements decrease at least like 1/R'.
The proportionality constant is given by the atomic dipole matrix elements within the separated atoms.
How well the matrix elements behave like 1/R is determined by the degree of separation of the two atoms.
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