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Statistical electron correlation coefficients for the five lowest states of the helinmlike ions
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Statistical correlation coefficients were introduced by Kutzelnigg, Del Re, and Berthier to provide overall
measures of the difference between the electron pair density and the praduct of one-electron densities in atoms and
molecules. Some properties of these coefficients are discussed, and it is shown that an angular ~elation caefficient
is experimentally accessible. Radial and angular correlation coefficients are computed from highly accurate wave
functions for the 1 'S, 2 'S, 2 'S, 2 'P, and 2 'P states of the heliumlike ions fram He through Mg' +. It is found
that positive angular correlation coefficients occur in the 2 P state of the two-electron positive ions but not in
neutral helium. Moreover, the angular correlation coefficients for the c, 'S and 2 'S states of the positively charged
two-electron ions show that a previously proposed reformulation of Hund s rule is incorrect.

I. INTRODUCTION

The term electron correlation is commonly used
in two different senses. In the conventional quan-
tum-chemistry sense electron correlation effects
are those that are not taken into account by the Har-
tree-Fock approximation. ' In the statistical sense
electron correlation is the manner in which the
electron pair density differs from the product of
the one-electron densities. ' The electron pair
density' for an n-electron system in a state char-
acterized by the wave function g(x„x„... , x„) is
defined by

g (r„r,)= fd*(x„g, . . . , z„)

x g (x„x„... , x„)do;da,dx,dh4. . .dh„,

where x, = (r, , cr,.) is a combined space-spin coor-
dinate and the one-electron density is the follow-
ing contraction of the two-electron density:

dr, (r,)=fP (r„r )dr, = fa (r„r,)dr .

The statistical correlation between the electrons
is described by the statistical pair correlation
density defined by

c(r~, r2) .= D,(r„r,) —D,(r,)D, (r,) .
The two meanings of electron correlation are not
equivalent because the antisymmetry of the Har-
tree-Fock wave function accounts for the Fermi
correlation4 between electrons of like spin. Thus
the Hartree-Fock wave function leads to a non-
vanishing pair correlation density c(r„r,) for
systems with two or more electrons of like spin. '
The terms electron correlation and pair correla-
tion density will be used in the statistical sense
throughout this paper.

It is difficult to visualize the correlation density
because it is a rather complicated function of six

variables. ' Hence it is useful to have numerical
indices which provide overall measures of the
correlation density. Such indices were introduced
by Kutzelnigg, Del Re, and Berthier' who used
concepts from probability theory and mathematical
statistics to define generalized correlation coef-
ficients v for functions g(r) of the electronic posi-
tion vectors. They' define

2n
n —l &Z,.),g(r, )g(r,))-&Z, g(r;))'

n&Q,.g'(r;)& —&),g(r;)&'

Expectation values of local one- and two-electron
operators can be expressed in terms of the one-
and two-electron densities in the following manner:

Moreover, the densities have been normalized to
unity:

D,(r„r )dr, dr, = fB,(r, )dr, = l.

Therefore the correlation coefficient r~ may be re-
written as

fc(r„r,)g(f,)g(I;)dF,df,
fD,(r,)D,(r,)g(r, )[g(r,) —g(r, )]dr, dr2

Evidently 7' vanishes for statistically uncorrelated
pair densities. Note that the denominator of the
above expression can be rewritten in a symme-
trized form so that
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fc(r„r,)g(r,)g(r, )dr, dr,
—,
' fD,(r,)D,(r,)[g'(r, ) +g2(r, ) —2g($,)g(r,)]dr,dr2

'

(2)

The radial one-electron density can be obtained by
the single integration

dr, ( )r=r,* f S(r,) d,()

II. RADIAL CORRELATION COEFFICIENTS

Radial correlation coefficients may be defined
by the requirement that the function g(r) in the
definitions (1) and (2) be spherically symmetric;
that is, g(r)=R(r) where r= ~r ~. Radial correla-
tion coefficients 7~ depend only on the radial part
of the two-electron density

D (r„r,)=r,r frr, (r„r,)dnd(), ,

D, r„r, dr, = D2 r2, r, dr2,
0 0

and the radial pair correlation density is

s(r„r,)=r,'r, fr(r r)d„SSSQ

fo" fo" c(r„r,)R(r,)R(r,)dr, dr,
~ f" f"D,(r,)D,(r,)[R(r,)+R (r,) —2R(r, )R(r2}]dr,dr,

'

The simple choice R(r) =r' yields the radial cor-
relation coeff icients

The coefficients &„& depend on the choice of the
origin. The nucleus is the natural origin for
atoms, whereas molecules generally do not have
a natural origin. The coefficients corresponding
to the specific choices 0=+1 and k= -1 were intro-
duced by Kutzelnigg and co-workers, ' and have
been studied for the ground states of the berylli-
umlike ions by Banyard and Mashat. '

III. ANGULAR CORRELATION COEFFICIENTS IN
ATOMS

Kutzelnigg and his colleagues' used the function
g(r) = r to define an angular correlation coefficient
for atoms. Choosing the nucleus as the origin,
and interpreting the product of vectors in (1) and

(2) as a scalar product they obtained'

2&5; gr( ' rg)
(~ —1)&g(r', &

2&El yr(rg cose(g&

(n -1)&P,r;)

case k = 1 leads to the particularly simple angular
correlation coefficient

r;,,=
( () Q(r; r,/) (r, /r, ))

t&j

)(g sssr,.~) . .

These angular correlation coefficients are bounded
in absolute value by unity:

-1&~;&+1,
-1«-p ~ + 1 .

Perfect positive correlation (r =+ 1) means that
the position vectors of a pair of electrons are ex-
pected to coincide whereas perfect negative cor-
relation (v = -1) implies that electron pairs are
expected to be at diametrical positions with re-
spect to the nucleus. If the angular correlation
coefficient is zero then the electrons are either
independent [c(r„r,) = 0] or merely uncorrelated
by virtue of orthogonality of their position vectors.

It is of some interest to note that the ground-
state angular correlation coefficient ~-, is related
to the oscillator strength distribution by virtue of
the sum rule'0

where 8,.&
is the angle subtended at the nucleus by

the electronic position vectors r, and r&. A natur-
al generalization is provided by the choice of the
function g(r) =r/r~. The specific case 0=0 leads
to the angular coefficient given above, and the

where f» is the spherically averaged dipole oscil-
lator strength for. the transition from the ground
state to the kth state, E» is the corresponding
transition energy, and the expectation value is
with respect to the ground state. Thus
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S(-j}= l (g r ])[1«(a —1)ri ] . isoelectronic series is of the form

Since (5,r', }can be obtained from the diamagnetic
susceptibility and S(-1) from the oscillator
strength distribution, the angular correlation co-
efficient ~; for the ground state can, in principle,
be obtained from experimental measurements ex-
clusively.

For atoms in S states, D,(r„r,) is invariant"
under simultaneous and equal rotations of r, and r,.
Therefore one may write

2( 1) 2) Q 2(rl) 2) E( 12)
Jno

where Pi(x) is a Legendre polynomial. The one-
electron density for an S-state atom is spherically
symmetric,

D,(r,)=n, (r)=4«f «,'D,'(r„r)ar, ,
0

provided that g(r) is a homogeneous function as is
the case with all the g(r) considered in this work.
Note that positive powers of the nuclear charge
Z do not appear in the expansion unlike the case
of the Z ' expansion of the energy. Moreover the
symmetry properties of some states may ensure
that the constant term a, , vanishes. For ex-
ample, a„„az„and a;i p all vanish for the
ground state of the two-electron atoms. The per-
turbation-theory results of Midtdal and Aashamar'3
may be used to show that for the ground state of
the heliumlike ions,

v'-= —0.126205 6Z '+0.023 816 6Z~

+ 0.016 942 OZ '+ O(Z ') .

V. LOW-LYING STATES OF THE HELIUMLIKE IONS

and, as Bingel' has pointed out, the angular cor-
relation coefficient &~ depends only on the I.= 0 and
1 components of the Legendre exp'&sion of the
pair density. In fact,

p~ pw
3 ip fp rpr2D2(r»rl)dr1drl

f f rlr2( 1 + 2)D2(rl r2)drldr,
0 0

Similarly the angular coefficient w&i„ for 8 states of
an atom depends only on the I-= 1 component of the
pair density and is given by

16'
2;/„=

2 r,r,D2(r„r2)dr, dr2.
0 0

IV. Z i EXPANSIONS FOR ISOELECTRONIC SERIES

The Z ' perturbation-theory expansion of these
correlation coefficients for a given state in an

The radial correlation coefficients 7„and the
angular correlation coefficients ~; and &;i„were
computed for the 1'8, 2'S, 2'S, 2'P, and 2'P
states of the heliumlike ions. A systematic col-
lection of highly accurate wave functions'~ that de-
pend explicitly on the interelectronic coordinate
was used for the calculations. These wave func-
tions'4 are of the form

g(x„x,) = (2L+ 1)'/2(4)/) '2 '/'

~ [n((l, )P(o.)+ P (o,)(2(o.)]

&& Q c,(1+P„)r ilPi(cose, )

X exp( c(2rl —p-&1 2
—']«})r12},

where L =0 and 1 for 8 and P states, respectively,
the upper and lower signs correspond to the sing-

TABLE I. 7'„ for the five lowest states of the heliumlike ions.

11S 2 $ 2'S 2 P

1
2
3

5
6
7
8
9

10
11
12

-0.293 936
-0.111688
-0.068 652
-0.049 609
-0.038 843
-0.031 926
-0.027 102
-0.023 546
-0.020 813
-0.018648
-0.016 895
-0.015446

0

-0.660 198
-0.654 737
-0.650 872
-0.648 334
-0.646 558
-0.645 259
-0.644 268
-0.643 479
-0.642 854
-0.642 332
-0.641 900
-0.636 995

-0.678 868
-0.648 655
-0.629 899
-0.618 084,
-0.609 554
-0.603 404
-0.598 556
-0.594 751
-0.591711
-0.589 320
-0.587 122
-0.563 005

-0.609 023
-0.577 046
-0.561 626
-0.552 457
-0.546 292
-0.541 921
-0.538 645
-0.536 099
-0.534 089
-0.532 388
-0.531012
-0.515789

-0.640 228
-0.605 839
-0.585 669
-0.573 046
-0.564 181
-0.557 691
-0.552 713
-0.548 849
-0.545 661
-0.543 044
-0.540 820
-0.515 789
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TABLE II. 7', for the five lowest states of the heliumlike ions.

1'$ 2 $ 1$ 2 p 2 p

1
2
3

5

7
8
9

10
11
12

-0.057 692
-0.054 242
-0.038 659
-0.029 757
-0.024 137
-0.020 287
-0.017491
-0.015 369
-0.013704
-0.012 364
-0.011262
-0.010341

0

-0.005 127
-0.004 837
-0.004 137
-0.003 550
-0.003 089
-0.002 727
-0.002 438
-0.002 199
—0.002 006
-0.001 840
-0.001 703

0

-0.003 853
-0.004 991
-0.005 058
-0.004 728
-0.004 367
-0.004 032
-0.003 697
-0.003 441
-0.003 199
-0.002 991
-0.002 775

0

-0.008 299
-0.016 709
-0.021 257
-0.023 943
-0.025 694
-0.026 918
-0.027 819
-0.028 509
-0.029 057
-0.029 493
-0.029 859
-0.033 632

-0.002 134
0.001 116
0.005 491
0.009 072
0.012 035
0.014421
0.016 353
0.017 956
0.019280
0.020 418
0.021 379
0.033 632

let and triplet states, respectively, Py2 is a
permutation operator that interchanges r, and r„
and o.(c) and P(o) are the usual one-electron spin
functions. These wave functions are extremely
accurate and their energy errors range from
2 x10 hartrees for the 2'S state of He to 5 x10'
hartrees for the 2'S state of Ne'. They also
predict very accurate values for a wide variety of
expectation values, "cusp ratios, "and zero-mo-
mentum energies. " The ground-state wave func-
tions have already been used in several applica-
tions. "

The correlation coefficients are listed in Tables
I-III and shown graphically in Figs. 1-3. The
values for the infinite nuclear-charge limit were
computed exactly and correspond to the constant
terms in the Z expansions discussed in Sec. IV.
In order to join the ground-state He(Z=2) and
H (Z= 1) values of rz in Fig. 2, ~-„values at inter-
mediate nonphysical values of Z were computed
from ratios of [10/10] Pade approximants" to the

20th order Z ' perturbation-theory expansions"
for (r, r,) and (r,'). These Pade approximant
values are accurate to six and three significant
figures for He and H, respectively. The radial
correlation coefficients in all the excited states
and the angular correlation coefficients in the P
states are nonzero even in the infinite nuclear-
charge limit because of the symmetry properties
of the excited-state hydrogenic wave functions. In
the ground state the hydrogenic wave function
leads to a statistically uncorrelated pair density
and hence all the 1'S correlation coefficients van-
ish in the infinite nuclear-charge limit.

The figures clearly show that the ground-state
radial correlation between the electrons increases
in importance as Z decreases. Moreover the ratio
r„/~&„ increases from 1.4 in Mg" (Z= 12) to 2.8 in
H (Z = 1) confirming the well-known fact'8 that ra-
dial correlation increases in importance relative
to angular correlation as the nuclear charge is
decreased. The ground-state angular correlation

TABLE III. ~p~„ for the five lowest states of the heliumlike ions.

1'$ 2 $ $ 2 p 2fp

1
2

4
5
6
7
8
9

10
11
12

-0.105 148
-0.064 203
-0.043 632
—0.032 941
-0.026 437
-0.022 072
-0.018 942
-0.016 588
-0.014 754
-0.013285
-0.012 081
-0.011077

0

-0.015839
-0.012 645-0.010 154
-0.008 422
-0.007 177
-0.006 246
-0.005 526
-0.004 953
-0.004 487
—G.004 100
-0.003 775

0

-0.014 659
-0.014 637
-0.013136
-0.011598
-0.010295
-0.009 234
-0.008 334
-0.007 604
—0.006 981
-O.OG6 450
-0.005 981

0

-0.036 714
-0.054 612
-0.062 103
-0.066 054
-0.068 479
—0.070 098
-0.071 254
-0.072 120
-0.072 792
-0.073 329

.-0.073 766
-0.078 037

-0.004 769
0.010370
0.023 036
0.031 876
G.038498
0.043 512
0.047423
0.050 549
0.053 109
0.055 230
0.057 025
0.078 037
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FIG. 1. Radial correlation coeff ic ients.
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FIG. 2. Angular correlation coefficients.

coefficient 7'~ appears to have a minimum value
of -0.06S 62 around Z ' = 0.815 (Z = 1.227). Such
a minimum must exist because the two-electron
atom becomes unbound for low enough nuclear
charge»' and hence the angular correlation coef-
ficients must vanish for low enough Z.

The differences between singlet and triplet states
arising from the same configuration have recently
been discussed by very many authors' in connec-
tion with the interpretation of Hund's rule. The
presence of the Fermi hole in the triplet leads to
differences in the correlation coefficients for the
singlet and triplet even in the infinite-Z limit.
This is clearly shown by &„ for the S states, and
by the angular correlation coefficients for the P

-0.125
00 02 OA

Z'
0$ 09 1.0

FIG. 3. Angular correlation coefficients.

states.
Kutzelnigg and his colleagues' proposed a re-

statement of Hund's rule in the form: For a
given orbital configuration, the spin multiplicity
with the lowest energy will exhibit the most nega-
tive angular correlation effects. Banyard and El-
lis" subsequently confirmed this for the 2'P and
2'P states of the helium atom. Figures 2 and 3
show that the reformulation is indeed valid for the
2'P and 2'P states of the entire two-electron iso-
electronic series, and for the 2'S and 2'S states
of the neutral helium atom. However, the figures
make it equally clear that the restatement is not
valid for the 2'S and 2'S states of the two-electron
isoelectronic series for Z& 2.

The tables and figures show that positive values
are found for the 2'P angular correlation coeffi-
cients for Z& 2. This confirms the general predic-
tion by Kutzelnigg and co-workers' that positive
correlation coefficients may be found in excited
states. However, their specific predictions' that
positive && values would be found for the 2'P and
2'S states of neutral He are seen to be incorrect.
The present results for the 2'P state of He support
the calculations of Banyard and Ellis" who showed
that Hartree-Fock wave functions, and more gen-
erally wave functions based on (s,p) configurations
only, predict positive 7; values, but more accurate
wave functions which allow for (s,p)/(d, p) inter-
actions predict negative 7'; values for the 2'P state
of neutral He. This is another instance where the
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atoms at the low nuclear-charge end of an iso-
electronic sequence behave differently from the
rest." The positive correlation coefficients in .

the 2'P state indicate that the ele'ctrons tend to
stay on the same side of the nucleus. This is con-
sistent with the fact that screening of the nucleus
by an electron is more pronounced in the singlet
than in the triplet" which has negative correlation
coefficients. Perhaps a detailed examination of the

pair correlation densities in these excited states
of helium would enable one to find a consistent
reformulation of Hund's rules.
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