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Estimation of radii of convergence of Rayleigh-Schrodinger perturbation expansions:
Application to the 1/Z expansions of two- through ten-electron atomic isoelectronic sequences

Jereiniah N. Silverrnan*

(Received 22 August 1980)

An almost a priori method based on a simple theoretical model is developed for obtaining good estimates of the
radius of convergence of Rayleigh-Schrodinger (RS) perturbation expansions. The procedure is applicable to the RS
expansions of all stationary states of any system described by a Hamiltonian linear in a real perturbing parameter,
e.g., the 1/Z expansions of N-electron atomic isoelectronic sequences. The only system- and state-dependent
information required is the norm of the first-order eigenfunction it/, ~[. In those cases where itt, ~~

is inaccessible or
unavailable, it is shown how adequate perturbational-variational (PV) approximations can be simply obtained. The
procedure has been applied to the 1/Z expansions of the ground states and several low-lying states of the 2 &N & 10
isoelectronic sequences. Where comparison is possible, the estimates are in close agreement with numerically
obtained accurate convergence data and are greatly improved over the weak Kato-type bounds. For example, for the
1s' 'S state of the helium isoelectronic sequence, convergence is found for Z & 1, hence for the first time predicting
convergence for H . Further, in harmony with physical expectations, our findings indicate that the efFect of
increasing N on radii of convergence is drastic; thus, for the ground states of the 3 &N & 10 isoelectronic sequences,
the predicted region of convergence can be represented approximately by Z & 3N —7. The influence of screening the
nucleus in compensating for the effect of increasing N is investigated and it is shown how the radius of convergence
can be maximized by optimal screening. A PV method is introduced for obtaining estimates of the optimal screening
parameter for arbitrary N and states. It is predicted that for the ground states, the optimally screened expansions
will converge for Z&3 for the beryllium isoelectronic sequence, for Z &N for the boron through oxygen
isoelectronic sequences, and for Z &N + 1 for the fluorine and neon isoelectronic sequences, thus extending the
application of such expansions to at least N = 10. Optimal screening is quantitatively tested for the 1/Z eigenvalue
expansion of the 1s'2s' 'S state of the beryllium isoelectronic sequence an/ the results are found to be in accord with
predictions.

I. INTRODUCTION

Since Rayleigh-Schrodinger (RS) perturbation
theory was first introduced' in quantum mechanics,
it has had a long and distinguished history as a
powerful and versatile approximation method. '
For a number of reasons, however, the central
issue of the convergence properties of the RS per-
turbation expansions has been customarily ignored
in most applications: Thus, the foundations of RS
convergence theory, although laid' early, were
not developed" and extended to quantum-mech-
anical problems4 ' until fairly recently. Moreover,
in practice, this general convergence theory is
cumbersome to apply and has yielded disappoint-
ingly poor estimates of the radii of convergence
of selected RS perturbation expansions. " ' ""
Finally, the earlier applications of BS perturba-
tion theory seldom went beyond first to, at most,
second order in the eigenvalue because of the
computational difficulties of evaluating the infinite
summations which appear in the conventional
formulation of the higher-order terms; for such
low-order expansions, the question of perturba-
tional convergence was hardly acute.

The situation, however, was radically changed
by the introduction of the Hylleraas" first-order

variational principle and its subsequent gener-
alization in the Hylleraas-Scherr-Knight" (HSK)
variational-perturbational procedure which opened
the door to high-order RS perturbation expansions
for both ground and excited" states. As a result,
in recent years there has been an enormous growth
of interest" " in the RS 1/Z hydrogenic expan-
sions" (where Z is the nuclear charge) of the non-
relativistic electronic states of N-electron atomic
isoelectronic sequences. Such 1/Z expansions,
initially obtained to low order, '0'"~' have now
been computed via HSK to quite high order for the
ground"' and several excited' '" states of the N
=2 sequence, and by a modification"'" of HSK, to
moderately high order for several states of the N
=2 (Ref. 24), 2 (Ref. 25), and 4 (Ref.. 26) sequences.
As yet, however, the HSK procedure seems to
have found little or no application to atomic iso-
electronic sequences with N ~ 5. Other, more
general methods for obtaining the 1/Z expansions
of multielectron sequences, are also available"
which depend upon expressing the first-order
eigenfunction of the N &2 sequence in question in
terms of appropriate linear combinations of first-
order eigenfunctions. of the N= 2 sequence. Low-
order (second or third order in the eigenvalue)
1/Z expansions have been obtained in this manner
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for various states of the N= 3 [Refs. 27(c}, 27(d},
and 28] and 4 (Ref. 29) sequences and of the 3 & N
«10 sequences'; there are indications" that the
extension of this procedure to higher order is
feasible. The 1/Z expansions of the Hartree-
Fock (HF) approximation can also be calcula-
ted," and low-order expansions have been ob-

ed32 33,14(a),14(&},16 29,30(b},30(c) for the 2 «N «10
sequences, thus enabling the correlation energy
to be expressed in this form.

In view of the utility of the 1/Z hydrogenic ex-
pansions and their considerable advantages' over
other types of RS expansions (such as those which
take the HF approximation as the zero-order
eigenfunction) for atomic isoelectronic sequences,

'

the question of their perturbational convergence
has become an important issue. For example,
the current pessimistic theoretical predictions'
for the N=3 sequence suggest divergence of the
1/Z expansions for the low-lying states for all
Z of interest; this has prompted a recent search"
for better zero-order eigenfunctions. Further, in
the HSK calculation for the N= 4 sequence, "it was
found that the 1/Z eigenvalue expansions for the
states 1s22s2'S, 1s 2s2p'P, and 1s'2p 'S diverge
for Z&5. Such divergence may be an artifact of
the calculations (too small a basis set) or it may
indicate that the radius of convergence of 1/Z ex-
pansions diminishes so rapidly with increasing
N as to render this approach useless after only a
modest increase in N; indeed, for physical rea-
sons, one tends to anticipate the latter. The pri-
mary motivation of this paper is to study the in-
fluence of N on the radius of convergence of the
1/Z expansions, as well as the related issue of
how screening16 '8'6 '" the nucleus may compen
sate for the unfavorable effect of increasing ¹

Evidently, a quantitative study of these issues re-
quires accurate methods of evaluating the radii of
convergence of the RS perturbation expansions.
At present, numerical analysis of perturbation-ex-
pansion data offers the most accurate possibility of
determining radii of convergence. Unfortunately,
it is characteristic of numerical approaches that
their accuracy depends upon the availability of
quite high-order data to reduce the uncertainty of
extrapolation to infinite order; this limits their
application to special situations. The requisite in-
put for such analysis is available '" for a number
of states of the N=2 sequence, -and accurate values
of the radii of convergence of the 1/Z expansions
of some of these states have been determined by
severalnumerical methods", for N&2, it appears,
however, that one must resort to other methods
until somewhat higher-order 1/Z expansions have'
been made available.

To investigate 1/Z or other types of RS expan-

sions for larger N, it would be useful to have a
method for obtaining reasonably accurate esti-
mates of radii of convergence from low-order
data. Then, one would be able to determine the
feasibility of a given RS perturbation approach in
an almost g priori manner. In the present ex-
ploratory study, some progress is made towards
this goal by developing a first-order procedure,
based on a simple theoretical model, for obtaining
improved estimates of RS radii of convergence.
The requisite. input essentially consists only of the
RS first-order. eigenfunction g, ; by a slight ap-
proximation, dhe requirement of knowledge of g,
can be replaced by the less stringent one of
knowledge of its norm ((g, ([. The procedure is
applicable to arbitrary stationary states of &EE

systems described by any Hamiltonian linear in a
real perturbing parameter, e.g. , the 1/Z-trans-
formed' nonrelativistic Hamiltonian of atomic
isoelectronic sequences. Thus, while our re-
sults pertain to 1/Z expansions, they are not
restricted to them. In the specific case of
atomic isoelectronic sequences, the influence of
screening' '""'"on the inverse-nuclear-charge
expansions" is investigated, and it is shown how
the radius of convergence is maximized within the
framework of our model by an optimal choice of
the screening parameter. In the event that P, or
((P,~[ is not available, a modest estimate of the

square norm Qr, ~g, ) suffices for the evaluation of
the radius of convergence at the level of accuracy
considered here; a simple method for obtaining
such an estimate of the square norm is developed
for both the unscreened and the optimally screened
inverse-nuclear-charge expansions of atomic iso-
electronie sequences.

In Sec. II, the theory is developed. In Sec. III,
the procedure is tested and illustrated by applica-
tion to the inverse-nuclear-charge expansions of
several states of the 2 «¹10atomic isoelectron-
ic sequences. Radii of convergence computed in
this manner are critically compared to accurately
known values and to other estimates. Optimal
screening is then applied to the 1/Z eigenvalue ex-
pansion of the 1s22s S state of the N=4 sequence, 2

and the screened and unscreened total eigenvalues
are compared over a range of Z. Finally, Sec. IV
is devoted to a discussion of our results. The
principal findings of thi. s paper are as follows:
(1) Our procedure leads to considerably improved
estimates of the radii of convergence of 1/Z ex-
pansions; (2} the effect of increasing N on the
radii of convergence of the unscreened 1/Z ex-
pansions is severe, e.g. , for the ground states of
the 3 «N «10 sequences, the region of conver-
gence is approximately limited to Z & 3N —7; and
(3) optimal screening greatly increases the radii
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of convergence of these expansions, and extends
their applicability to at least N= 10.

H. THEORY

A. Preliminaries

In this subsection, we summarize the necessary
background for the present study. In a series of
fundamental papers, Rellich, ' and subsequently,
Kato4' have treated BS convergence in. a rigorous
manner. The relevant conclusions are as follows:
Consider the perturbed time-independent Schro-
dinger equation

(H ~ (s))y(s) 0

where H is the perturbed Hamiltonian, and g"' and
q'" are, respectively, the perturbed exact norm-
alized eigenfunction and eigenvalue of the sth sta-
tionary- state; in what follows, we fix our attention
on an arbitrary state and suppress the state super-
script. Formally, the perturbation enters Eq. (1)
in those cases when H can be treated as an oper-
tor-valued holomorphic function of a perturbing
(coupling) parameter X. The simplest H(X) for
which RS theory is applicable has the linear ex-
pansion

H=H(X) =H, +H, ~,

where H, is the unperturbed Hamiltonian and H, X

is the perturbing potential operator; this form is
assumed throughout as it is sufficient to cover
most applications' of RS theory. In the problems
we consider, the physically significant values of
X are real but complex values cannot be excluded
from consideration when studying convergence. In
some cases, X occurs naturally in H as the scalar
measure of a physical quantity which governs the
strength of H„while in certain other cases, a
physically significant perturbing parameter X can
be introduced by a suitable transformation. Un-

doubtedly, the best known example of the latter is
the 1/Z scaling transformation'0 which brings the
nonrelativistic Hamiltonian of an arbitrary N-
electron atomic isoelectronic sequence into the
form of Eq. (2), where in Z-scaled a.u. (unit of
length Z ' a.u. , unit of energy Z' a.u.),

where H, is still given by Eq. (3a),

H' = r, ',. —o' r, (3b )

),'=(Z') '=-(Z —(r) ', (3c')

and 0 is a disposable screening parameter; here
and throughout, the prime denotes a quantity ex-
plicitly dependent upon (T. The unscreened and
screened perturbed solutions to Eqs. (3) and (3')
can thus be written as g(F„.. . , r „), q, and
g'(r„. . . , r~), g', respectively. In ordinary a.u. ,
these are related' as follows:

q(Zrgi ~ ~ ~ i Zr 8) = (Z') 0'(Z'r|i ~ ~ ~ i Z ~N) i

(4a)

Z2 (Zi )2 (4b)

It was the significant contribution of Rellich, Kato,
and others to derive sufficient conditions' for a
given H(X) to belong to a holomorphic family of
operators, and hence, for the corresponding dis-
crete state P(X) and &(X) to be holomorphic in a
neighborhood of A. = 0. Kato~' "'"also proved that
the commonly encountered Hamiltonians in atomic
and molecular calculations for N particles inter-
acting through pairwise Coulombic potentials,
e.g. , Eqs. (3) and (3'), were members of holomor-
phic families. For such operators, and for eigen-
states where qp is an isolated eigenvalue of Hp with
finite multiplicity, one is assured that the RS ex-
pansions in powers of X,

th)= ((X)= p g,. X~,
j=p

(5a)

genic partitioning of the Hamiltonian where the
entire interelectronic repulsion, Eq. (3b), is taken
as the perturbation. It is also useful to consider

e screenedi6-ia hydrogenic formulation for atom-
ic isoelectronic sequences where a portion of the
nuclear attraction potential is included in the per-
turbation. In Z'-scaled units [unit of length (Z') '-
a.u. , unit of energy (Z')' a.u. ], this yieldss~'ss

the new Hamiltonian

H' = H' (V ) = H + H' V,p i .

lY N

H, = ga, (s)= g(- -,'~, r,.'), - (3a) q = q (x) = Qq, x',
j=o

(5b)

lY

H, = gr, .', ,
k& j

(3b)

and the physically significant values of X are

g i ] i i (3c)

Equations (3) represent the unscreened hydro-

exist and converge absolutely in the convergence
circle

~

X ~&r~, where r~ is the nonzero RS radius
of convergence given by r~= ~X~ ~, and X~ is the
coordinate in the complex X plane of the nearest
singularity in q(X) to the origin. For atomic iso-
electronic sequences, Eqs. (5) represent the un-
screened 1/Z expansions, 'o" which converge for
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Z&Z~ where Z~=—x~'. Similarly, the screened
1/Z' expansions' 8'" [cf. Eqs. (2') and (3'}Jfor
atomic isoelectronic sequences,

q
= q (v) = g q,'(v)~,

j-0

~' = e'(&') = e'(&')',
j=p

(5a')

(5b')

converge for ~V
~

&r~, where r~= ~V~
~

and V~ lo-
cates the nearest singularity in q'(V). Given the

q, , Eq. (5b), one can calculate the q,'., Eq. (5b'),
for any value of o satisfying ~o

~

&Z by the simple
series transformation, """'

Ep= 6p y

gg = Qg + 20'Qp
y

g2 —g2+ 0'q~+ 0' qp,

(6a}

(6b)

(6c)

without the necessity of making actual calculations
with the screened H'(X'). It should be noted that
although the artificially introduced 0 dependency
must cancel out of total eigenfunctions, eigen-
values, and other expectation values [as indicated
in Eqs. (4)J, a properly chosen o may have con-
siderable influence on the radius of convergence
and, hence, on the comparative rates of conver-
gence of the screened and unscreened HS expan-
sions. This is not surprising since series trans-
formation is a classical technique for accelera-
ting convergence. Screening has been exploited by
a number of authors' '""'"who used different
criteria to fix the optimum 0 for differentpurposes.

Ideally, the next step in the analysis would be'the
determination of X~ for given systems. As is well
known from the theory of complex functions, "
evaluation of the modulus z~ is usually much sim-
pler than determination of the location of the
singularity X~. Thus, Hellich' and Kato" "have
shown how rigorous lower bounds r&b to y~ can,
in principle, be obtained in a general manner. Al-
though of great theoretical significance in demon-
strating convergence for nonzero y~, these lower
bounds have proved far too weak to be of much
practical value. In the crucial example of the 1/Z
expansion for the ground state of the helium iso-
electronic sequence, Kato ' "found that z~ ~ x&, ,

=1/7.64=0.131; evidently, it wouM be desirable
to improve this estimate since it is one order of
magnitude smaller than the numerically deter-
mined" presumably accurate value, of ~~ =1.1-1.2,
and can only assure convergence of the 1/Z ex-
pansions for Z&z = 7.64 (i.e. , for 0"). Here,

from Eq. (3c), the estimated minimum nuclear
charge Z . is given by

z. ='(ri, ) '.
In earlier efforts to improve these lower bounds,

two modifications of Kato's theory have been in-
troduced, one based on optimizing the path of con-
tour integration' and the other on the screening
transformation, ' ' Eq. (5'), for atomic isoelectron-
ic sequences. On the basis of previous analysis, "
it is not hard to show4' that the former procedure
is not very promising as it achieves only a neg-
ligible improvement in the estimate r&, (which,
again, is one order of magnitude too small) for
the specific case considered of the ground state
of a perturbed hydrogenic ion. '"' On the other
hand, Ahlrichs' has demonstrated by a refined
calculation that screening is quite effective for the
1/Z' expansion of the ground state of the helium
isoelectronic sequence. By adjusting 0 so as to
maximize y&'b, he found that 0=0.34, y~~ rg,
=0.608, and Z&Z~=1.98, thus for the first time
assuring convergence for He. In the screened
case, from Eq. (3c'), Z . is given by

Z~=(r~~) '+ v.

Unfortunately, this lower-bound procedure is not
effective for excited states of the helium isoelec-
tronic sequence and for the lithium isoelectronic
sequence to which it was also applied. ' For ex-
ample, for the 1s'2s'S and 1s'2p'I states of the
lithium isoelectronic sequence, the unrealistic-
ally high value of Z~ = 31.4 was found while there
is numerical evidence"'" which indicates that
even the unscreened 1/Z expansions converge for
at least Z~ 5. In view of these difficulties, no
estimates of Z~ seem to be available for 1/Z or
1/Z' expansions of atomic isoelectronic sequences
with N&3. In the following two subsections, we
present a new method for obtaining improved
estimates of r~, and in the special case of 1/Z
expansions, also of 0., r~, and Z~. In principle,
this procedure is applicable to all states of iso-
electronic sequences with ¹ 2.

B. First-order estimation of r and r '

I et g be an analytic but otherwise arbitrary an-
satz to P for a given system and state which
furnishes the variational approximation q to q,
throughout, the tilde denotes a trial function. In
general, tt may contain P adjustable variational
parameters, the a~, which occur linearly, non-
linearly, or in some combination. Then, depend-
ing upon the types ' of variational parameters em-
bedded in g, a number of different perturbational-
variational (PV) methods are available"'22'44 for
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obtaining the stationary PV expansions,

aq=a~(X}= Qaq~X~, p=1, 2, . . . , P (8a)

The PV eigenvalue expansion Eq. (8c) correspon-
ding to Eq. (11) can be written as

j=0, 1,2, 3

4=4(~,)= gfp',
p=0

((t) IH(X) I (t)&
E =e(upi &) = (-Ip j=0

(8b)

(8c)

these converge for lx l &r~, where r~ is the non-
zero PV radius of convergence given by i~= lx~ l

and X~ locates the nearest singularity in q(X} to
the X origin. In general, the PV expansions, Eqs.
(8), are variational counterparts to the exact RS
expansions, Eqs. (5}; all PV quantities are, of
course, ansatz dependent. We adopt the normali-
zation scheme for the RS and PV expansions with

g„(j), (j)„and P individually normalized, which
yields

Q&4gl(j'„g&=6„o, n=o, l, ~ ~ ~,

$(1, X) =—(1+ (g, l
$~&X2) ~'($0+ (t), X),

~(1 ~)=-&y(1 ~) le.+ff.~lq(1 ~)&

(g2X2+ q~X )((j)~ I
(j)~&X2

1+ (g, I g, &&'

(10)

and an identical expression for the g,
In order to gain insight into the convergence

properties of the exact RS solutions for a given
system and state, one can study corresponding
PV expansions. Thus, in a number of cases, it
has been found possible to determine"'~" the
PV X~ for selected q(X). This approach has been
intensively pursued by Stillinger and his col-
leagues4' for PV 1/Z expansions of atomic isoelec-
tronic sequences using (t) containing a small number
of nonlinear variational parameters. Their pur-
pose was to confirm Stillinger's"'" conclusions
concerning the convergence behavior of the RS
1/Z eigenvalue expansion for the ls"S state of the
N = 2 sequence, and they indeed observed quali-
tatively similar behavior in a number of variation-
al calculations for the N= 2 [Refs. 46(a) and 46(b)]
and 10 [Ref. 46(c)] sequences.

The Wigner (2n+1} theorem"b' implies that the
RS eigenfunction expansion Eq. (5a) truncated after
first order should be a fairly good approxima-
tion to the total eigenfunction, at least as far
as the total eigenvalue is concerned. This has
been confirmed numerically in a number of
cases. ' '~"'"'3 ' ' Thus, a n3tural and well-de-
fined comparison g to (t) is obtained by renormal-
izing the first-order expansion of g. This yields
the well known expressions~'

&, =-&q, lq, &~, , g=4, 5, . . . , (12b)

where for lowest states, we have the upper bound

~.=-&&il&i&"~ ~. ~ (12c)

Now q(1, X), Eq. (11), is a simple meromorphic
function where the singularity X~(1) limiting the
convergence of Eqs. (12) is evidently

a„(1)= i„(1)exp(+ i —), (13a)

with radius of convergence x~(1) given by
(

~,(1)= 4, ly, &
"'-=II', II

'. (13b)

We see that the first-order approximation to X~
furnished by q(l, A) consists of two conjugated
simple poles located on the imaginary X axis with
modulus given by II/, II '. Note that if we were to
examine $(1, X), Eq. (10), for its singularities, we
would again find Eqs. (13) but with the distinction
that the singularities are branch points of index
——' corresponding to the fact that (t)(1, X) is a
multivalued function. This provides a simple ex-
ample of the previously discussed ' possible dif-
ference in the nature of the singularities which,
respectively, determine the radius of convergence
of eigenfunction and eigenvalue expansions.

Qualitatively, Eq. (13b) makes good sense: One
anticipates that the RS radius of convergence
should vary inversely in some manner with the
magnitude of the perturbation, and the latter is
measured to a first approximation by the norm of
the first-order eigenfunction. Quantitatively, how-
ever, one can only expect fairly crude results from
this estimate. Although e(1, X) yields q(X) correct
through third order, it does suffer from the defect
of not being stationary, and hence, &(1, X), un-
like &(X), does not satisfy the basic variational
theorems, e.g. , the Hellmann-Feynman, "vir-
ial,"'"and curvature" theorems. It has been
shown' '" that satisfaction of these variational
theorems imposes severe constraints on the RS and
PV eigenvalue expansions, and hence we infer, on
their radii of convergence. In order to improve
this first-order estimate of r~ without having to
resort to high-order numerical analysis, "we adopt
the simplest possible procedure of converting
P(1, A) into a true variational ansatz by replacing"
X with an adjustable linear variational parameter
c; the resultant stationary eigenvalue will satisfy
the Hellmann-Feynman theorem~"" (for all states}
and the curvature theorem" (for the lowest states).
By conventional means, "'"one obtains the sta-
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tionary quantities

c = c(X)= [~ (1, c) —(~,+ ~,X)]/~, &,

j(1,c) = (1+ (g, l g, & c') 'n(q, + g, c),
(14a)

(14b)

q(I c)=q +g X+ ' ' [-1+(1+z)'"]
z=z(~) -=4&y, ly, &z;~'/(~, -~,~)',

where the obvious notation distinguishes the c-de-
pendent quantities of Eqs. (14) and (15) from the
corresponding ones of Eqs. (10) and (ll) with c

For lz l
&1, Eqs. (15) yield the PV eigenvalue

expansion

j,(c)=q„j=0, 1, 2, 3

j,.(c) =l z,i, ,(c)
(

(16a)

—(f l$ & QK&(c)t1-p(c) I z j= 4, 5, .. .
(16b)

where for lowest states, we have the improved
upper bound

e,(c)= e', /e, —(p, l p, &z, - e, ~ (16c)

Equations (12) and (16) should be compared and
their different structure for j & 3 noted. Clearly,
from Eq. (15a), the singularity determining the
convergence properties of the PV eigenvalue ex-
pansion of Eqs. (16) is a branch point of index —'
at z= -1. Substitution of this value of z into Eq.
(15b) determines the corresponding singularity
in X, X~(1, c), as

X~(1, c) = r~(1, c) exp[+ i tan '(2ll g, lie, /e, )], (17a)

with radius of convergence r~(1, c) given by

r*(1 c) = I" I&4&&. lq. &~22+z32) "~ (1Vb)

Now in those cases where accurate RS expansion
data are available, one finds that 4(g, lg, &q', » q,',
whenever this is valid, one can expand Eq. (17b)
to obtain

( ~2
r~(1, 3c=-', Ilrp, ll

'
1&1

—
~

~'
~

—, + )1 1~2

=y tip, ll '=-', r~(1) (17c)

where the rhs follows from Eq. (13b). Further, in
the special case of 1/Z expansions of atomic iso-
electronic sequences, Eq. (17c) yields the mini-
mum nuclear charge

Z . (1,c)= [r~(1,c)] ' =2llg, ll . (»)
Note that the use of Eqs. (17c}and (18) only re-
quires a knowledge of II/, I( ~ From Eq. (17a), we
see that the variational improvement achieved in
Eqs. (14) and (15) has converted the two conjugated
simple poles of Eq. (13a} lying on the imaginary

X axis into two conjugated branch points lying
slightly off the imaginary axis. It is of much
greater interest, however, that the crude first-
order estimate of the radius of convergence fur-
nished by Eq. (13b}has been reduced by a factor
of approximately one-half in Eq. (IVc); this pro-
nounced shift is even more striking when one con-
siders that &(1,c) demonstrates" only a slight
energetic improvement over z(l, A). Note also
from Eqs. (17b} and (17c) that the effect of rel-
atively larger magnitude of q, is to reduce slightly
the estimate of Eq. (17c), which is in accord with
expectations. We put forth Eqs. (17b), (17c), and
(18) as our best first-order estimates of r~ and
Z~ for the unscreened 1/Z expansions of atomic
isoelectronic sequences; for brevity, we now
simplify the notation and refer to the solutions of
these equations as simply x and Z . .

All of the above results, Eqs. (8}-(18),are also
applicable to the screened 1/Z' expansions of
atomic isoelectronic sequences upon replacing the
unprimed quantities with their primed counter-
parts, and in the case of Eq. (18), making an ad-
ditional obvious modification [cf. Eqs. (7) and
(7')]. Thus, Eqs. (17b), (17c}, and (18) become
explicitly

r; = l~'1[4&y1 I
y'&(~')'+ (~'}'] "

Z~= (r~) '+ c= 2 II g,'ll + c'.

(17b')

(1Vc')

(18 )

The screening parameter o is still at our disposal,
and may now be varied so as to maximize r~ via
Eq. (17b') or (17c'), or to minimize Z . via Eq.
(18'}, each approach leading to a slightly different
result for the optimum value o,~~. In the simplest
case, namely, the maximization of r ~ with Eq.
(17c'), we immediately obtain

s(p,' I g,'&a&' =' (19)

as the condition for determining o, Thus, toopt'
this order of approximation, one may maximize
the screened radius of convergence by minimizing
the square norm of g,

' with respect to the screening
parameter. Drake and Dalgarno"'"' have consid-
ered Eq. (19}for a completely different purpose
in the context of autoionizing resonances, and
have shown how solutions for &T~& may be obtained
for the helium isoelectronic sequence. Since ex-
tension of their procedure to N&2 appears dif-
ficult, a simple method of estimating o,~, via Eq.
(19) for atomic isoelectronic sequences of arbi-
trary N is developed in the following subsection.

In practice, we have found (cf. Table II, Sec.
III) that the estimates r~ obtained from Eqs. (17b)
and (17c) differ but negligibly; similar remarks
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apply to Eqs. (17b') and (17c'). Thus, in sub-
sequent developments, we need only consider the
simpler Eqs. (17c) and (17c').

C. Estimation of &f j tP q), o,p, , ahd &f ~' )PI&

(20)

We present here a method for systematically
estimatmg (g, ~g, ), o„„and ($1~$1), all of which
are required in our procedure for studying the
convergence of 1/Z and 1/Z' expansions of atomic
isoelectronic sequences. Such approximate fir st-
order data will enable us to examine convergence
behavior in those cases where either g, is not
readily accessible or has not yet been computed.
To obtain these estimates, we construct an ansatz
$(a ) to H(X), Eqs. (3), for each state and isoelec-
tronic sequence of interest, and then generate the
PV expansion of $, Eq. (Bb), through first order
by applying PV theory~' to render the PV expan-
sion of 2, Eq. (Bc), stationary through third order
Full details of the PV procedure are presented
in the paper cited and need not be repeated here.
This yields g, whence we compute((, ~g,), and final-
ly, via Eq. (19), a„„and g,' ~

$,'). Note that our
goal differs from the usual one of obtaining an
accurate third-order 1/Z expansion of e; we only
require an adequate approximation to (g1~ g,), and
the quality of the a& generated is immaterial.

Owing to the relative insensitivity of Eqs. (17c),
(17c'), (18), and (18') to inaccuracies in the first-
order eigenfunction, we anticipate that modest
estimates of g1 should suffice. Thus, we assume
that the independent-particle model is sufficiently
accurate and construct the $(a2) from a simple
minimal-basis set of orthonormal atomic orbitals

These we take in the usual form

X„...=R„,(r;a,)r,.(e, y)

R „„R„,(a,),
&R„,(a„)

nr1 ~ pa
=~~a

a~

(24a)

(24b)

where the optimum a& and a, [cf. Eq. (Ba)] for
the various states and sequences in question have
been analytically determined by the PV proce-
dure. " Owing to the hydrogenic form of the
orbitals, it follows that

ko=y, =50 =1,
whence Eqs. (21) and (24a) yield

QO =28

(25)

(26a)

HF orbitals, suffices to describe the ground states
as well as a number of low-lying excited states
of the 2 (N &10 isoelectronic sequences. The
hydrogenic form of the orbitals is selected to
force the proper asymptotic behavior" "of g
and e for small x (large Z). The appropriate
single configuration $ are constructed" from
these atomic orbitals by means of the usual Slater
determinants. In constructing the $, we have re-
mained within the framework of the HF approxi-
mation by neglecting the zero-order degenera-
cy""'"with other configurations of the same
symmetry which arises for 4 &

¹ 8. This is
justifiable since trial calculations indicate that
lifting this degeneracy has a negligible effect on
our estimates of radii of convergence.

We can obtain the PV expansion of fr by sub-
stituting the PV expansions of the radial orbitals

R„,(a ) =JR„,/X/, (23)
j=0

into g and collecting terms of like powers of X.
Here, through first order,

where the normalized 1s, 2s, and 2P radial func-
tions are, respectively, selected as the param-
etrized hydrogenic radial orbitals,

1
V

2~2 (2 r)8

-rl21
2V2 = 2~6re

(26b)

(26c)

u —=B =2k3~3e ~"
10 (21a)

(yy 2/2
v= R —(] r2) 1/2 (2 yyr) e-2&/2

(y6)2/2

2WS

(2lb)

(21c)

and

7' =r(y) =32& 2y'/'(1 -y)(2+y) (22)
1

Here, k, y, and 5 are nonlinear variational pa-
rameters, 0 is an overall scaling parameter which
assures that the virial theorem" " is satisfied,
and w is chosen to orthogonalize u and v. This
basis set, which approximates the corresponding

&0=&0 y (27b)

(27c)

u, =k, (3 -2r)e

1 1
( -67+r2r) re+/1" e-rk +y 64' 2~,

81

(28a)

(28b)

As indicated in Eqs. (27), our minimal-basis set
necessarily yields results in agreement with HF
calculations through zero order in the eigenfunc-
tion and first order in the eigenvalue. From Eqs.
(21), (22), and (24b), the first-order radial or-
bitals are explicitly
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to, = '~'(5r r-')e "~'. (28c)
the optimized unscreened and screened scaling
parameters are related by

where the plus sign refers to the singlet" and
the minus sign to the triplet;

ls2p ' Pq g~ I $~) =&@~
I
Q~)+ &w~ Iw~) ~

2p"P, &y
I y ) = 2&tv

I
tv )

1s 2s'2P, &g, I g, ) = 2&u,
I
u, )

+a((v,
I
v, ) —2&u, I v, )')

+h&tvg
I
wg) q

(29b)

(29c)

(29d)

where a =0, 1,2, and b =0, 1, . . . , 6. All integrals
are elementary and, hence, are not presented
explicitly. Note that Eqs. (29) are a consequence
of the orthonormality of the orbitals and are in-
dependent of our pa'rticular choice of u, v, and
W.

To determine 0„„it appears that we wouM
first have to reoptimize ea,ch ansatz, now denoted
as g'(a'), with respect to the screened H'(A. '),
Eqs. (3'), for an arbitrary value of c. It follows,
however, from consideration of Eqs. (4) that for
all optimized variational parameters, a~ = a~ with
the sole exception of the overall scaling param-
eter. In ordinary a.u. , in analogy with Eqs. (4),

It is now a simple matter to compute g, I g,)
for each state and sequence of interest. In terms
of radial integrals, we obtain the following results:

1s2s ' S &$g li/Jg) =&Bg IQ~)

+&v,
I
v,) +2&~,

I
v,)', (29a)

Zk =Z'k'. (30)

k' =k =10 0

k'=k, +o,
(31a)

(31b)

where v is still at our disposal. Thus, Eqs. (29)
for &|t,

I g,) also apply to &g,
'

I g,') upon replacing u„
v„w„Eqs. (28), with u,', v,', to,', where the latter
screened orbitals differ only from the former
unscreened ones in that k, has been replaced with
k, +o in accordance with Eq. (3lb). Evidently, the
resultant expressions for &$(l gf) are simple quad-
ratic functions of g which can be minimized ana-
lytically via Eq. (19) to yield o;„.

III. APPLICATIONS AND RESULTS

As a first test of our procedure, Eqs. (17b),
(17c), and (18) were applied to the unscreened
I/Z expansions of the ground and several excited
states of the N =2 and 3 isoelectronic sequences
where accurate RS input data are available, and/or
the radii of convergence have been previously
calculated or estimated by other means. In Table
I the requisite RS data are collected; also pres-
ented are the corresponding PV &g, I g,) computed
with Eqs. (29), and for comparison, the PV e„
all calculated with the minimal-basis set of Eqs.

Insertion of the PV expansions of k (in powers
of X) and of k' (in powers of V) into Eq. (30) yields,
through first order,

TABLE I. RS and PV 1/Z perturbation-expansion data (in Z a.u.) for several states of the
helium and lithium isoelectronic sequences.

State —E2
a b

3
d

s21

ls2s ~S

ls2s S
ls2p P
182p P
2p2 3p

3 ls22s 2

ls22p 2P

0.157 666 4
0.114509 5
0.047 409 3
0.157 028 5
0.072 998 9
0.039 394 7

0.408 165 2g

0.528 578 6g

0.008 699 0
0.009 224 0

-0.004 872 7
0.026 059 6

-0.016 594 3
0.001 840 0

-0.016 55
-0.07

0.239 869 5
1.469 479 5
0.488 630 9
1.474 3564
0.740 833 3
0.394 6175

0.146 484 38
1.160268 53
0.316 725 66
1.463 35131
0.645 610 98
0.269 16504

1.991 964 32
3.449 027 74

0.097 656 25
0.150226 13
0.039 595 72
0.146 383 05
3.065 471 52
0.026 91650

0.319087 77
0.445 815 03

Unless otherwise indicated, see Ref. 30(a).
Unless otherwise indicated, see Ref. 21(c).' These values of @&)f&), computed with 140- to 168-term bases, were kindly supplied by

Professor J. Midtdal, Ref. 57,
Present calculation; unscreened PV expansions computed with minimal-basis set.
Reference 20.
Not an upper bound to &2 since the requisite orthogonality conditions have not been im-

posed; see Ref. 56.
g Reference 28(c).

Reference 28(d).
' Estimate, Ref. 28(b).
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TABLE II. Comparison of estimates and more accurate values of RS radii of convergence
of 1/Z perturbation expansions for several states of the helium and lithium isoelectronic se-
quences.

State

ls 9

ls2s ig

ls2s 8

ls2p P'

ls2p P

2p2 3P

ls2s S

s22p 2

1.019

0.412

0.713

0.411

0.576

0.795

1.021
1.306
0.412
0.464
0.715
0.888
0.412
0.413
0.581
0.622
0.796
0.964

0.354

0.269

Eq. (17b) Eq. (17c) C

1.118'

0.835

0.925

0.777

0.758

1.013'

Zmjn

Eq. (18)

0.98
0.77
2.43
2 ~ 15
1.40
1~ 13
2.43
2.42
1.74
1.61
1.26
1.04

2.82

3.71

Z cd d

0.S94'

1.197

1.082

1.286

1.319

0.9S7'

e
ZmjI1

1.98

24.6

13.2

6.6

5.0

31.4

31.4

' Present calculation; computed with accurate RS input data from Table I.
Present calculation; for each state, the first entry is computed with the appropriate BS

lpf II from Table I and the second entry with the appropriate PV II V'll.
Most accurate values available, computed by numerical analysis of high-order data; unless

otherwise indicated, see Ref. 37(b).
dz ="1

Theoretical lower bounds to the minimum nuclear charge [cf. Eqs. (7) and (7')] via Kato's
procedure, Bef. 8; other lower bounds for the ground state of the helium isoelectronic se-
quence are 7.64 [Bef. 4(d)], 4.07 (Ref. 7), and 3.53 (Ref. 8).

Reference 37(a).

(20)-(22). For these same states and sequences,
Table II displays the values of x~ computed with
both Egs. (1Vb) and (1Vc) using the accurate RS
expansion data, as weQ as x computed with Eq.
(1Vc) using the PV (g,

~
g,); the corresponding

values of Z „computed with Eg. (18) are also
tabulated. Further, in Table II the most accurate

values of x~ and Z~ are collected, as well as the
best lower-bound estimates Z „.

To prepare the way for extension of the proce-
dure to larger N, the minimal-basis set was used
to calculate the unscreened (g,

~
Q,), c„„and the

optimally screened (g',
~
gf) for the ground states

of the 3 &W & 10 isoelectronic sequences and for

TABLE III. Unscreened (1/Z) and optimally screened (1/Z') PV expansion data for the
3 ~g ~ 10 atomic isoelectronic sequences.

3 lg 2s 8
ls2p P

22 2ig
5 1s22s22p 2

s22s22p2 3

ls22s22P3 4g

. 8 1s22s22p43I'
9 1s22s22p

10 1s22s22P6 'S

a

0.408 165
0.528 579
0.881 945
1.856 650
3.288 002
5.264 012
8.131865

11.755 106
16.272 878

b—E2

0.319088
0.445 815
0.716604
1.552 076
2.807 918
4.564 878
7.070 946

10.275 908
14.259 678

1.991964 32
3.449 027 74
5.287 030 66

13.075 888 69
24.986 529 77
41.826 449 01
66.075 533 42
97.231641 06

136.093 9244

C
opt

0.727 918791
0.923 231 515
0.999 853 938
1.373 089407
1.730 772 566
2.079 763 590
2.450 444 484
2.811454 824
3.165754 643

(~tlf"t&~

0.335 760 289
1.105 047 558
0.537 008 714
1.760 983484
3.264 397 337
5.054 309 830
7.521 455 584

10.273 436 74
13.310264 76

' RS values (in Z2 a.u.) included for comparison; Ref. 30(a).
Present calculation; unscreened PV expansion (in Z2 a.u.} computed with minimal-basis

set.
'Optimal screening parameter computed from Eq. (19) using PV (gt~ ft&.

Screened minimized PV values [in (Z') a.u. ] calculated with O,pt.
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TABLE IV. Estimates of radii of convergence of un-
screened (1/2) and cptimally screened (1/Z') pertur-
bation expansions for the 3 ~ +~ 10 atomic isoelectronic
sequences.

N Zml5
-I d

Zsgtl

3 1s 2s S 0.354
1s22p 2Q 0.269
ls22s2 1$0217

5 ls 2s 2p P 0.138
6 ls22s22P P 0.100
7 ls 2s 2p S 0.0773
8 ls 2s 2P P 0 0615
9 ls 2s 2p P 0 0507

10 ls 2s 2pe&S 0.0429

2.82
3.71
4.60
7.23

10.00
12.S3
16.26
19.72
23.33

0.827
0.476
0.682
0.377
0.277
0.222
0.182
0.156
0.137

1.89
3.03
2.47
4.03
5.34
6.58
7.94
9.22

10.46

All computations made with requisite PV unscreened
and optimally screened expansion data of Table III.

Unscreened, Eq. (17c).
Unscreened, Eq. (18).
Screened, Eq. (17c').' Screened, Eq. (18').

TABLE V. Unscreened (1/Z) and optimally screened
(1/Z') eigenvalue expansion coefficients for the 1s 2s ~S

state of the beryllium isoelectronic sequence.

0
1
2
3

6
7

9
10

1.250.000 00
1.559 274 21

-0.852 393 34S
-0.079 065 343 8

0.042 664 244 6
0.190961 545
3.852 01909

12.892 9195
3.830 020 30

-84.422 408 6
-334.899 136

-1.250 000 00
-0.940 360 637
-0.542 981 764
-0.079 065 343 8

0.121718 040
0.026 603 270 4
3.486 204 18

-1.617 073 11
-23.732 796 9

11.459 454 4
16.435 885 9

~ Unscreened (Z2 a.u.); Ref. 26.
Optimally screened I(Z')2 a.u. ]; computed with Eqs.

(6) and 0 „Table III.

the 1s'2P'P state of the N =3 sequence. The re-
sultant PV expansion data are collected in Table
III which also displays the corresponding BS e,
and PV i, for comparison. The PV data for these
states and sequences were then used to calculate
the unscreened r and Z „via Ec(s. (1Vc) and (18),
respectively, for the 1/Z expansions, and, anal-
ogously, the optimally screened x' and Z „via
Eels. (1Vc') and (18'), for the 1/Z' expansions.
Table IV presents these results.

Finally, to verify our theoretical findings con-
cerning the effect of optimal screening on the
radius of convergence, the optimal screening pro-
cedure was numerically applied to the tenth-order
unscreened 1/Z eigenvalue expansion for the
lz'2z"$' state of the M=4 isoelectronic sequence

previously computed by Watson and O'Neil.
The optimally screened e& for the 1/Z' expansion
were obtained from the unscreened E& with Eqs.
(6) using the appropriate g„, from Table III; both
sets of expansion coefficients are collected in
Table V. Total eigenvalues were then computed
for the range of 3~Z & 8 by summation of the
tenth-order optimally screened 1/Z' expansion.
The tenth-order unscreened and screened eigen-
value summations for these Z values are pre-
sented in Table VI where they are compar d with
the accurate configuration-interaction (CI) calcu-
lations of gneiss. ""

IV. DISCUSSION AND CONCLUSIONS

A number of interesting features emerge from
a study of the results reported in Table II for the
unscreened 1/Z expansions of the helium and
lithium isoelectronic sequences. Fir st consider
the, helium sequence where the widest range of
comparisons is possible amongst the various
types of calculations:

(1) As previously mentioned, Eil. (1Vc) is such
an excellent approximation to Eq. (1Vb) that we
can adopt the former simpler expression as de-
fining the estimate y" .

(2) Of eilual significance is the fact that the
estimates r» computed from Eq. (1Vc) using either
the RS II/~I) or the PV )($~t) (cf. Table I) are in
quite good agreement despite the simplicity of
the trial eigenfunctions $ used. This tends to
confirm our assumption that modest estimates
of g, are sufficient, and encourages us to proceed
to larger ¹

(3) The agreement between the estimates Z „
and the most accurate values of Z (or between

and r ) is striking. In practical terms, the
maximum deviation between Z „and Z is only
one unit of nuclear charge. Thus, for the 1s"S,
ls2s ~S, and ls2p'P states, Eq. (18) predicts
convergence for Z & 1, Z & 2, and Z & 2, respec-
tively, in harmony with the accurate numerical
results from high-order expansions"s"~"; for the
1s2s 'S, 1s2p'P, and 2p"I' states, the predictions
of Eg. (18) are convergence for Z & 3, Z & 3, and
Z ~ 2, respectively, which are each one unit high-
er than the accurate numerically obtained values.

(4) Although there is no theoretical basis at
present, all estimates r~ from Eq. (1Vc) are low-
er bounds to x with one exception, z =1.306 for
the ls''S state, computed with the PV [[g,([. One
may argue that in this case, the g used is a par-
ticularly crude ansatz as it is simply the one-pa-
rameter variationally scaled g„and hence, is
inadequate because of the large correlation ener-
gy for the ground state. If one uses instead the
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TABLE VI. Comparison of summation of 1/Z and 1/Z' eigenvalue expansions with total
variational eigenvalues for the ls 2&2 S state of the beryllium isoelectronic sequence (in
a.u.).

Z2~ a ~E b (ZI) 2gl c E d Eci '
3

5
6
7
8

-7.4229
-14.6111
-24.3099
-36.5036
-51.1951
-68.3858

-0.0572
-0.0045
-0.0007
-0.0001

0.0000
0.0000

-7.4801
-14.6156
-24.3106
-36.5037
-51.1951
-68.3858

-0.0155
-0.0453
-0.0307
-0.0225
-0.0177
-0.0143

-7.4956
-14.6609
-24.3413
-36.5262
-51.2128
-68.4001

-0.0727
-0.0498
-0.0314
-0.0226
-0.0177
-0.0143

'Unscreened summation, Ref. 26: Z &=Z2~0+Z~)+. ~ + Z &go, ef. Table V.
b gE = (Zi)2~I Z2~

'Optimally screened summation, present calculation: (Z') &' =(Z') &'0+ Z'+'&+ ~ ~ ~

+(Z') '~, , ; cf. Table V.
&E2 =Eel —(Z') &'.

Configuration- interaction calculations, Ref. 58(a).

open-shell (ls1s') Hylleraas59-Eckart60 two-pa-
rameter ansatz, one easily obtains via PV anal-
ysis, " (P,g,) = „',=0.231445312 whence Eq. (17c)
yields the lower bound of z = 1.03S. Certainly,
however, the initial value of r is entirely sat-
ls factory.

(5) Finally, comparison of Z „computed with
Eq. (18) and the best' lower bounds Z „obts.ined
with Kato's technique reveals the advantages of
our approach. The latter are larger than our
estimates by factors ranging from two (in the case
of the most refined Kato-type lower-bound calcu-
lation for the 1s' 'S state) to ten (for the 1s2s 'S
state).

Now consider the lithium isoelectronic sequence.
Since the RS ([g, [[ are not readily accessible, we
have contented ourselves with the PV ()g, )(. For
the 1s'2s 'S and 1s'2P'P states, as shown in Table
II, Eq. (18) predicts convergence for Z~ 3 and 4,
respectively, whereas the weak Kato-type lower
bound can only assure convergence for ~ ~ 32 for
both states. Although accurate values of Z do
not seem to be available for comparison, the
eighth-order 1/Z eigenvalue expansions of Onello,
Ford, and Dalgarno"' for these states, are in
harmony with our findings. Thus, for Z =3 and
4, summation of the 1/Z eigenvalue expansion
for the 1s'2s 'S state yields, respectively, the
eigenvalues -7.46962 a.u. (-0.00V 48 a.u. ) and
-14.32005 a.u. (-0.00345 a.u. ) and, analogously,
for the Is'2P'P state, -V.37956 a.u. (-0.02882
a.u. ) and -14.16995 a.u. (-0.00471 a.u. ); here,
the numbers in parentheses give the superiority
of accurate CI calculations" for these states and
2 values over the summations. Note that for
& =3, the error in the summation for the 1s'2p'P
state is about four times larger than for the
1s'2s 'S state indicating divergence of the former,
while for Z =4, the errors for both states have

diminished considerably and differ but slightly.
We interpret these results as bearing out our
pr edictions.

The estimates of radii of convergence collected
in Table IV graphically illustrate the drastic in-
fluence of increasing N on the convergence of the
unscreened 1/Z expansions. Thus, for the
1s 2s 'S state of the beryllium isoelectronic se-
quence, Eq. (18) predicts convergence of the 1/Z
expansion for 2 ~ 5, in exact agreement with the
numerically observed" behavior. The radii of
convergence then continue to diminish so rapidly
that, for example, for the ground states of the
oxygen and neon isoelectronic sequences, con-
vergence of the 1/Z expansions is, respectively,
predicted for the large values of Z ~ 17 and Z ~ 24.
For 3 ~ N & 10, these estimates can be expressed
approximately a,s convergence for Z ~ 3N —7.
All of these results are in accord with physical
expectations based on the rapidly increasing
strength of the perturbation, Eq. (3b), with in-
creasing N. The only other estima, te of a radius
of convergence of 1/Z expansions for larger N
appears to be that of Herrlck and stilllnger46")
for the ground state of the neon isoelectronic
sequence. These authors found r =0.1185 and
0.116V (equivalent to Z „=8.44 and 8.5V) by num-
erically examining total variational eigenvalues
c for their singularities without actually obtaining
the PV 1/Z expansions. Although, no doubt, their
estimate of convergence for Z ~ 9 holds for the
PV 1/Z expansions of the a specifically studied,
it seems entirely too low to apply to more ac-
curate RS 1/Z expansions for the neon isoelec-
tronic sequence; quite apart from the present cal-
culation, one would arrive at the latter conclusion
from the previously described convergence be-
havior of the 1/Z expansions of the lithium"'"
and beryllium" isoelectronic sequences.
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The influence of optimal screening in compensat-
ing for the effects of increasing N is also shown
in Table IV. Thus for the ground states it is pre-
dicted that the optimally screened 1/Z' expansions,
Eqs. (2'), (3'), and (5'), will converge for Z~ 3
for the beryllium isoelectronic sequence, for Z ~ N
for the boron through oxygen isoelectronic se-
quences, and for Z ~ X+1 for the fluorine and neon
isoelectronic sequences. This extends the applica-
tion of such expansions to at least N =10, and prob-
ably to still larger N for the study of the higher
ionized members of the isoelectronic sequences.
These results confirm the opinion advanced by
Froman and Hall' that screening was necessary
to extend inverse -nuclear -charge expansions to
sequences with larger N. Our findings also sub-
stantiate the semiempirical work of EdMn" and
others""' who have long advocated the use of
screening parameters for the accurate represen-
tation of the ionization potentials of atomic iso-
electronic sequences.

Now we consider in somewhat greater detail
the specific influence of optimal screening on the
1/Z eigenvalue expansion for the 1s'2s''8 state
of the beryllium" isoelectronic sequence. Com-
parison of the cr„, transformed E,'. and the un-
screened && for this sequence and state presented
in Table V demonstrates the smoothing effect of
optimal screening in reducing the magnitude of
the high-order expansion coefficierits. In this
connection, it is interesting to note that the g„„
computed via Eq. (19) and collected in Table III,
are considerably larger than the o selected so as
to make E', vanish"; the latter, given by o = -e,/2e,
[cf. Eq. (6b)], range from 63%%uo (%=3) to 69%%uo

(N =10) of the o„, for the ground states. Finally,
we study the trend of the total eigenvalues shown

in Table VI. The rapid increase of &E, +&E,
(which measures the superiority of the accurate"
CI eigenvalue &c, over the unscreened summation)
with decreasing Z between Z =5 and 4 clearly sup-
ports the concIusion" that the 1/Z expansion di-
verges for Z~ 5. Now gneiss"~" has observed
exactly the reverse trend in his CI calculations
for the N=2, 3, and 4 isoelectronic sequences,
i.e. , the Ec, increase in accuracy in reference
to exact values with decreasing Z, displaying a
sharp dip in error for Z ~N. From this we infer
that the intermediate- and higher-order eigen-
value perturbation-expansion coefficients implic-
it" ~' in the total variational eigenvalues Ec, make
significant negative contributions for smaller Z.
On the other hand, the eigenvalue perturbation
expansions are subject to two opposing effects
with decreasing Z; one is the effect of truncation

which leads to increasing error, and the other is
the aforementioned opposite effect of the increas-
ing negative contributions of the intermediate
expansion coefficients which are still retained in
the truncated expansion. Such increasing negative
contributions for decreasing Z are, of course,
dependent upon remaining within the radius of
convergence of the expansion. Thus for the un-
screened 1/Z summations, where one is outside
the radius of convergence for Z& 5, &Ey++E,
can only continue to grow monotonically with de-
creasing Z as demonstrated in Table VI. For the
optimally screened 1/Z' expansions, however, it
is seen from Table VI that &E„ the error relative
to Ec„passes through a maximum at Z =4 and
decreases sharply for Z =3. This is precisely
the behavior that one would anticipate if one were
still within the radius of convergence for Z ~ 3.
By the same arguments &E„which measures the
error in the unscreened summations relative to
the screened ones, should display the same trend
as &E, +&E, and again this is observed. It follows
that the results of Table VI quantitatively confirm
our prediction that the optimal screening of the
1/Z' eigenva. lue expansion for this sequence and
state should extend convergence to Z ~ 3.

On the basis of the supporting numerical evi-
dence, it is concluded that the simple theoretical
model of the radius of convergence presented in
this paper reproduces the main features of the
problem. In some cases, the extremely good
agreement between the estimates and the accurate-
ly known values of the radii of convergence may
be partly fortuitous. This requires further in-
vestigation with more accurate first-order eigen-
functions and with higher-order 1/Z expansions
for larger N. In this connection, it would be of
great interest to seek analytical relationships
between radii of convergence of isoelectronic
sequences with N &2 and those of various states
of the N =2 sequence. This should be possible
in view of the known relationship" between the
first-order eigenfunctions of these sequences.
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