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Pade approximants and perturbation theory for screened Coulomb potentials
I
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By forming the Fade approximants to the energy perturbation series for screened Coulomb potentials, we study the

cases of an electron in the Yukawa potential and a representative screened potential of the atom in the form of the

Yukawa potential. It is found that the [6,6] and [6,7] Pade approximants to the energy series can account for the

energy eigenvalues of various energy eigenstates to a very high accuracy.

I. INTRODUCTION

The screened Coulomb potential of the form'

g CO

v(r) = —g v,(~r)', (1)

where X is the screening parameter, is of great
importance in atomic, plasma, and solid-state
physics. In particular, the problem of an elec-
tron in the Yukawa potential has been studied
before by many authors' ', employing pertur-
bation theory", the variational method, "and
actual numerical integration~' of the Schrodinger
equation. The results of Rogers et al.' obtained
by numerical techniques are of high accuracy
over a wide range of screening parameter.

McEnnan, Kissel, and Pratt' have developed
an analytic perturbation theory for screened
Coulomb potentials and obtained the bound-state
energies E in closed form correct to the third
order of screening parameter X. By employing
the Hellman-Feynman theorem and the hyper-
virial theorems'", we" have recently shown
that one can express the bound-state energies
E of screened Coulomb potentials in power series
of the screening parameter correct to any order
of X as orie vanishes. However, Mehta and Patil"
have pointed out that the energy levels of some
screened Coulomb potentials have an asymptotic
series in X and one cannot use the perturbation
series expansions to obtain the energy levels to
an arbitrary accuracy.

In this paper, we would like to show that the
Pade approximant method" can be used to cal-
culate the bound-state energies of screened Cou-
lomb potentials to a very high accuracy, in the case

I

II. THE PADE APPROXIMANTS AND PERTURBATION
THEORY FOR SCREENED COULOMB

POTENTIALS

The Hamiltonian for the screened Coulomb po-
tential (1) can be written as

1 d' 1 d l(l+1)H= —,——+ +V(r),
2 dy2 y' dy' 2f' (2)

where l is the orbital angular momentum quantum
number. Here we use atomic units 8 = e = m, = 1,
so that distanceh are measured in the Bohr radius
a„and energies in units of 2 R Y = 27.212 eV. By
employing the Hellman-Feynman theorem and
the hypervirial theorems'", we have obtained,
in a previous paper, the following hypervirial
relations"

of the Yukawa potentials. We show by the actual
calculations that the t6, 6 1 and [6, 7] Pade approxi-
mants to the energy series of the Yukawa potential
can be used to obtain the results of Rogers et al.
obtained from the numerical integration of the
Schrodinger equation. In Sec. II we summarize
the results of the perturbation theory for screened
Coulomb potentials given in a previous paper, "
and outline the Pade approximant calculation
for energy perturbation series. In Sec. III we
calculate the energy eigenvalues of an electron
in the Yukawa potential as a function of screening
parameter for various eigenstates and compare
them with those obtained by Rogers et al.' In
Sec. IV we calculate the K- and I.-shell binding
energies of atoms, assuming that the screened
potential of the atom is of the model Yukawa po-
tential. Finally, we present the conclusions in
Sec. V.

(E+ZV, 7 )(rt) = -I/2 3 Z(rt ')+ . + e'j(j —1) (rt s) + . ZV Xs(rs'~'), j ~ —12j+1 jl l+1 t. . s "2j+k+1
j+1 j+1 s j+1

where Z can be the charge of the nucleus. Let us assume that the energy E and the expectation values
(rt) can be expanded in power series of the screening parameter lt as

E — E (k)yk
tt n (4)
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(5)

where the energy of the unperturbed nth state E &0& = —Z'/2n' is known, and C &,"'= 5,~ from the normalization
condition. From the Hellman-Feynman theorem, we find immediately"

yE(k) Z ~y C(~m)
fl m (6)

By equating the coefficients of various powers of && on both sides of (3), we can calculate, with the aid of
(4)-(6), the energy coefficients E+& in a hierarchical manner. . For example, we get, "from the coeffi-.
cients of X' and X',

C( '= ~ 2&+1ZC| '
~

—jl&l+ 1& ' 'Q — ))
2

g2 ~+ y j~l ( j+ j + f»2

C~)=0,j

E& &= g2/2nm E&»= gV E&» = gV C&» E&» gV C&o&
tl 1& n 2 1 & n 3 2 ~

From the coefficients of &&' in (3), we obtain~'

2

(8)

E'»'= —4Z(2V2C, ' '+ SV,C2~'+ 4V4C, ' ').

Next, we find"

(3 ) n 2j+ 1
~Z. j+1

n2C"'+ (- '. '+ —''(j-1) C"'+ ZV Cu'+ ZV C'0& + 2—(E~&C+&+E&'„&C&0&),
~al

j - 1, (»)-

E"„'=—~g(2V, C i'+SV, C' '+4V C" + 5V,C'4'),

(12)
and so on. Thus, we can calculate the energy
coefficient E'"„' from the knowledge of C'& ' and
E'„' with m ~ k-2 in a hierarchical manner.

Though the energy series (4) appears divergent,
or, at best, asymptotic for small X,"we can
still calculate the bound-state energy E„to a very

high accuracy by forming the Pade approximants
to the energy series"'4. The [N, M+1] Pade
approximant to the energy series (4) is given by

E[N M 1'= E' ' &&E~'+ j= + 1+~qZ+ ~ q2+ ~ ~ ~ + & q

(0 ) + yE (1 ) + ) 2E (2 )+ ~ ~ ~ + ) hf +N+&E Qf +N+1 )

(13)

TABLE I. Energy eigenvalues as a function of screening parameter for the 1& state in

atomic units. Values obtained in Ref. 6 are enclosed in angle brackets.

Screening
parameter

E[6, 6]
Our results

E[6,7] E12
Harris {Ref. 2)

{variational)

Rogers et al.
{Ref. 5)

{numeric al)

1,15
1.10
1.05
1.00
0.90
0.80
0.50
0.25
0.20
0.10

-0.000 54
-0.002 35
-0.005 60
—0.01032
-0.024 33
—0.044 71
-0.14812
-0,290 92
-0.326 81
-0.407 06

—0.000 41
-0.002 25
-0.005 53
-0.010 27
-0.024 31
-0.044 70
-0.148 12
-0.290 92
-0.326 81
-0.407 06

-12387.5
-7 203.91
-4 083.73
-2 250.89

-621.038
-146.907

-0.601 44
-0.291 00
—0.326 81
-0.407 06

(-o.ooo 41)
-0.002 12
-0.005 46
-0.010 23
-0.024 30
-0.044 70
-0.148 12
—. 0.290 92
(-O.326 81)
(-o 407 o6)

-0.01029

-0.148 1
-0.290 9
-0.3268
-0.407 1
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TABLE II. Energy eigenvalues as a function of screening parameter for the 2g and 2p states
in atomic units. Values obtained in Ref. 2 are enclosed in angle brackets.

Screening
parameter

E[6, 6]
Our results

E[6,7] E12

Lam and Varshni Rogers et al.
(Ref. 6) (Ref. 5)

(variational) (numer ical)

0.30
0.25

0.20

0.10

0.05

2g -0.000 17
2s -0.003 41
2g -0.012 11
2P -0.004 18
2g -0.049 93
2P -0.046 53
2g -0.081 77
2P -0.080 74

-0.000 05
-0.003 39
-0.012 11
-0.004 04
-0.049 93
-0.046 53
-0.081 77
-0.080 74

-522.098
-56.026 1
-3.627 22
-2.591 10
-0.050 61
-0.047 02
-0.081 77
—0.080 74

-0.000 08
-0.003 36
-0.012 08
(-o.oo2 91)
-0.049 93

(—0.048 19)
-0.081 77

-0.003 39
-0.012 ll
-0.004 10
-0.049 93
-0.046 54
-0.081 77
-0.080 74

where the coefficients qy g2 QN and Py P2,
~ ~ . ,p can be found from a knowledge of E'2',
E"', ~ ~ ~,E~'""'. Ne confine ourselves to the
calculations of the Pade approximants E[6,6]
ahd E[6,7] in this paper. The energy series (4)
for the Yukawa potentials may be a Stieltjes ser-
ies, though it is difficult to prove. If it is a Stiel-
tjes series, the [6, 6] and [6, 7] Pads approxi-
mants then provide the upper and lower bounds"
to the energy series. To test the applicability
of the Pade approximant method on the pertur-
bation theory for screened Coulomb potentials,
we calculate the energy eigenvalues of an electron
in the Yukawa potential, and the K- and L-shell
binding energies of atoms in the next two sections.

III. ENERGY EIGENVALUES OF AN ELECTRON
IN THE YUKAWA POTENTIAL

Let us calculate the energy eigenvalues of an
electron in the Yukawa potential

(14)
V(r) = ——e

y
where X is the screening parameter. This pro-

blem has been studied before by many authors. ' '
Substituting (14) into the hierarchical relations
(7)-(12) and so on, we can compute the energy
coeffeicients E'~' to arbitrary orders of X. In
turn, we can calculate the [6, 6] and [6, 7] Pade
approximants to the energy series (4). The re-
sults of the present calculation are to be com-
pared with those of the variational method" and
the numerical integration' of the Schrodinger
equation;

The calculated energy values of the [6,6] and

[6,7] Pade approximants to the energy series
(4) for the Yukawa potential (14) are shown in
Tables I-IV. %e list also in the tables the energy
values E12 of the perturbation series (4) correct
to the twelfth order of )( for reference. Our cal-
culated values of the bound-state energies are
compared with those of Rogers et a/. ,

' Harris, '
and Lam and Varshni'. The results of E[6,6]
and E[6,7] are almost in total agreement with
those of Rogers et al.' from the numerical in-
tegration of the Schrodinger equation. It is evi-

TABLE III. Energy eigenvalues as a function of screening parameter for the 38, 3p, and
3d states in atomic units. Values obtained in Ref. 2 are enclosed in angle brackets.

Screening
parameter

E[6,6]
Our results

E[6,7] E12

Lam and Varshni Rogers et al.
(Ref. 6) (Ref. 5)

(var iational) (numerical)

0,12

0.10

0.08

0.05

0.025

3g -0.000 74 -0.000 73
3g -0.003 21 -0.003 21
3P -0.001 53 -0.001 58
3g -0.007 78 -0.007 78
3P -0.006 35 -0.006 33
3d -0.003 25 -0,003 24
3g -0.01935 -0.01935
3p -0.018 56 -0.018 56

-0.016 92 -0.016 92
3g -0.034 33 -0.034 33
3p -0.034 08 -0.034 08

-0.033 57 -0.033 57

-26.973 3
-2.875 95
-2.479 27
-0.19134
-0.164 59
-0.106 07
-0.019 89
-0.019 02
—0.017 22
-0.034 33
-0.034 08
-0.033 57

-0.000 72
-0.003 20
(-o.oo187)
-0.007 77
(-o.oo648)
(-0.002 96)
-0.01935

-0.034 33

-0.003 21
-0.001 59

-0,01935
-0.018 56
-0.01692
-0.034 33
-0.034 08
-0.033 57
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TABLE IV. Energy eigenvalues as a function of screening parameter for the 4s, 4p, 4d,
and 4f states in atomic units.

Screening
parameter

E[6,6]
Our results

E[6,7]

Lam and Varshni Rogers et al.
(Ref. 6) {Ref. 5)

(variational) (numerical)

0.08

0.06

0.05

0.025

4s

4s
l4&

-0.000 05
-0.001 24
-0.000 vl
-0.003 09
-0.002 60
-0.001 57
-0.012 50
-0.012 29
-0.01187
—p.pll 22

-0.000 01
—, 0.001 24
-0.000 75
-0.003 09
-0.002 60
-0.001 58
-0.012 50
-0.012 29
-0.01187
-0.01122

-79.751 3
-2.337 15
-2.146 63
-0.250 21
-0.229 58
-0,18619
-0.012 55
-0.012 34
-0.01190
-0.01122

-0.0
-0.001 24

-0.003 09

—0.012 50

-0.003 09
-0.002 60
-0.001 58
-0.012 51
-0.012 30
-0.01187
-0.01122

dent from Tables I-IV that, for small X, both
the [6,6] and [6, 7] Pade approximants yield iden-
tical results, and for X near X„ the calculated
.values of Rogers et al.' fall between the two bounds
provided by E[6,6] and E[6,7]. Thus, we can con-
clude that the [6,6] and [6, 7] Pade approximants
to the energy series (4) can be employed to deter-
mine the energy eigenvalues of an electron in
the Yukawa potential.

IV. THE E- AND L-SHELL BINDING ENERGIES
OF ATOMS

As representative example of screened atomic
potentials, we consider the Yukawa potential of
the form

V(r) = --e ""z- (15)

where the screening parameter X is given by

z= x z'"
0 (16)

corresponding to the Z dependence of the recip-
rocal of the Thomas-Fermi radius of the atom
We note that the model potential (15) for screened
atomic potentials used here is not entirely real-
istic, and other physical effects such as rela-
tivistic corrections are known to enter. Mehta
and Patil"' have recently evaluated the energy
levels of atoms for the screened atomic poten-
tial

V(r) = --+ X
Z (Z —1)
r 1++ ' (17)

using twice-subtracted dispersion relations. They
have claimed that very good fits of experimental
values" can be obtained with a value of ),= 0.98.

Substituting (15) and (16) into the hierarchial

TABLE V. Calculated K-shell binding energies E) in keV for some values of Z with Ap

= 0.98.

E[6, 6]
Our results

E[6,7] E12
Ees

(Ref. 12)
Eexge

(Ref. 16)

4

14
19
24
29
34
39

49
54
59
64
69
74
79
84

-8.9032(-2)
—6.7768 (-1)
-1.8703
-3.6884
-6.1429
-9.2404
-1.2986 (1)
-1.7382 (1)
-2.2432 (1)
-2.8137(1)
-3.4500 (1)
-4.1523(1)
-4.9205(1)
-5.7549(1)
-6.6555(l)
-7.6224 (1)
-8.6557 (1)

-8.9032 (-2)
-6.7ve8(-1)
-1.8703
-3.6884
-6.1429
—9.2404
-1.2986(1)
-1.7382 (1)
-2.2432 (1)
-2.8137(1)
-3.4500 (1)
-4.1523(1)
-4.9205 (1)
-5,7549(1)
-6.6555(1)
-7.6224(1)
-8.655V(1)

-9.7837(-2)
6.7774 (-1)

-1.8703
-3.6884
-6.1429
-9.2404
-1.2986 (1)
-1.7382 (l)
-2.2432(l)
-2.8137(1)
-3.4500 (1)
-4.l523(l)
-4.9205 (1)
-5.7549 (1)
-6.6555 (1)
-v.6224(1)
-8.6557 (1)

-1.89
-3.71
-6.16
-9.26
-1.30(1)
-1.74(l)
-2.25(1)
-2.82 (1)
-3.45(1)
-4.15(1)
-4.92 (1)
-5.76(1)
-6.66(1)
-V.63(l)
-8.66(1)

-1.11(-1)
-6.85(-1)
-1.84
-3,61
-5.99
—8.98
-1.27(1)
-1.70(l)
-2.21(1)
-2.79{1)
-3.46(1)
-4.20(1)
-5.02(1)
-5.94(1)
-6.95{1)
-8.07(1)
-9.31{1)
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TABLE VI. Calculated L-shell binding energies E2O in keV for some values of Z with ) 0

= 0.98.

Our results
F. [6,7]

EdIS
(Ref. 12)

Eexpt
(Ref. 16)

9
14
19
24
29
34
39
44
49
54
59
64
69
74
79
84

-1.4917(-2)
-1.1066(-1)
-3.1513(-1)
-6.4100(-1)
-1.0960
-1.6855
-2.4134
-3.2827
-4.2958
-5.4546
-6.7608
-8.2158
-9.8207
-1.1568
-1.3485 (1)
-1.5545(1)

-1.4820 (-2)
-1.1065(-1)
-3.1513(-1)
-6.4100(-1)
-1.0960
-1.6855
-2.4134
-3.2827
-4.2958
-5.4546
-6.7608
-8.2158
-9.8207
-1.1568(1)
-1.3485(l)
-1.5545 (1)

-3.6792(+1)
-2.4806
-6.6738(-1)
-7.2241 {-1)
-1.1208
—1.6946
-2.4172
-3.2845
-4.2966
-5.4551
-6.7610
-8.2159
-9.8208
-1.1577 (1)
-1.3485 (1)
-1.5545 (1)

-9.17(-2)
8.42 (-1)

-7.24(-1)
-1.24
-1.89
-2.70
-3.64
-4.73
-5.97
-7.35
-8.89
-1.06(1)
-1.24(1)
-1.44{1)
-1.65(1)

-3.1(-2)
-1.49(-1)
-3.77(-1)
-6.95(—1)
-1,10
-1.65
-2.37
-3022
-4.24
-5.45
-6.83
-8.38
-1.01(1)
-1.21{1)
-1.43(1)
-1.69(1)

relations (7)-(12) and so on, we can again cal-
culate the energy coefficients E'~' to arbitrary
orders of X, and evaluate the [6,6].and [6,7] Pade
approximants to the energy series E„,. From
the example studied in Sec. III, we can infer that
the E[6,6] and E[6,7] Pade approximants to (4)
will yield energy eigenvalues to a very high ac-
curact. The calculated energy values of E[6, 6]
and E[6,7] Pade approximants for the K- and
L-shell electrons with X, = 0.98 are shown in
Tables V-VII. The energy values E12 of the
energy series (4) up to the twelfth order in X are
also listed for reference. Our calculated energy
values are compared with those of Mehta and Pa-

and the experiments. " As can be seen from
Tables V-VII, the nonperturbative method" tends
to overestimate the energy values of the I.-shell
electrons. It appears that the agreement between
the prediction of the [6, 6) and [6,7] Pade approxi-
mants to (4) and the experimental values is very
satisfactory.

V. CONCLUSIONS

By employing the Hellman-Feynman theorem
and the hypervirial theorems'" to screened Cou-
lomb potentials, we have derived, in a previous
paper, " the hypervirial relations (3). From (3),
we can calculate the energy coefficients E'"' to
arbitrary orders of X in a hierarchical manner.
The energy series (4) so obtained appears diver-
gent in X. It is not easy to prove that the energy
series (4) is a Stieltjes series in the ease of the
Yukawa potentials. But, if the energy series (4)
were a Stieltjes series, it is well known that the
[N, N] and [N, N+ 1] Pade approximants to the

TABLE VII. Calculated L-shell binding energies E2~
in keV for some values of Z with Xo= 0.98. -

Z E [6, 6J

9 + 1.0428 (-3)
14 -7.3315(-2)
19 -2.6145(-1)
24 -5.7247 (-1)
29 -1.0136
34 -1.5899
39 -2.3052
44 -3.1624
49 -4.1637
54 -5.3112
59 -6.6063
64 -8.0506
69 -9.6451
74 -1.1391(1)
79 -1.3289(1)
84 -1.5340(1)

Our" results
K[6,7j

+ 2.9957(-3)
-7.3230(-2)
-2.6144(-1)
-5.7247 (-1)
-1,0136
-1.5899
-2.3052
-3.1624
-4.1637
-5.3112
-6.6063
-8.0506
-9.6451
-1.1391(1)
-1.3289(1)
-1.5340 (1)

&expt
(Ref. 16)

-2.6322 (1)
-1.7680
-5.1315(-1)
-6.3015(-1)
-1.0313
-1.5964
-2.3079
-3.1636
-4.1643
—5.3115
-6.6065
-8.0507
-9.6451
-1.1391(1)
-1.3289{1)
-1.5340(1)

-8.6(-3)
-9.92 (-2)
—2.96(-l)
-5,84(-1)
-9.51(-1)
-1.48
-2.16
-2.99
-3.94
-5.10
-5.96
-7.93
-9.62
-1.15(1)
-1.37(1)
-1.62 (1)

energy E(&) would provide the upper and lower
bounds to the energy E(X).

In this paper, we have calculated the [6,6] and

[6,7] Pade approximants to the energy series
for the cases of an electron in the Yukawa po-
tential and a representative screened potential
of the atom in the form of the Yukawa potential.
The results of our calculated values E[6,6] and
E[6,7] for an electron in the Yukawa potential
are almost in total agreement with those of Rogers
et al.' obtained from the numerical integration
of the Schrodinger equation. Also, the prediction
of the model Yukawa potential for the K- and L-
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shell binding energies of atoms is in good agree-
ment with, the experimental values. " We can
therefore conclude that the [6,6] and [6, vj Pade
approximants to the energy series (4} can be used
to determine the energy eigenvalues of the Yukawa
potentials to a very high accuracy. Compared
with otht. r methods of calculation, i ~ the present
scheme of forming the Pade approximants to the
energy series of screened Coulomb potentials
appears to be quite simple and straightforward,

and therefore it should play an important role
in the description of screened Coulomb potentials.
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