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I

The reaction-coordinate approach of Mittleman is used to generalize the method of perturbed stationary states. A
reaction coordinate and an associated electron coordinate are defined for each state in the scattering expansion in
terms of scalar parameters which depend on the internuclear separation. These are to be determined from a
variational principle described by Demkov. The choice of parameters, the scattering expansion, and the Lagrangian
for the radial scattering functions are given for a heteropolar one-electron system.

I. INTRODUCTION

Inelastic atom-atom collisions continue to be of
practical importance over a large range of impact
velocities. Charge-exchange and energy-transfer
cross sections are required, for example, as

.basic data in models of gas lasers, ion-beam prop-
agation, and for applications to the interstellar
medium. Currently, charge exchange between
highly stripped ions and hydrogen atoms is of sig-
nificance to the operation of magnetic fusion energy
devices. In the latter case, H-atom energies from
a few eV to a few hundred keV are of interest.

The work described below is concerned with the
energy regime, usually below about 25 keV per
nucleon, where the impact velocity does not exceed
the orbital velocity of the active electron. This is
the natural region of application of the method of
perturbed stationary states (pss). Much has been
written about the problems associated with the
method, and these points will not be repeated here
except where they relate directly to this paper.
Among the earlier papers on the subject the author
has found Refs. 1-5 instructive for physical in-
sight and technical formalism. In particular, the
paragraph starting on page 440 of the paper by
Bates, Massey, and Stewart describes the need
to change coordinates as one proceeds from the
separated-atom limit to the united-atom limit.
That need is central to the work which follows.
Riera and Salin have critically reviewed work on
the pss method.

This paper proposes a new wave-theoretic mod-
ification of the pss method for diatomic systems.
It was most directly influenced by the work of
Bates and McCarroll on the one hand and by that
of Mittleman on the other. Although it was de-
veloped independently, the theory reported here is
also closely related to the work of Thorson and
Delos. The theory is similar to Refs. 7 and 8 in
that following Mittleman a reaction coordinate is
introduced in place of the internuclear separation
in such a way that the individual terms in the mod-

ified pss expansion can become solutions of the
time-independent Schrodinger equation in the limit
of separated atoms. In this limit a reaction coor-
dinate must tend toward the distance between the
atomic centers of mass. The theory departs
from Refs. 7 and 8 in that, instead of having a
single reaction coordinate for all terms in the ex-
pansion, there is one for each term in the expan-
sion. This difference is fundamental, as can be
seen most readily from the semiclassical limits of
the theories. When a single reaction coordinate is
used, the coupling matrix elements in the semi-
classical equations do not contain Bates-Mc-
Carroll-type plane-wave translational factors in
the integrands. For the theory described below,
modified Bates-McCarroll factors do appear, and,
in the separated-atom limit, the present expansion
is equivalent to an atomic expansion with the usual
factors included.

This work seeks to improve on the original the-
ory of Bates and McCarroll in two ways. First,
thanks to the reaction-coordinate point of view, it
is not necessary to introduce any external vectors,
such as the initial-state separated-atom velocity,
into the expansion basis of the theory. Scalar
functions of the internal configuration-space vari-
ables of the system are introduced instead. These
define a transformation from the original pss cen-
ter-of-mass variables to a new set, one of which
is the reaction coordinate. ' '" This approach
guarantees that the conservation laws are obeyed
and resolves all questions related to Galilean in-
variance automatically. Second, the scalar
transformation parameters introduced into the
scattering expansion can be determined from the
variational principle for inelastic collisions de-
scribed by Demkov. ' The use of a variational
procedure avoids a completely a priori choice of
parameters, and can lead to variationally deter-
mined values for the parameters at all internuclear
separations. ' " The present work shows that in
the semiclassical approximation these parameters
appear in translational factors of the Bates-Mc-
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Carroll form. These agree with those of Bates
and McCarroll in the separated-atom limit but
generally disagree elsewhere.

The use of translational plane-wave factors in
connection with a molecular expansion complicates
the structure of the scattering equations and makes
the high-velocity matrix elements more expensive
to compute. For this reason many researchers
currently prefer to utilize molecular approaches
based on a single-reaction coordinate or on its
semiclassical equivalent. This author's interest
in the more difficult Bates-McCarroll approach is
based on the following observations.

(1) The use of Bates-McCarroll translational
factors in connection with small and large atomic
expansions in i.mpact-parameter theory has been
shown to be both necessary and feasible, despite
the nonorthogonality of the basis and despite the
need to compute new coupling matrix elements for
each energy and impact parameter. The de-
velopment of comparable computer codes using a
molecular basis is technically more difficult but
still feasible.

(2) Experience with atomic basis expansions at
energies below about 10 keV per nucleon suggests
that while they are still very useful, a basis with
molecular character inside the separated atom re-
gion could be even better. ' '" It is of interest,
therefore, to develop a molecular expansion which
in the separated atom region is as close as possible
to the atomic expansions referred to above. With
such an expansion, one can hope to provide quan-
titative results up to energies of the order of 25
keV per nucleon. In the absence of supporting cal-
culations, it is hard to believe' that the approaches

' based upon an overall translational factor can
yield the correct energy dependence for charge
exchange at the upper end of this energy region.
By contrast, in the cases where molecular-basis
calculations utilizing Bates-McCarroll transla-
tional factors, or the Piacentini and Salin approx-
imation thereto, have been carried out at high en-
ergies, they have been encouraging.

(3) At low energy, theories with translational
factors of the Bates-McCarroll type can be sim-
plified to the point where they are no more com-
plicated to evaluate than theories based on a sin-
gle-reaction coordinate. In addition, where the
Bates-McCarroll approach has been used in mo-
lecular expansions at low energies the results
have agreed closely with those obtained ' through
the use of an overall translational factor of the
type defined by Schneiderman and Russek or by
Levy and Thorson.

The third statement above is in contradiction to
the conclusions of some researchers ' ' who seem
to regard the use of nonorthogonal expansions as

undesirable at low energies. We disagree with
this point of view. In the case of the rotational
transition considered in Refs. 26 and 31-33, it
was shown some time ago that if terms up to first
order in velocity were retained in the matrix ele-
ments, coupled equations with diagonal overlap
and Hermitian symmetric coupling could be ob-
tained for the Bates-Williams theory" in a simple
way. ' Thus, the equations of a theory based on
Bates-McCarroll-type translational factors need
not be more complicated at low energies than the
theories used in Refs. 8 and 26. It is only at
higher velocities, where electron momentum
transfer is important, that the coupled equations
become more complicated —in essentially the same
way that those based on atomic expansions are
complicated.

In summary, there is reason to believe that a
theory of the Bates-McCarroll type offers inter-
esting possibilities for quantitative calculations of
atom-atom collisions in the energy range up to
about 25 keV per nucleon. There is no actual evi-
dence against the use of such a theory. The- author
feels that the arguments about complexity given
against its use are not compelling.

The use of the variational principle is central to
this work. As in Refs. 7 and 8, we rely primarily
on the established validity of the molecular elec-
tronic eigenfunctions. The modifications intro-
duced by the additional coordinate transformation
parameters are intended to be minimal ones suffi-
cient to make the equations decouple in the sep-
arated-atom limit and still be physically reason-
able at all internuclear separations. It is only in
the form of the transformation that this work dif-
fers from that in Refs. 7 and 8. We will introduce
a coordinate transformation for each adiabatic or
diabatic state. In this way the expansion will be
flexible enough to cope with the differences be-
tween the lower-lying and higher-lying states in-
cluded in it. The transformation will depend on
two parameters, functions of internuclear separa-
tion. These parameters can be related in the
semiclassical limit to the two components of a
Bates-McCarroll-type vector translation factor in
the scattering plane.

There is a problem connected with our use of the
variational principle. The transformation param-
eters are postulated to be slowly varying functions
of internuclear separation, dependent primarily on
electronic structure. As the result of applying the
variational principle directly, one naturally ob-
tains coupled equations linking the transformation
parameters to the radial scattering functions for
the several electronic states in the expansion. In-
evitably, the simultaneous solution of these equa-
tions induces high-frequency oscillations into the
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supposedly slowly varying parameters. This def-
inition and solution of the variational problem is
not exactly what we are looking for. Rather, we
want to satisfy the variational equations as best we
can with slowly varying parameters.

We do not know the best way to formulate such a
problem. One approach is to introduce specific,
slowly varying functions depending on constants,
as is done in the Kohn and Hulthen methods. This
could be done here, ' however, we have elected
another approach which yields reasonable results
but which could stand further investigation. Brief-
ly, at low or high energies, we use- adiabatic or
diabatic basis sets designed to make the coupling
between basis states relatively weak. This allows
one to decouple the determination of the variational
parameters from that of the radial scattering func-
tions. The resulting parameters then depend pri-
marily on electronic structure.

The diabatic states just referred to are defined
in terms of linear combinations of electronic eigen-
functions of the same symmetry. These states,
which may be called interpolating states to avoid
possible confusion with other definitions, are de-
fined for localized avoided crossings by a method
similar to that proposed by Smith, but using a
finite set of electronic states. "' The details are
presented in the Appendix.

The results of this work are divided into two

papers. This paper is concerned with the deriva-
tion of the Lagrangian functional for the radial
scattering functions in a wave-theoretic context.
In Sec. II, the transformation which defines the
new scattering variables of the theory is developed
for a one-electron heteropolar system. Section
III lays the groundwork for the exact treatment of
angular momentum conservation through a special
choice of coordinates for the electronic basis func-
tions. This allows one to derive the exact cou-
pled equations for the radial scattering functions
without making a semiclassical approximation or
introducing an eikonal approximation with its re-
strictions to small-angle scattering. In Sec. IV
the construction of the scattering expansion and
the derivation of the I agrangian are carried out in
detail. Section V contains a brief discussion of
the results.

The second paper is also concerned with one-
electron heteropolar systems and starts with the
Lagrangian of Sec. IV. Its purpose is to reduce
the integro-differential equations of the present
paper to approximate ordinary differential equa-
tions which are amenable to computation. A semi-
classical approximation is considered. It is shown
that plane-wave translational factors of the Hates-
McCarroll type result from the formulation of the
present paper. In the same approximation, vari-

ational formulas for the transformation parameters
are also derived.

II. THE INTRODUCTION OF A STATE-DEPENDENT
REACTION COORDINATE AND THE

TRANSFORMATION OF THE SYSTEM KINETIC
ENERGY

Consider the creation of an electronic basis set
for slow collisions between atom A and atom B.
The logical functions to use are those of the pss
method, i.e. , the fixed-nucleus electronic eigen-
functions X~ for the AB molecule. The well-known
difficulty with this method is that with a scattering
function E~(R) depending on the internuclear sep-
aration R, the individual terms in the expansion do
not become exact solutions of the Schrodinger equa-
tion as R -. The differential equations obtained
for the E~(R) have nonzero coupling for all R
among all channels which are connected by dipole-
allowed transitions. Bates and McCar roll showed
that, as in the case of atomic eigenfunction expan-
sions, translational factors multiplied into the
fixed-nucleus molecular eigenfunctions suffice to
eliminate the undesired long-range coupling. '

In this paper, starting with R and the electron
coordinate r, for each state 6 in the scattering
expansion, there are introduced a reaction coor-,
dinate $(R, r) and an. electron coordinate q(R, r).
The terms in the scattering expansion are then in-
troduced as functions of $ and q. Once these terms
have been constructed, the next step is to apply
the system Hamiltonian H to the expansion and de-
rive the Lagrangian functional. At this point, it
becomes useful to express H in terms of $, q so
that the actual equations for the unknowns Ez($)
for each term can be deduced. The rest of this
section will therefore be concerned with the trans-
formation defined in Eq. (1) below and with its in-
fluence on the form of the kinetic energy operator.
The discussion is essential, but tedious, and leads
to Eqs. (18) and (23).

The electron coordinate g and the reaction coor-
dinate g for a particular term in a scattering ex-
pansion are defined by the transformation

g = nR+Pr,

g=yR+5r. (1)

The original electron coordinate r is referred to
the center of mass of the nuclei. Later, a sub-
script 6 will be introduced to keep track of the
different transformations for different terms in a
scattering expansion. The quantities a, P, y, and
5 are the transformation parameters mentioned in
the Introduction. They are scalar functions of R,
x, and s=—r R. Only scalar functions are intro-
duced, so the expression for the total orbital an-
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gular momentum

8 8& - 8 8
i-R Rx—+rx—~—= -iK $x—+gx-

Bg Br& 8$ Bq

is form invariant. The model for the transforma-
tion used in this paper is suggested by the trans-
formation to separated-atom, center-of-mass
variables. This transformation will now be dis-
cussed. Suppose that the electron is attached to
nucleus A. Let p=Me/(M„+MB) where M„and
M~ are the nuclear masses, let m be the electron
mass, and define

q= r+ pR= r~,

$ =R- (r+PR)
(M. +m

RAB '

The definition of P is such that r+PR is the vector
r„ from nucleus A to the electron. The reaction
coordinate ( is just R„e, the vector from the cen-
ter of mass of atom A to that of nucleus B. The
Jacobian of the transformation (3) is unity. The
special thing about transformation (3) is that the
transformed system kinetic energy is separable
with respect to El„e and r„. That is, there are no

cross-derivative terms in the kinetic energy.
Using Eq. (3) as a model we seek transformation

of the form (1) such that the scattering equations
decouple in the separated-atom region. This is not
a unique process, and it is most easy to discuss
after the form of the kinetic energy operator has
been obtained. At this point, however, one re-
striction on the coefficients is introduced so that
no large distortions of the volume element are

allowed. %'e require that the Jacobian of the
transformation (1) be unity to at least first order
in m/M. This condition is imposed by assuming
that

n = I+(m /M)g,

P =(yn/M)@,

5 = I+(m/M) f.
(4)

8 8

8 8 8+&, +D"8g,. 8g„'8q, '

In Eq. (5) the subscripts designate space-fixed
vector components and the Einstein summation
convention is used. The coefficient A„,. is

(5)

In Eq. (4)M is the reduced massof the nuclei. In
Eqs. (1) and(4)y, g, P, and fareallassumedto
be Q(1) or smaller as (ec/M) approaches zero.

The result of Eqs. (4) is that through transfor-
mation (1), (="up to terms of order rg/M and
j=yR+r up to terms of order m/M. Thus, the
reaction coordinate is kept close to ~, and the
electron is nearly located with respect to a point
shifted by -yR along the internuclear line from the
center of mass of the nuclei. As Bates and Mc-
Carroll' showed, the order m/M change from ~
to $ is important because in the scattering func-
tions, g or 5 is multiplied by the heavy-particle
momentum, Age.

The next step in the program is to express the
kinetic energy T in terms of the new variables de-
fined in Eqs. (1) and (4). The result can be written

1 j( m m Bg m Bh m m 8g m BhA,~
— 1+—g;, + R;+— — x) +—g;, + R„+

J
1 m (8g Bk (8g BA

/=' ag aa ) ag ai
+(I M)lg a '+a r;+~gal~ ~, + r, +~,.A). (6)

The relative importance of the various terms
can be estimated by noting that a/ag, acting on a
scattering function is of order Mv/k, where v is
the relative heavy-particle speed. Thus, coming
from the first of the three terms in Eq. (6) are
contributions of order Mv /iP, mv /8, and
(m/M)mv /h. The secondterm inEq. (6) is of
order rnv /h and the third term is of order
(m/M)mv /h The largest . term is the heavy-
particle kinetic energy computed with the reduced
mass of the nuclei. The kinetic correction terms

mv /I are very small at thermal velocities but
comparable to the electronic energies when g -1
atomic unit (a.u.). The terms of order
(m/M)mv /h should frequently be negligible in
practice. %hen the parameters are constant,

(1+mg/M) 1 m)2 2 1 m.
M m M(I (M. +M.) M

(7)
The terms in brackets in Eq. (7) can be used to
define the reciprocal of a system-reduced mass in
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Eq. (5). In the special case of Eq. (3) it is of
course equal to 1/(M„+m) + I/M~. Dropping the
smallest terms in Eq. (6) or (7) amounts, as far
as reduced-mass effects are concerned, to making
an error of order (m/M) . Such terms will ulti-
mately be neglected.

The B/Bg, operators also act on the electronic
eigenfunctions. Acting on an electronic eigenfunc-
tion B/ B(, can be estimated to be of order (1/ao)
where ao is the atomic unit of length. Thus the A, J
terms also give rise to contributions to Eq. (5) of
order v/(5zo}, (m/M)v/(hao), and (m/M) v/(kao).

The largest terms correspond to the regular non-
adiabatic coupling terms of the pss method. It
should be sufficient for most purposes to neglect
the higher order terms in (m/M). Finally, when
both derivative terms operate on an electronic
eigenfunction the contributions from terms in Eq.
(6) to Eq. (5) are (1/M)ao, (1/M)(m/M)a„2, and
(1/M)(m/M) ao'. The first of these contributions
corresponds to regular small terms (e.g. , adia-
batic correction terms) of the pss method.

Next, let us consider the cross-derivative terms
in Eq. (5). Their coefficient B,, is given by

2 f m m Bg m Bh, By m Bf

2 m / Bg Bh ( m /m Bf By

(M +M ) M I By; & B 'J I M

The size of the cross-derivative contribution to
Eq. (5) can be estimated with B/BP„-Mv/8' and
B/Bq„-ao . Thus the first two terms of B,„cnot ian
the largest contributions which are -v/aors. The
rest of the terms are -(m/M)v/aoh. When B/B),.
operates on an electronic eigenfunction the largest
terms are -(1/M)ao

For constant parameters,

2 m)- m8)„——5)~ 1+—
g~y + 1+ f h-
].(-.-.) ("=fj" (9)

The cross-derivative coefficient (9) vanishes for
transformation (3) as well as for the identical
transformation with g, y, h, and f=0.

The term D,.(B/B),) contributes terms of the same
order of magnitude to Eq. (5) as the cross-deriva-
tive term. %e have

m Bg Bg 8Pg

1 m I Bg 8 h Bh Bh

(M„+M, ) M pa~, B~, ' Br.,Br, 'B~,. B~. ,
(10)

As before, when B/B)~ operates on a scattering
function the result is -Mv/h. Thus, the largest
velocity-dependent contributions from Eq. (10) to
Eq. (5) come from the second term in Eq. (10) and
are -v/(hao). The remaining terms of this type

are -(m/M)v(hao). When B/B); operates on an elec-
tronic function, the largest contribution to Eq. (5)
from Eq. (10) is ao /M. For constant parameters
D;=0. At this point all the terms in Eq. (5) which
differentiate the scattering functions have been de-
fined. The discussion of the remaining terms will
be postponed.

Further restrictions on the transformation de-
fined by Eqs. (1) and (4) will now be introduced.
To guarantee that the exact scattering equations
decouple in the asymptotic region it is sufficient
that the above transformations tend toward trans-
formation (3}if, in molecular state 6, the elec-
tron ends up on atom A, or to the analogous trans-
form if it ends up on atom B. Then T as given by
(5) will be separable in the proper variables with
vanishing B,.„, D, , andE, . In the united-atom
limit we elect to restrict the transformation (1) so
as to keep ($ —It)/R of order m/M. Otherwise $

loses a desirably close relationship to the physical
variable R. Subject to the above conditions, any
transformation is acceptable.

In most scattering applications, adiabatic cor-
rection terms, terms of the mass-polarization
type, and electron-reduced-mass terms are
omitted from the kinetic energy. The approximate
atomic functions used to define the S matrix are
then taken to be those from the separated-atom
limit of the fixed-nucleus molecular eigenfunc-
tions. Correspondingly, the parameters in the
transformation (1) are chosen to guarantee sep-
arability of the truncated form of Eq. (5). The
omission of terms of order a02/M compared to
retained terms of order v/hao requires Mvap/k
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We impose our first specific condition on the
parameters by requiring that the leading term in
D; from Eq. (5) vanish for all R. This type of term
does not appear in the kinetic energy operator of
the regular pss theory. From Eq,. (10), it can be
shown that the necessary conditions on the param-
eters are

This shows that the condition

j(R)= y(R)k(R)

is sufficient to make J exactly unity in the separa-
ted-atom limit and to guarantee for all R .that J
departs from unity only because the transformation
coefficients in Eq. (1) are changing with R. The
final transformation is

= k(R)R, ,8r]

g= k(R)(R ~ r) +j(R),

mg=nR+ —kr,

q = y(R)R+ r,
(18)

k(R) = —y(R). (12)

This guarantees that the leading term of B» van-
ishes in any region where the transformation par-
ameters are constant. Then B» takes the form

where O(m/M') stands for all the remaining terms
in Eq. (8}. The requirement that the leading term
of B» vanish in the separated-atom limit now be-
comes

where j,k, h are arbitrary functions of R. ~ With
Eqs. (11) satisfied, the contributions of D of Eq.
(5) are at most of order (m/Mv/Ka, ) or (m/M)a, '/
M and can eventually be omitted. Now consider the
separability requirement that the leading term of
B&~ vanish as R —~. In this limit the parameters
a.re constant, a.nd from Eq. (9) we require y(~)
=-k(~). Instead of this boundary condition, we
impose the stronger condition

o( = 1 +—[k(R) (R ~ r) + yk],

where y(R) and k(R) are arbitrary, subject to Eq.
(14). Transformation (18) involves two functions,
y(R) and k(R). In the semiclassical limit, they
provide enough flexibility for independent variation
of the angular and radial components of a vector
translational factor in the scattering plane. Had
the first term in Eq. (13) been set equal to zero,
only one independent function would have been
available. In the author's opinion, this is not
enough, because the molecular properties parallel
or perpendicular to the internuclear line are too
dissimilar to warrent such an assumption a priori.

It is instructive to compare Eq. (18) with Eq. (3)
for the separated atoms. We identify y with p so
that j=r„. Then, from Eq. (18) with k =0,

(= R -—y(r+ yR)M

k(R)R'- 0 . (i4)
=R ——(r+PR) ..

M~
(i9)

mJ=~ i+—j(R) ——yk (16)

as R-~.
Evidently, the leading term of B» could be made

to vanish identically by choosing k = —R '(dy/dR).
This possibility will be discussed below Eq. (18).
At this point it is convenient to set

(15)

in Eq. (4), so 5=1 in Eq. (1). Inspection shows
that f appears only in the higher-order terms of
B» Moreover, it ca. n be verified that f contrib-
utes only terms of order (m/M)v/ha, (m/M)a', /M,
and smaller to the rest of the terms in Eq. (5).
Setting f=0 thus simplifies the theory without al-
tering its content to the order retained. The last
requirement to be introduced has to do with the
Jacobian of the transformation (1) for constant
parameters. In this case k(R) must vanish be-
cause of Eq. (11) and the Jacobian Z becomes

Transformation (19) agrees with the exact trans-
formation (3) except for terms of order (m/M)' in

45

To apply Eqs. (18) one needs the corresponding
simplified expression for A» from Eqs. (5) and
(6). The result is

1 g g (m m2 0 B

"'Bg Bg MB) B( (M M B( Bg )'
(20)

where the O((m'/M') ~ ~ ~) terms can be retained by
using Eq. (6), and

2=[2k(R r) —(y) )k(k2(k ———)(R 'Ir~)(R 2~)

(2dk - 2 dy 2 a a
+~ ——(R r) ——y ——4yk+(kx}' R RR dR R dR k fB(

(2i)

To the same order, the analogous formula for
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B» is Eq. (13). That for D& is Eq. (10) without
the second term, which vanishes for Eq. (18).

To complete expression (5) for the kinetic energy
resulting from transformation (18), the formulas
for the coefficients of the g derivatives are needed.
Rather than reproduce the lengthy general formu-
las for Eq. (1), we give just the complete results
for Eq. (18). Then

E =—2 +Rhody
=1 ar

(22)

1 1
m» (M„+M,) ~" '

For constant y, 8& is zero and the first term of

C» is equivalent to a modification of the electron
reduced-mass term.

Equation (5) can now be written

h' M ~ M' M RdR ~ ~8(~By»

(23)

Here t is defined by Eq. (21), C, represents the
O(a,2/M) terms from Eq. (22), and C, represents
the O(mao'/M') and O(mv/Ra+I) and smaller terms
from Eqs. (6), (8), and (10). Equation (23) is still
exact. It shows that the error introduced in scat-
tering amplitudes by dropping the terms C, and C,
should be of the order of the effects on level sep-
arations and matrix elements of el.ectron reduced-
mass or adiabatic correction effects. The term t
is also very small at low-impact vel. ocities. In-
deed, for sufficiently low velocities, it is of the
same size as the adiabatic correction terms.

Equation (23) shows how to express the kinetic
energy operator in terms of whatever variables
appear in the expansion term to which the Hamil-
tonian operator in the Langrangian is being ap-
plied. We turn next to the discussion of angular
momentum conservation.

III. ANGULAR MOMENTUM CONSERVATION:
THE CHOICE OF BODY-FIXED REFERENCE

FRAMES

tion. and substantial simplification of the scattering
equations. Because of Eq. (2), the same use of
angular momentum conservation is also rigorously
possible in terms of the coordinates defined in
Eqs. (1) and (18). However, in this case the coor-
dinate that is analogous to the polar axis for the
heavy particles is f, not R. This difference is of
order (m/M). From Eq. (18), the sine of the
angle 5 between ( and R is given by

a —O, y/R —O. (25)

Equations (25) and (18) guarantee that as R —0,
(/R-1 and ~sin6~ —0. In addition, it also inten-
ded that y(R) should be such that

~
sin5

~
is O(m/M)

for all R In practice we will reject a solution
y(R) which violates this condition.

The use of f, instead of R as the polar axis for
the description of the total orbital angular momen-
tum suggests the use of electronic basis functions
for which the rotation-reflection symmetry axis
is also f rather than the internuclear line." Then
the Kronig formulation of angular momentum con-
servation can be taken over. Consider a partic-
ular state G whose fixed-nucleus electronic eigen-
function is P~(p, z, Q;R) where p, z, Q are body-
fixed cylindrical coordinates for r with z=R. By
Eq. (18) with the state dependence made explicit,
q~ = r+y~(R)R. We now define a variable r~ to be
the analog of r in the $,j system. We take

r =(I —y (g )P (26)

The variables pGz~pG are then defined as the
body-fixed cylindrical coordinates for r~ based on

g~ with z~= $G. The Gth basis function is then
taken to be P~(p~, z~, P~; $o) . Its relation to
g~(p, z, (t(;R) is given by Eqs. (18) and (26) using
Taylor's expansion to first order in m/M. By
construction

I gxHI ~ Rxyr
sin5

(R M

For bound electronic states, the numerator is un-
iformly bounded for all R and, unless ( becomes
too small,

~
sin5~ is of order m/M. Evidently as

g- 0, 5 can become very large. In order to al-
ways maintain a close correspondence between R
and $, it will be required that as R —0

An important feature of the pss method for
atom-atom collisions is that by going over to
molecule-fixed electron coordinates for the elec-
tronic basis functions, which then depend only on
R and not on R, the conservation of the total orbi-
tal angular momentum allows a block diagonaliza-

where V(p, z, $, R) is the electron's potential. ener-
gy and t|'~ includes the nuclear repulsion. The dif-
ference ~V between the two potentials is taken into
account to first order in (m/M) using
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Av= v(p„»„y„~,) —v(p, », y, R)

t'av av av
+( —(P, —d)+—(*,-*)+—(d, —d))

gap
' a~ ' 3+

+—(g —R) .av
aa (28)

IV. THE CONSTRUCTION OF TRIAL SOLUTIONS
FOR A ONE-ELECTRON HETEROPOLAR

SYSTEM

In this section the Lagrangian functional is de-
rived for one-electron heteropolar systems. In

the one-electron case the electron spin can be
factored out once and for all and omitted from the
electronic basis functions. These may be written
in the form

Xc=(2») "'A()~(pc, gc; $c) exp(iApc), (29)

where G stands for the number pair pA, A =

=0, +1,+2, . . . , and p numbers the states with the
same A. States with A=O are Z states, etc. As
discussed in Sec. III, the variables pc, Qc, fc are
the body-fixed cylindrical coordinates of g~, taking

as the axis of rotation symmetry. The sub-
scripts G on $c and qc are required because each
state G has its own transformation (18). The
states pA and p —A are degenerate and A
=(-1)~A.~~. The A.~~ are real and normalized. The
functions yc and kc in Eq. (18) are arbitrary ex-
cept that they depend only on

~

A
~

.
A trial solution can now be written down. Let

the quantum numbers for the system's space-fixed
angular momentum be K, MK and let the initial
beam direction be the space-fixed quantization

Since all the coordinate differences in Eq. (28) are
of order m/M, Av is of the order of the electron
reduced-mass terms. When the Hamiltonian H is
applied to gc(71;(), using'Eq. (23), the quantity

(bc —Av)gc will appear along with the other terms
from Eqs. (23) . The influence of hV on transition
probabilities, phase shifts, etc. , wil. l be of order
m/M and, therefore, negligible for most scatter-
ing applications.

One point about the use of an expansion based on

( as polar axis rather than R is worth emphasizing.
If the actual scalar potential V(p, », P, R) is ex-
pressed in terms of E and q, it is independent of
the polar angles 6„(» of g relative to an arbitrary
nonrotating frame and independent of the azimuthal
angle of g when it is referred to the body-fixed
axes 8, , P~, g. This means that the actual V does
not preclude the use. of the polar axis ] in connec-
tion with an exact treatment of angular momentum
conservation.

We are now ready to formulate the scattering ex-
pansion and derive the system Lagrangian. This
is done in Sec. IV.

axis. In a typical situation, only one value of MK
will occur, namely that of the component of the
total initial electronic angular momentum along
the initial beam direction. The trial solution is
then written in the form

g p»dd»

K NK

where

» —(4)T)& / 2 (2A y I )& & &

(30)

x g~~(p„gc; gc)(-I)'[(2@+I)/(8»')]"'

~dd (~c 8c ~c+ ~;c (~c)/~c' (31)

(32)

In place of Eq. (31) we write

» = (47f)d& 2(2A+ 1)&&2 g ( I )() [(2A + I)/(87(2)]&& 2

X q ~, g ~, c, (~c)/~c,

(33)

where G stands' for qAE and G' is analogously de-
fined. The coordinates (c and qc and the param-
eters y~ and k~ now depend on the new G.

The radial scattering functions AK~. ~„ the y~,
and the k~ are to be determined variationally from
the functional

Z(d„d, ) = f dR J drd, (lf z)d, , -(34)

where g, and g, are trial solutions. " 2 is equal
to -(8'/2M) times the functional I of Ref. 12. The
Lagrangian is defined in terms of the original
variables. The coupled equations for the radial
scattering functions used in this paper always

In Eqs. (30) and (31) the subscript G' denotes an
initial state for the scattering. " The rotation ma-
trix and the spherical harmonics in the hydrogenic
functions are defined using the conventions dis-
cussed in Ref. 48. The angles ec and gc are the
polar angles of $c with respect to the space-fixed
frame.

The individual terms of Eq. (31) are not parity
eigenfunctions for the system and do not lead to the
simplest possible form for the scattering equa-
tions. Therefore, following Kronig, we replace
the products A„~D~~„, A = 0, +1,+2, . . . , by the
functions Q~~,» where now A ~ 0 and e =+1. By
definition,

KNE K
Orred dl iLO nODON»

+ (1- a~0)=2 (&.~&~~»+~~.-~D ~»»).
1
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make g(p~, p, ), g($2, p, ), g(g,*,gR}, and Z(g„g,*)
all vanish. As a result, unitarity and detailed
balancing are satisfied by the solutions, if all
terms in H- E are kept in the coupled equations. "
When terms of order m/M are omitted, as is pro-
posed here, and done in paper ll, a separate inves-

I

tigation is required to determine the extent to
which their neglect influences the above relations.

Let us now write down g(g„g, ) for the one-elec-
tron case, using overbars to keep track of the dis-
tinct sums and variables in g, and g, . The result
can be written as

(35)

(36)

g(y [)) )
—g g g(@»[)[» c,»»»)

X'iVK KNK

R(P» 4 «)= ( ZZ (-1) '» fd(« fdrr-d«R««. p((«)( ' = (R- )[ -R» (4 )( ']
7T Hie nh;6

In each term of the sum over nX&, the original
volume element dRdr has been expressed in terms
of the volume element d(xdq& using the Jacobian
4& of the transformation (18). The coupled equa-
tions for the Rc c, (gc) can be obtained by setting
the variation of Eq. (36) with respect to R~ ~,($x)
equal to zero. This will guarantee that Z vanishes
whenever its right-hand trial function is a solu-
tion of the coupled equations. However, it is pre-
ferable to first simplify the equations by carrying
out the angle integrations. This requires a bit of
manipulation since the rotation matrices contained
in Eq. (36) are functions of different arguments.

The first step is to express the Q»R",» in terms
of rotation matrices using Eq. (32) and to write
the kinetic energy T in terms of $c, )}cusing Eq.
(23). It can then be shown that

In Eq. (37) A may be either positive or negative
as is required for use in connection with Eq. (32).
The C»„, are written out in Eq. (40). For the
present all that need be stated is that they are in-
dependent of the variables pc, &c, Pc which appear

in D»„„. We next express the D„„„(gc,&c, gc)
in terms of the Dc»„(pc, &c, pc) which appear in
the trial function g, . The required relation is
worked out in Ref. 40. It is

, 0= —sin
m ycPc

c

~ -1 ~ &CPCel 0=- sin IM (38)

Note that the expressions for 0, , and g» contain
7'c from transformation (18). Equation (38) ex-
hibits the important point that the argument of
d», is of order m/M. Since the total angular mo-
mentum K is -~, the argument of dKT cannot be
set equal to zero (which would give &~,). How-

ever, one can expect to be able to evaluate the
multipliers of m/M in the argument of D»~, to low-
est order in m/M. Then only the difference be-
tween yc and yc need be accounted for.

Using Eqs. (38), (37), (36), and the orthogonality
properties of the rotation matrices,

D (p, &, g )=gd (&, , -&, JD „((t) , &-, [T)-), -

R(4«'. , 4«») = (4«)(4R«1)4«»4 rr„„Z2 (—1)"' '"irf Eddic«R«p(«d) f'(rrrdp«d(ddir'r( »lpddd; (4)'
HXF nhe

x 6„6-„~5-,6„,/d», C»g, + 6~,(I —&~,)2v g d~»,C„/, + ~R,(1 —~/0)2v' Pd, /~„(),)'r 'r 'r

+ e(~„~-„+~, ,~-, ,)(1 —~I/(1 —~gJ I( dR-XC.g.+ &Q d-~ XC'-»;)K K K K

T T
(3g)

The Lagrangian is diagonal in the angular momentum X. The Kroneker delta symbo ls ~„, e«, in Eq
(3g) exhibit the fact that states with different values of a (i.e., different scattering-plane ref leciion sym-
metries) do not mix. The symbols &Ro, (1 —&„-g, ete. , distinguish sigma states from the other states.
The C», are defined by Eq. (37). In practice, calculations are most likely to be based on the neglect of
the terms of order m/M, (m/M)v, etc. , discussed in Secs. II and III. Therefore the C„~, are given
neglecting C, and Cm in Eq. (46) as well as && from Eq. (28)." We have
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2M) [K(K I) j 2M[ ( )~

5'
i Rk iRa2 ~' sg ~' m' ' ' I'g' &dR '»0, Is),

+ —[ y-', + 2k'(t;o-Rye)]
I

m, t' 8 ' A(if+I)-A'

dye (8+2ik~- „' ~.
i „„„(p., ~.; &.)R„;....,..(&.),
1, '&o

oCx&„-+[(K+A+])(K+A)]~ — +A cot8o i+— -k~Ri —8 &„z(Po, Lo , po}'R„/~Ig g ((g), (40)I2 n h, sl

In these equations, which hold for both positive and
negative values of A, & stands for niA

I
a. In Eq.

(40) f.~ is the electron orbital angular momentum
defined in terms of g~, and g~ is the polar angle of
q~ in body-fixed, spherical coordinates, q~, 8o, Q~.
All the m/IVI terms in Eq. (40) come from the term
f in Eqs. (21}and (23). These terms are at most
of order mv' as discussed in Sec. II. In'them, de-
rivatives of A~ with respect to $~ are to be
dropped. Aside from the variables used and the
accompanying term t, the operators in C~~, are
just those of the pss method.

Variation of the Lagrangian (39) with respect to

R~,s,(ts) yields a set of coupled integro-differen-
tial equations. One has to express the C variables
in terms of the G variables, soRr~, ~,($~) has to
remain under the P integral sign. However, ap-
proximations are available which convert the equa-
tions to simpler ordinary differential equations.
At low velocities a Taylor's expansion of A~~, ~,

($~) about $s can be used. 4' In the semiclassical
limit, an analogous treatment of the slowly varying
coefficients of the in and out waves can be carried
out. In both cases, ordinary differential equations
result. If desired, the terms omitted from Eq.
(40) can be retained for special applications. For
example, one may want to take adiabatic correc-
tion terms into account.

V. MSCUSSION

Equations (39) and (40) provide a new, more
flexible description of low-energy atom-atom colli-
sions for one-electron heteronuclear systems.
The equations are more flexible because they
allow for the variational determination of the
transformation parameters y~(R) and k~(R) at all
energies for which a molecular basis approach
should be fruitful. 'These state and A-dependent
parameters represent a simple generalization of
the constant vector translation factors of Bates and
McCarroll. The generalization of the theory to
homopolar and many-electron systems is worked

I

out in some detail but not completely in Ref. 40.
The integro-differential form of Eq. (39) proba-

bly prohibits its direct use for calculations. Our
philosophy is to use the Lagrangian (39) as the
basis for accurate semiclassical br low-velocity
quantal approximations which lead to Lagrangian
functionals of simpler form and to ordinary differ-
ential equations for the scattering functions and
transformation parameters. Both approximations
are worked out in Ref. 40. The semiclassical
approximation is the subject of paper II."

In order to decouple the variationally deter-
mined equations for the transformation parame-
ters, y~ and k~, from the coupled scattering
equations for A~ ~, , a weak coupling approxima-
tion is used. 'This is done by defining suitable
more weakly-coupled diabatic states to replace
certain strongly coupled molecular electronic
eigenstates at high energies. The diabatic states
are therefore essential to our high-energy approx-
imation. These diabatic states are defined in
terms of linear combinations of electronic eigen-
functions. The Appendix provides a definition of
the diabatic states and exhibits the required mod-
ification of the terms in Eq. (40).

'The semiclassical approximation of paper II has
recently been applied in both adiabatic and diabatic
versions to C"-H collisions for H-atom energies
up to 30 keV." The results are encouraging.
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APPENDIX: BASIS FUNCTIONS MADE FROM
LINEAR COMBINATIONS OF ELECTRONIC

EIGENFUNCTIONS. INTERPOLATING
OR DIABATIC STATES

The basis functions of Sec. IV were taken to be
fixed-nucleus electronic eigenfunctions. One may
refer to this trial solution as an adiabatic trial
solution. It is well known that as a function of in-
ternuclear separation, A, a fixed-nucleus elec-
tronic eigenfunction can undergo a large change in
its character (its electron charge distribution) in
a localized region [R„R,] around a point Rc of
"avoided crossing" with another electronic eigen-
function of the same symmetry. In the simplest
example, the eigenfunctions exchange their char-
acter as R traverses the region [R„R,]. In the
avoided-crossing region it is convenient to say
loosely that the pair of states "interact, "while
outside the region there is no particular indication
that they are interacting more strongly with each
other than with other states. Usually, plots of the
potential energy curves, the radial coupling, and
the dipole matrix elements allow one to identify the
points A„A~, and R, with reasonable precision.
The sr@aller the intervalRy Ap the larger the
radial coupling matrix element, and the less arbi-
trary the choice. However, a completely unam-
biguous choice of [R„R,J is probably not possible
in general, particularly when A, -R, is of the or-
der of an atomic unit or larger. The conceptual
problem is to define when a state is no longer in-
teracting with one or more of its neighbors. 'The
remarks just made apply equally well to avoided
crossings of several states of the same symmetry
over a region [R„R,].

In general, it is advantageous in treating colli-
sions numerically to have expansion basis func-
tions which are as slowly varying with internuclear
separation as possible. In an adiabatic expansion,
problems of coupling strength, nurrierical accura-
cy, storage, and interpolation are all aggravated
by narrow avoided crossings which frequently are
of little importance to the scattering phenomena of
primary interest. For this reason it is useful to
consider scattering expansions defined in terms of .

more slowly varying basis functions which inter-
polate between the electronic eigenfunctions across
the region [RO,R,). The functions we shall intro-
duce below are so similar in their behavior to
diabatic states that we shall refer to them as such.
However, they can be called interpolating states
if a distinction appears desirable. "'"

By definition, in this paper and in paper II,
diabatic or interpolating states are R-dependent li-
near combinations of molecular eigenfunctions of
the same symmetry generated by an orthogonal
transformation with the following properties:

(1) The transformation is the identity at R =R,
and, with possible sign changes, renumbers the
eigenfunctions at R =A, .

(2) The first and second derivatives of the trans-
formation vanish at R, and R

(3) In the transformed basis the radial coupling
matrix element has values for R,- A - A, which
are of the same size as the original radial coup-
ling outside this interval. In practice this means
a substantial reduction in the radial coupling on
[R„R,].

(4) The transformed radial coupling and its de-
rivatives are continuous at R, and R, .

Conditions (2) and (4) are minimal continuity con-
ditions. Stronger ones are possible and might be
desirable. Condition (3) is the one which makes
the use of the term diabatic appropriate. In fact,
the equation of Smith" is used in slightly modified
form to generate an approximate transform. In
its original form, but for a finite number of inter-
acting states, the transform obtained by solving
Smith's equations makes the new radial coupling
zero on [R„R,]. This new coupling is not contin-
uous with the old at A, and A, . For this reason an
antisymmetric correction matrix is added to the
original antisymmetric radial coupling matrix
and chosen in such a way that when Smith's equa-
tions are now solved, the transformed coupling is
continuous in value and slope with the original
coupling at both R, and A, . The correction matrix
elements are required to vary as little as possible
on [R„R,] and to be small compared to the original
radial coupling where this coupling is large. They
are otherwise arbitrary. With a correction matrix
chosen, Smith's equations yield a transform which
satisfies all the above conditions except that if it is
the identity at R, it will not quite be a renumbering
matrix at A, . If the scheme described here is
working, at R„each column of the transform ma-
trix will have just one element whose absolute
value is close to one. All other elements in the
column will be small in absolute value. This pre-
liminary transform is converted into a final one,
satisfying all the conditions, by multiplying it by
an orthogonal normalizing matrix which is the
identity at R, and whose value at R, is chosen to
make the final transform a renumbering trans-
orm at A =Ax. The fxrst and second derivatives

of the normalizing matrix need to vanish at Rp
and R, . The normalizing matrix is also somewhat
arbitrary, but it should be kept as close to the
identity and as slowly varying as possible. We
have parametrized this matrix as a product of
elementary rotations. Preliminary tests of this
scheme have been made on the states of HeH+,
considering up to four interacting states. So long
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as R
y

R0 does not exceed one or tw o atomic units
the corrections to the basic Smith transform are
small, and their inherent arbitrariness should
have little influence on a computed cross section.
Also, the precise choice of Ry and Ro is not criti-
cal. It shouM not be forgotten, of course, that in
the case of an isolated, reasonably narrow avoided
crossing, the potential curves and the Landau-
Zener-Stueckelberg theory can provide a suitable
transform.

'The radial coupling in Smith's equation is
((8/BR)~go where r locates the electron with re-
spect to the nuclear center of mass. Since this
term does not always vanish in the separated-
atom limit, it is advantageous to base the trans-
form on an antisymmetric radial coupling matrix
which does vanish. We use the low-velocity limit
of the radial coupling matrix which appears in our
scattering equations. Since it depends on the
transformation parameters, these parameters and

the diabatic transform are determined simultane-
ously by iteration. 'The specific equations are giv-
en in paper II and in Ref. 40.

In summary, let (g„J be a set of electronic ei-
genfunctions of the same symmetry. 'Then a more
slowly varying set (Xof of the same symmetry can
be constructed from

Xc = eec R
H

(Al)

where Q«(R) is the orthogonal matrix which rep-
resents the net result of all the interpolating
transforms one has elected to introduce.

)

A change in notation will allow the formalism
of Sec. IV to be used with electronic functions oth
er than molecular eigenfunctions; for example,
the linear combination of eigenfunctions just des-
cribed. Assume that this function, still called
Xo, has the form given by Eq. (29). Also assume
that, as R -~, X~ becomes one of the eigenfunc-
tions go so that the 8 matrix need not be redefined.
Now in Sec. IV the assumption that X~ is an elec-
tronic eigenfunction was used only to obtain
(2M/I')SoA~ in Eq. (40), using Eq. (27). There-
fore, defining an operator h~ by

( ga
+ p'~A (2s) '~'e'~~& = (2v)'~'e'~~o(h )A

I, 2m" ] A PA&

(A2)

the use of function X~ which is an eigenfunction on-
ly as R -~ results in the replacement of (2M/I')
SoA~ in Eq. (40) by (2M/g')h~A~. The operator
h~ is readily applied to Eq. (Al) because the Azo
depend only on R.

~D. B. Bates, H. S. W. Massey, and A. L. Stewart,
Proc. R. Soc. London Ser. A 216, 437 (1953), p. 140.

2D. R. Bates and R. McCarroll, Proc. R. Soc. London
A245, 175 (1958).

3D. R. Bates, Comments At. Mol. Phys. 1, 127 (1970).
4W. R. Thorson, J. Chem. Phys. 42, 3878 (1965); 34,

1744 (1961).
5R. T. Pack and J.O. Hirschfelder, J. Chem. Phys. 49,

4009 (1968). D. W. Jepsen and J. O. Hirschfelder ibid.
34, 1323 {1960).

6A. Riera and A. Salin, J. Phys. 8 9, 2877 (1976).
~M. H. Mittleman, Phys. Rev. 188, 221 (1969); M. H.

Mittleman and H. Tai, Phys. Rev. A 8, 1880 (1973);
M. H . Mittleman, J. Chem. Phys. 62, 4450 (1975).

W. R. Thprson and J.B.Delos, Phys. Rev. A 18, 117,
135 (1978).

~In their most recent work Thorson, Delos, and their
collaborators are considering state-dependent trans-
formations: J.Rankin and W. R. Thorson, Phys. Rev.
A 18, 1990 (1978); J. B. Delos and W. R. Thorson,
J. Chem. Phys. 70, 1774 (1979};M. Kimura and W. R.
Thorson, Bull. Am. Phys. Soc. 24, abstract DC10
{1979).

~ H. Klar and V. Fano, Phys. Rev. Lett. 37, 1132
(1976); H. Klar, Phys. Rev. A 15, 1452 (1977).
G. B.Schmid, Phys. Rev. A 15, 1459 (1977). This
paper contains a discussion of accelerated frames and
a review of the translational factor problem in time-
dependent semiclassical theory.
Yu. N. Demkov, Vari ational I'rincip/es in the Theory

of Collisions, translated by N. Kemmer (Macmillan,
New York, 1963), p. 29, par. 8.

~ M. E. Riley and T. A. Green, Phys. Rev. A 4, 619
(1971).

~4D. S. F. Crothers and J. G. Hughes, Proc. R. Soc.
London A359, 345 (1968).

~5G. B.Schmidt, J. Phys. B, in press.
~8R. McCarroll, Proc. R. Soc. London A246, 547 (1961).
~7D. F. Gallaher and L. Wilets, Phys. Rev. 196, 139

(1968).
~ I. M. Cheshire, D. F. Gallaher, and A. Joanna Taylor,
J. Phys. B 3, 813 (1970).

~~R. McCarroll, R. D. Piacentini, and A. Salin, J.
Phys. B 3, 137 (1970).
D. Rapp. J.Chem. Phys. 61, 3777 (1974).

+R. Shakeshaft, J. Phys. B 8, 1114 (1975).
A. Msezane and D. F. Gallaher, J. Phys. B 6, 2334
(1973).

23See, for example, the discussion in R. Albat and
N. Gruen, J. Phys. B 9, L463 (1976).

24S. B. Schneiderman and A. Russek, Phys. Bev. 181,
252 (1969).

2 H. Levy II and W. B.Thorson, Phys. Hev. 181, 252
(1969).

2 K. Taulbjerg, J.Vaaben, and B. Fastrup, Phys. Rev.
A 12, 2325 (1975).

27A. F. Ferguson, Proc. R. Soc. London A246, 540
(1961).
D. R. Bates and R. McCarroll, Philos. Mag. Suppl. 11,
39 (1962).



MODIFIED METHOD OF PERTURBED STATIONARY STATES. I. . . .

R. D. Piacentini and A. Salin, J. Phys. B 7, 1666
(1974).

3~T. G. Winter and G. J. Hatton, Phys. Hev. A 21, 793
(1980); Bull. Am. Phys. Soc. 24, Abstract DC9; T. G.
Winter and N. F. Lane, Phys. Rev. A 17, 66 (1978).

+D. R. Bates and D. A. Williams, Proc. Phys. Soc.
London 83, 425 {1964).

32J. S. Briggs and K. Taulbjerg, J. Phys. B 8, 1909
(1975). K. Taulbjerg and J. S. Briggs, J. Phys. B 8,
1895 (1975).
J.S. Briggs and J.H. Macek, J.Phys. B 6, 982
(1973).

One has to be cautious about concluding that the two
types of translational factors are generally equivalent
at low energies on the basis of Refs. 26 and 31-33.
The 2p p-2px rotational coupling at small internuclear
separations is insensitive to the translational factors
and so is the cross section. Also see Ref. 35, Fig. 2.
J. C. Y. Chen, V. H. Pince and K. M. Watson, J.
Phys. B 6, 965 (1973).

3~T. A. Green, Proc. Phys. Soc. London 86, 1017 (1965).
~F. T. Smith, Phys. Rev. 179, 111 (1969), Eq. (43).
Also see the second of Refs. 32.
J. C. Y. Chen and K. M. Watson, Phys. Rev. 174, 152
(1968); 188, 236 (1969).

46A more complete presentation of the material pre-
sented in these two papers can be found in the unpub-
lished reports SAND 78-0235 and SAND 78-0158, T. A.
Green, Sandia Laboratories, Albuquerque, NM 87185.
The undesired coupling is sometimes called "spurious"
coupling. However, it is easy to show that at large R
the effect of this coupling is to generate the best ap-
proximation to translational factors which can be
manufactured from the available basis states.

42Compare with the mass scaling approach used in Ref.
8.
The adiabatic correction terms, etc. , are taken into

account in the low-velocity quantal approximation pre-
sented in Ref. 40.

44The necessary equations (11) are obtained by setting
the second term of D& equal to zero and expressing
this equation in terms of the scalarsR, r~, and r~
~ R. It is easy to see that conditions (11) are suffi-
cl.ent.

5A modification of Eq. (18) is possible which makes the
agreement exact. Equations (11), (15), and (17) are
retained and used to simplify Eq. {9). The relation
8&& =0 provides a linear equation for k(R) in terms of
the y(R). To first order in m/M, h(R) =-y(R), as in
Eqs. (12) and (18).

46Compare with the closely related discussion in Ref. 8.
47For information about molecular eigenfunction expan-

sions and their asymptotic forms, the author relied
heavily on Ref. 4.
E. P. Wigner, GrouP Theory (Academic, New York,
1959), Chap. 22.

4 See Ref. 12, Chap. III.
+In Ref. 40, C~ and V are included in the low-velocity

quantal approximation.
T. A. Green, following paper, Phys. Rev. A 23, 532
(1981).
T. A. Green, E. J. Shipsey, and J. C. Browne, Bull.
Am. Phys. Soc. 24, Abstract DC8 (1979).
The qualitativq concept of diabatic states was intro-
duced by Lichten. W. Lichten, Phys. Rev. 131, 229
(1963). It is a valuable aid in the identification of high-
probability reaction paths in atomic collisions,

+The quantitative definition of diabatic states has been
clarified by Smith in Ref, 37 and by Sidis: V. Sidis and
H. Lifebore-Brion, J. Phys. B 4, 1040 (1971); V. Sid-
is, M. Barat, and D. Dhuicq, ibid. 8, 474 (1975);
M. Barat, J. C. Brenot, D. Dhuicq, J. Pommier,
V. Sidis, R. E. Olson, E.J. Shipsey, and J. C.
Browne, ibid. 9, 269 (1976).


